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9. The positive cone of some products of even-dimensional spheres

In this section, using known results from the theory of homotopy groups

of spheres, we compute the positive cone of S4 x S4, S4 x S6, S6 x S6 and

S6 x S8. This computation will in particular show that the positive cone and

the 7-cone do not coincide for S4 x S4. Keeping notations as in Section 7,

we describe the positive cone in terms of the geometric dimension function.

A) We start with the case of S4 x S4.

THEOREM 9.1. The geometric dimension on K(S4xS4) is given as follows :

for x axi + bx2 + Ix\X2 G K(S4 x S4), one has

'0 if a— b — l — 0

2 if a 0, b — 1 0

g-dim(x) < 2 if b 0, I — ab/6, I even

3 if b 0, I ab/6, I odd

4 if I ab/6

Proof Theorem 8.2 reduces the problem to the computation of the

function s s(ab), i.e. to calculating g-dim(x) for the particular stable classes

x axi + bx2 + (ab/6)x\X2 (where ab is a multiple of 6), or equivalently
the order of [xl3 X2] in both groups 7rj(BU(3)) and ir1{BU{2)) (with a little
abuse of notation, we denote both Whitehead products by the same symbol).
By Samelson [Sam], one has

W7(5J7(2)) S 7r6(t/(2)) TT6(S£/(2)) TT6(53) ^ Z/12,
precisely generated by [x\,xf\. This shows that for these particular values

of x, g-dim(x) 2 if and only if ab is a multiple of 12. This completes the

proof.

Remark 9.2.

i) Borel and Hirzebruch in [BoHi] (p. 355), applying Bott's results of
[Bottl], have proved that

*2n+i(BU(n)) 7T2n(SU(n)) S Z/nl (n > 2),

hence ttj(BU(3)) Z/6. Moreover, Corollary 8.3 shows that the order of
[xi, x2] in wj(BU(3)) is 6 ; it is consequently a generator.

ii) As already alluded to, we have just proved that S4 x S4 has its positive
cone strictly contained in its 7-cone, although it is a torsion-free space.
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B) As for S4 x S4, classical results from the theory of homotopy groups
of the unitary groups allow one to compute the positive cone of S4 x S6. In
this case, it coincides with the 7-cone.

Theorem 9.3. For the product S4 xS6, one has

K+(S4 x S6) KC(S4 x S6) K7(S4 x S6).

The latter is described in Theorem 7.1.

Proof. By Lundell's tables [Lun] (see also [Mim]) and by Remark i)
above, one has

7t9(5C/(3)) ^ Z/12 and tt9(BU(4)) Z/24

Corollary 8.3 shows that [x\1 X2] is of order 12 in tt9(BU(4)). By naturality
of the Whitehead product, the homomorphism y* tt9 (/), induced by
the map j: BU(3) —> BU(4), takes the product [xu x2] G tt9(BU(3)) to
[xu x2] G tt9(BU(4)). This implies that [xu x2] is of order 12 in tt9(BU(3))
too, and that [ax1, bx2] vanishes in tt9(BU(3)) precisely when it is zero in
it9(BU{4)). Together with Theorem 8.2, this completes the proof.

Remark 9.4. This proof shows in particular that [x\, x2] is a generator
of 7t9(BU(3)) Z/12 and that the map j*: tt9(BU(3)) —* tt9(BU(4)) is
injective.

C) By similar methods, we now show that the positive cone and the

7-cone coincide for S6 x S6 and then for S6 x Ss.

THEOREM 9.5. For the product S6 xS6, one has

K+(S6 x S6) KC(S6 x S6) K7(S6 x S6).

The latter is given by Theorem 7.1.

Proof. By Lundell's tables [Lun] (see also [Mim]), one has

irn(BU(3)) ^ Z/30 and tth(BU(5)) Z/120.

Corollary 8.3 shows that [x\, x2] is of order 30 in 7rn(BU(5)). By naturality,
the map y* 7rn(j), induced by j: BU{3) —» BU(5), takes the Whitehead
product [xux2] G 7rn(BU(3)) to [xu x2] G nn{BU(5)). This implies that
[x\,x2] is of order 30 in nn(BU(3)) too, and that [0x1,^2] vanishes
in 7Tu(BU(3)) precisely when it is zero in 7rn(BU(5)). Together with
Theorem 8.2, this completes the proof.
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Remark 9.6.

i) This shows that [x{, x2] generates ttu(BU(3)) Z/30 and that the map

j* : nn(BU(3)) —> nn(BU(5)) is injective.

ii) We were also able to prove this theorem without appealing to results

on homotopy groups of BU(n). Using spectral sequence arguments, we have

computed the first few stages of the Moore-Postnikov tower of the map

BSU(3) —> BSU{5). This computation, being extremely lengthy, is not given

here (see [Matt]).

Now we move on to the product S6 x S8.

THEOREM 9.7. For the product S6 x58, one has

K+(S6 x S8) - KC(S6 x S8) K7(S6 x S8).

The latter is described in Theorem 7.1.

Proof. By Lundell's tables [Lun] (see also [Mim]), one has

7rö(£t/(4)) SS Z/60 and nn(BU(fi)) Z/720

Corollary 8.3 shows that [x\, x2] is of order 60 in n\3(BU(6)). By naturality,
the map jm — ti\2(/), induced by j: BU(4) —» BU(6), takes the Whitehead

product [xux2] e tti3(BU(4)) to [xu x2] C ti\3{BU(6)). This implies that

[x\, x2] is of order 60 in iri3(BU(4)) too, and that [axu bx2] vanishes

in ti\3(BU(4)) precisely when it is zero in ti\3{BU{6)). Together with
Theorem 8.2, this completes the proof.

Remark 9.8. The proof shows that [x{l x2] is a generator of the group
TT\3(BU(4)) Z/60 and that the map j* : wn(BU(4f) —> 3{BU{6)) is

injective.

10. "Gaps in cohomology" and the 7-cone

In the present section, we are interested in spaces having a "gap in
cohomology", more precisely we look at spaces obtained by attaching a

single large-dimensional cell to a finite CW-complex Y. For such spaces,
the integral cohomology is zero between the dimension of Y and the top-
dimensional class. The products Sn x Sm are typical examples (see Section 8).
For this kind of spaces, the c-cone obviously cannot give information in the
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