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PROJECTIVE GEOMETRY OF POLYGONS
AND DISCRETE 4-VERTEX AND 6-VERTEX THEOREMS

by V. OVSIENKO and S. TABACHNIKOV

ABSTRACT. This paper is concerned with discrete versions of three well-known
results from projective differential geometry : the four-vertex theorem, the theorem on
six affine vertices, and Ghys’ theorem on four zeroes of the Schwarzian derivative.
We study the geometry of closed polygonal lines in RPY and prove that polygons
satisfying a certain convexity condition have at least d + 1 flattenings. This result
provides a new approach to the classical theorems mentioned.

1. INTRODUCTION

A vertex of a smooth plane curve is a point where the curve has 4™-order
contact with a circle (at a generic point the osculating circle has 3"-order
contact with the curve). An affine vertex (or sextactic point) of a smooth plane
curve is a point of 6"-order contact with a conic. In 1909 S. Mukhopadhyaya
[10] published two celebrated theorems, which are joined in the following
Statement :

Every closed smooth convex plane curve has at least 4 distinct vertices
and at least 6 distinct affine vertices.

These results generated an extensive literature. From a modern point of
view they are related, among other subjects, to the global singularity theory of

wave fronts and to Sturm theory — see e.g. [1, 2, 4, 8, 17, 18] and references
therein.
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A recent and unexpected result along these lines is the following theorem
due to E. Ghys [7]:

The Schwarzian derivative of every diffeomorphism of the projective line
has at least 4 distinct zeroes.

(see also [11, 15, 6]). The Schwarzian derivative vanishes when the 3™ jet of the
diffeomorphism coincides with that of a projective transformation (at a generic
point a diffeomorphism can be approximated by a projective transformation
up to the 2" derivative). Ghys’ theorem can be interpreted as the 4-vertex
theorem in Lorentzian geometry (cf. references above).

The goal of this note is to study polygonal analogues of the above results.
In our opinion, such a discretization of smooth formulations is interesting
for the following reasons. Firstly, a discrete theorem is a priori stronger;
it becomes, in the limit, a smooth one, thus providing a new proof of the
latter. An important feature of the discrete approach is the availability of
mathematical induction, which can considerably simplify the proofs. Secondly,
the very operation of discretization is non-trivial: a single smooth theorem
may lead to non-equivalent discrete ones. An example of this phenomenon
is provided by two recent versions of the 4-vertex theorem for convex plane
polygons [12, 13, 19, 16] — see Remark 2.4 below. To the best of our
knowledge, these results are the only available discrete versions of the 4-vertex
theorem.

In this regard we would like to draw attention to a famous lemma of
Cauchy (1813):

Given two convex (plane or spherical) polygons whose respective sides are
congruent, the cyclic sequence of the differences of respective angles of the
polygons changes sign at least 4 times.

This result plays a crucial role in the proof of rigidity for convex polyhedra
(see [5] for a survey). The Cauchy lemma implies, in the limit, the smooth
4-vertex theorem and can be viewed as the first result in the area under
discussion.
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2. THEOREMS ON PLANE POLYGONS

In this section we formulate our results for plane polygonal curves. The
proofs will be given in Section 4.1. '

2.1 DISCRETE 4-VERTEX THEOREM

The osculating circle of a smooth plane curve at a point is the circle (or
straight line) that has 3™ order of contact with the curve at the given point. One
may say that the osculating circle goes through 3 infinitely close points; at a
vertex the osculating circle passes through 4 infinitely close points. Moreover,
a generic curve crosses the osculating circle at a generic point and stays
on one side of it at a vertex. This well-known fact motivates the following
definition.

Let P be a plane convex n-gon; throughout this section we assume that
n > 4 . Denote the consecutive vertices by Vi,...,V,; the subscripts are
understood cyclically, that is, V,; = Vi, etc.

DEFINITION 2.1. A triple of vertices (V;, Viy1, Vipo) is said to be ex-
tremal') if V;_; and Vi3 lie on the same side of the circle through
Vi, Vit1, Vigo (this does not exclude the case where V;_; or Vi3 belongs to
the circle).

a) not extremal b) extremal

FIGURE 1

The next result follows from a somewhat more general theorem due to
O. Musin and V. Sedykh [12] (see also [13]).

1 ’ . . - ;
) We have a t.ermmologlcal difficulty here: as we are dealing with polygons, we cannot use
the term “vertex” in the same sense as in the smooth case; hence the term “extremal”.
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THEOREM 2.2. Every plane convex polygon P has at least 4 extremal
triples of vertices.

EXAMPLE 2.3. If P is a quadrilateral then the theorem holds tautologically
since the (i — 1) vertex coincides with the (i + 3)™ for every i.

REMARK 2.4. An alternative approach to discretization of the 4-vertex
theorem consists in inscribing circles in consecutive triples of sides of a
polygon (the centre of such a circle is the intersection point of the bisectors
of consecutive angles of the polygon). Then a triple of sides (¢;, 411, %;12) is
said to be extremal if the lines ¢;_1, ¢;, 5 either both intersect the corresponding
circle or both fail to intersect it. With this definition an analogue of Theorem 2.2
holds true [19, 16], and this, in the limit, also provides the smooth 4-vertex
theorem.

Both formulations, concerning circumscribed or inscribed circles, make
sense on the sphere. Moreover, they are equivalent via projective duality.

2.2 DISCRETE THEOREM ON 6 AFFINE VERTICES

Five generic points in the plane determine a conic. Considering the plane
as an affine part of the projective plane, the complement of the conic has
two connected components. Let P be a plane convex n-gon; throughout this
section we assume that n > 6. As in the previous section, we introduce the
following definition.

DEFINITION 2.5. Five consecutive vertices V;,..., Vi, 4 are said to be
extremal if V;_; and Vs lie on the same side of the conic through these
5 points (this does not exclude the case where V;_; or V. s belongs to the
conic).

If P is replaced by a smooth convex curve, and V;,..., Vi, 4 are infinitely
close points, we recover the definition of an affine vertex. Hence the following
theorem is a discrete version of the smooth theorem on 6 affine vertices.

THEOREM 2.6. Every plane convex polygon P has at least 6 extremal
quintuples of vertices.

EXAMPLE 2.7. 1If P is a hexagon then the theorem holds tautologically
for the same reason as in Example 2.3.




5
]

e
3
41
4
g

PROJECTIVE GEOMETRY OF POLYGONS 7

REMARK 2.8. On interchanging sides and vertices, and replacing circum-
scribed conics by inscribed ones, we arrive at a “dual” theorem. The latter is
equivalent to Theorem 2.6 via projective duality — cf. Remark 2.4.

2.3  DISCRETE GHYS THEOREM

A discrete object of study in this section is a pair of cyclically ordered
n-tuples X = (x1,...,%,) and ¥ = (y1,...,y,) In RP! with n > 4. We
choose an orientation of RP! and assume that the cyclic ordering of each of
the two n-tuples is induced by this orientation.

Recall that an ordered quadruple of distinct points in RP! determines a
number, the cross-ratio, which is a projective invariant. Choosing an affine
parameter such that the points are given by real numbers a < b < ¢ < d, the
cross-ratio 1is

(c—a)d—b)

2.1) [a,b,c,d] = )

DEFINITION 2.9. A triple of consecutive indices (i,i+ 1,i-+2) 1s said to
be extremal if the difference of cross-ratios

(2.2) [V, Yit1, Yit2, Vi+3) — [X5, Xj1, Xjr2, Xj43]

changes sign as j varies from i —1 to i (this does not exclude the case where
either of the differences vanishes).

THEOREM 2.10. For every pair X,Y of n-tuples of points as above, there
exist at least four extremal triples.

EXAMPLE 2.11. If n = 4 then the theorem holds for a very simple reason.
A cyclic permutation of four points induces the following transformation of
their cross-ratio:

[x17x27-x37x4]
[X],XZ,X3,X4] =1 ’

(23) [x47-x17x27x3] -

and this is an involution. Furthermore, if a > b > 1 then a/(a—1) < b/(b—1).
Therefore, each triple of indices is extremal.

Let us interpret Theorem 2.10 in geometrical terms like Theorems 2.2 and
2.6. There exists a unique projective transformation that carries x;, x4, X;4o
into yj, yit+1,Yit2, respectively. The graph G of this transformation can be seen
as a curve in RP' x RP'; the three points (x;,y:), (tit1,Vie1), (Kisa, yica) lie




8 _ V. OVSIENKO AND S. TABACHNIKOV

on this graph. An ordered pair of points (x;,x;;;) in oriented RP' defines a
unique segment. An ordered pair of points ((xj, Vi) (Xjg1, yj+1)) in RP! x RP!
also defines a unique segment, namely the one whose projection on each
factor is a segment in RP' as defined before. The triple (i,i 4+ 1,i+ 2) is
extremal if and only if the topological intersection index of the broken line
(Xi—1,Yi=1), - - -, (Xiy3, yiy3) with the graph G is zero. This fact can be checked
from (2.1) by a direct computation, which we omit.

/ /

/ {

FIGURE 2

Let us also comment on the relation between Definition 2.9 and the zeroes |

of the Schwarzian derivative of a diffeomorphism of the projective line. Let
JC()IO, X1 =¢&, XQ:2€, X3 = 3¢

be four infinitely close points given in some affine coordinate, and let y; = f(x;)
where f is a diffeomorphism of RP!. Then a direct computation using (2.1)
yields:

Yo, Y1, Y2, 3] — [x0, %1, %2, x3] = € S(£)(0) + 0(53‘),

O3
s ="5 3 (7)

is the Schwarzian derivative of f. Thus, for ¢ — 0, Definition 2.9 corresponds
to the vanishing of the Schwarzian derivative.

where
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3. MAIN THEOREM

All theorems from Section 2 are consequences of one theorem on the least
number of flattenings of a closed polygon in real projective space.

In his remarkable work [3], M. Barner introduced the notion of a strictly
convex curve in real projective space: this is a smooth closed curve v C RP?
such that for every (d — 1)-tuple of points on + there exists a hyperplane
through these points that does not intersect -y at any other points. Barner
discovered the following theorem::

A strictly convex curve has at least d + 1 distinct flattening points.

Recall that a flattening point of a projective space curve is a point at which
the osculating hyperplane is stationary; in other words, this is a singularity
of the projectively dual curve. In fact, Barner’s result is considerably stronger
but we shall not dwell on it here — see [15] for an exposition.

Our goal in this section is to provide a discrete version of Barner’s theorem.
First we need to develop an elementary intersection formalism for polygonal
lines.

3.1 INTERSECTION MULTIPLICITIES

Throughout this section we shall look at closed polygons P C RP¢ with
vertices Vy,...,V, (n>d+1) in general position. In other words, for every
set of vertices V;,...,V;, where k < d + 1, the span of V;,...,V, is
(k — 1)-dimensional.

DEFINITION 3.1. A polygon P is said to be transverse to a hyperplane
H at a point X € PN H if
(a) X is an interior point of an edge and this edge is transverse to H, or

(b) X is a vertex, the two edges incident to X are transverse to H and
are locally separated by H.

Clearly, transversality is an open condition.

DEFINITION 3.2. A polygon P is said to intersect a hyperplane H with
multiplicity k if for every hyperplane H’ sufficiently close to H and transverse

to P, the number of points P N H' does not exceed k and, moreover, k is
attained for some H’.
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This definition does not exclude the case where a number of vertices of
P lie in H.

H

multiplicity 2
FIGURE 3

LEMMA 3.3. Let V;,...,V, with k < d be vertices of P. Then any
hyperplane H passing through V; , ...,V meets P with multiplicity at least k.

Proof. Move each V; (j =1,...,k) slightly along the edge Vi, Vir1)
to obtain a new point V;. Let us show that a generic hyperplane H’ through
Vi,...,V, is transverse to P. This will imply the lemma because H’ has at
least k intersections with P.

It suffices to show that H' does not contain any vertex of P. First we
note that, since P is in general position, a generic hyperplane H through
Vij;-..,V does not contain any other vertex. The same holds true for every
hyperplane which is sufficiently close to H. It remains to show that the chosen
H' does not contain any of V...,V .

Suppose H' contains V;. Then H’ contains the edge (Vi;, Vie1) and
therefore also V; 1. If i;+1 ¢ {i1,...,i{} we obtain a contradiction with the
previous paragraph. If, on the other hand, i; + 1 € {i;,...,i;} then we can
proceed in the same way with V; ;. However, we cannot go on indefinitely
since k<n. [

The next definition is topological in nature.

DEFINITION 3.4. Consider a continuous curve in RP? with endpoints A
and Z. Let H be a hyperplane not containing A or Z. We say that A and Z
are on one side of H if one can connect A and Z by a curve not intersecting
H in such a way that the resulting closed curve is contractible. Otherwise we
say that A and Z are separated by H.

Clearly, if one has only two points A and Z (and no curve connecting
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them), then one cannot say that the points are on one side of, or separated
by, a hyperplane.

LEMMA 3.5. Let I'=(A,...,Z) be a broken line in general position in
RP?, and let H be a hyperplane not containing A or Z. Denote by k the
intersection multiplicity of T with H. Then A and Z are separated by H if
k is odd and not separated otherwise.

; Proof. Connect Z and A by a segment so as to obtain a closed polygon
' and consider a hyperplane H’ close to H, transverse to I and intersecting
§ Tink points. Since T is contractible, H' intersects I in an even number of
points. Therefore, H' intersects the segment (Z,A) for odd k& and does not
intersect it for even k. [

The next definition introduces a significant class of polygons which is our
main object of study.

DEFINITION 3.6. A polygon P is called strictly convex if through every
d — 1 vertices there passes a hyperplane H whose intersection multiplicity
with P is equal to d — 1.

This definition becomes, in the smooth limit, that of strict convexity for
smooth curves, due to Barner.

DEFINITION 3.7. A d-tuple of consecutive vertices (V;,..., Vi 4_1) of a
polygon P in RP? is called a flattening if the endpoints V;_, and Vi 4 of
the broken line (V;_y,...,Viiy) are:

(a) separated by the hyperplane through (V;,..., Vi s_1) if d is even,

(b) not separated if d is odd.

a) d=72 b) d=3
FIGURE 4
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REMARK 3.8. A curve in RP? can be lifted to R\ {0} ; the lifting is
not unique. Given a polygon P C RP¢ with vertices Vi, ..., V,, we lift it to
R4t as a polygon P and denote its vertices by Vi,...V,. Then a d -tuple
(Viy ..., Vira—1) is a flattening if and only if the determinant

(3.1) A=1Vi... Vig

changes sign as j varies from i — 1 to i.
This property is independent of the lifting.

3.2 A SIMPLEX IS STRICTLY CONVEX

Define a simplex S; C RP? with vertices Vi,..., V., as the projection
from the punctured R?*! of the polygonal line:
32) V,=(1,0,...,0), V,=(0,1,0,...,0), ...,Vi1=(0,...,0,1)
and
(3.3) Varr = (D1,

The last vertex has the same projection as the first one; S, is contractible for
odd d, and non-contractible for even d.

a)d=2 b)) d=3
FIGURE 5

PROPOSITION 3.9. The polygon S; is strictly convex.

Proof. We need to prove that through every (d — 1)-tuple
(Vla"'7‘//\1'7"‘7‘7]'7'--7Vd—|—1)

there passes a hyperplane H intersecting P with multiplicity d — 1. Select a
point W on the line (V;,V;) in such a manner that W lies on the segment
Vi, Vj) if j—1i is even, and does not lie on it if j—i is odd. Define H as the

~ ~

linear span of Vl, wwny ¥ipansg Pigsnmug Vd+1, W. We claim that its projection
H C RP? meets S; with multiplicity < d — 1.
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Let H' be a hyperplane close to H and transverse to S, ; assume, further,
that H’' contains no vertices. It is enough to show that H' cannot intersect
S, in more than d — 1 points. On the one hand, H' cannot intersect all the
edges of S;. Or else, H' would separate all pairs of consecutive vertices, and
this would contradict the choice of W. On the other hand, if the number of
intersections of H’ and S; were greater than d — 1, it would be equal to
d + 1. Indeed, for topological reasons, the parity of this intersection number
is that of d — 1. We obtain a contradiction, which proves the claim.

Finally, by Lemma 3.3, the intersection multiplicity of H with §; is not
less than d — 1. [

A curious property of a simplex is that each of its d-tuples of vertices is
a flattening. '

LEMMA 3.10. The simplex S; has d + 1 flattenings.

Proof. The determinant (3.1) involves all d + 1 vectors Vl, cey Vd+l- If
d is odd then, according to (3.3), ‘7d+2 = 171, and we are reduced to the fact
that a cyclic permutation of vectors changes the sign of the determinant. On
the other hand, if d is even then Vd+2 — —V;, which also leads to a change

of sign in (3.1). [

3.3 BARNER’S THEOREM FOR POLYGONS

Now we formulate the result which serves as the main technical tool in
the proof of Theorems 2.2, 2.6 and 2.10. Recall that we consider generic
polygons in RPY with at least d 4 1 vertices.

THEOREM 3.11. A strictly convex polygon in RP? has at least d + 1
flattenings.

Proof. Induction on the number n of vertices.

Induction starts with n = d+1. Up to projective transformations, the unique
strictly convex (d+1)-gon is the simplex S;. Indeed, every generic (d+1)-tuple
of points in RP can be taken into any other one by a projective transformation.
Therefore, all generic broken lines with d edges are projectively equivalent.
It remains for us to connect the last point with the first one, and there are
exactly two ways of doing this. One yields a contractible polygon, and the
other a non-contractible one. One of these polygons is S;, while the other one"
cannot be strictly convex, since its intersection number with a hyperplane does
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not have the same parity as d — 1. The base for induction is then provided
by Lemma 3.10.

Let P be a strictly convex (n + 1)-gon with vertices Vi,..., Vit1.
Delete V,4; and connect V, with V; in such a way that the new edge
(Vi, V1), together with the two deleted ones, (Vn, Vus1) and (V,1q, V1), form
a contractible triangle. Denote the new polygon by P’.

Let us show that P’ is strictly convex. P is strictly convex, therefore
through every d — 1 vertices of P’ there passes a hyperplane H intersecting
P with multiplicity d — 1. We want to show that the intersection multiplicity
of H with P’ is also d—1. Let H' be a hyperplane close to H and transverse
to P and P’. The intersection number of H' with P’ does not exceed that
with P. Indeed, if H' intersects the new edge, then it intersects one of the
deleted ones since the triangle is contractible.

By the induction hypothesis, P’ has at least d + 1 flattenings. To prove
the theorem, it remains for us to show that P’ cannot have more flattenings
than P.

Consider the sequence of determinants (3.1) Ay, A,, ..., A, 1. On replacing
P by P’ we remove d + 1 consecutive determinants

(3.4) An—dav1, Mgy, ooy Apay

and replace them with d new determinants

/ / /
(35) n—d+1) Sn—d+2) * > An 3

where

AN
~ ~

(36) ;’L—d+i - [vn_d_H . e Vn—H NP Vn+i+1|
with i = 1,...,d. The transition from (3.4) to (3.5) is done in two steps.
Firstly, we add (3.5) to (3.4) so that the two sequences alternate, that is, we
put A} between A; and A;y;. And secondly, we delete the “old” determinants
(3.4). We will prove that the first step preserves the number of sign changes,
while the second step obviously cannot increase this number.

LEMMA 3.12. If Ay_ayi and A,_gyiy1 have the same sign, then A/ 'y
is also of the same sign.

Proof of the lemma. Since P is in general position, the removed
vector V,,; is a linear combination of d + 1 vectors V,_ gii,...,V,,

Vn+27 cee Vn+i+l :

~

3.7) Vip1 = avn—d-l—i + an+i+1 +e,
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where the dots indicate a linear combination of the remaining vectors. It
follows from (3.6) that

(3.8) Aneapi = (DT DAL 4 Muayinn = (DAl gy
It is time to use the strict convex1ty of P.Let H be a hyperplane in RP4
through d — 1 vertices V,_ ditls - Vn+1, ..., V,u; which intersects P with

multiplicity d — 1, and let H be its lifting to Rd+1 Choose a linear function
¢ in R%! vanishing on H and such that ¢(V,,;) > 0. We claim that

(3.9) (=) p(Vyeyr)) >0 and (=1 lp(V,) > 0.

Indeed, by Lemma 3.3, the intersection multlphcltles of H with the polygonal
lines (Vn debis - s ,,,+1) and (Vn+1, . Vn+l+1) are at least d —1i and i—1,
respectively. Since H intersects P with multiplicity d — 1, the above two
multiplicities are indeed equal to d —i and i — 1. The inequalities (3.9) now
readily follow from Lemma 3.5.

Finally, we evaluate ¢ on (3.7):

(V1) = ao(Vo_ayri) + b o(Variv) .

It follows from (3.9) and the inequality go(VnH) > 0 that at least one of the

numbers (—1)"~'b and (—1)?"‘a is positive. In view of (3.8), Lemma 3.12
follows. [

Thus Theorem 3.11 is also proved.  []

REMARK 3.13. Strict convexity is necessary for the existence of d + 1
flattenings. One can easily construct a closed polygon without any flattenings
and even C’-approximate an arbitrary closed smooth curve by such polygons.
In the smooth case such an approximation is well known: given a curve 7y,
the approximating one, -y, spirals around in a tubular neighbourhood of ~.
In the polygonal case we take a sufficiently fine straightening of ~.

4. APPLICATIONS OF THE MAIN THEOREM

4.1 PROOF OF THEOREMS 2.2, 2.6 AND 2.10

Now we prove the results announced in Section 2. The idea is the same in
all three cases and is precisely that of Barner’s proof of the smooth versions
of these theorems — see [3] and also [15]. We will consider Theorem 2.6 in
detail, indicating the necessary changes in the other two cases.
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Iet P be as in Theorem 2.6. We consider the Veronese mapping
V: RP? — RP° of degree 2:

4.1) V:(x:y:z)r——>(x2:y2:zzzxjy:yz:zx).

The image V(P) is a piecewise smooth curve. Every edge is homotopic to
a straight segment, with the endpoints V(V;), V(Vi;1) fixed, and we obtain a
polygon Q in RP°. Assume first that Q is in general position.

LEMMA 4.1. A quintuple V(V)),...,V(Vita) is a flattening of Q if and
only if (Vi,...,Viya) is an extremal quintuple of vertices of P.

Proof. The Veronese map establishes a one-to-one correspondence between
conics in RP? and hyperplanes in RP? : the image of a conic is the intersection
of a hyperplane with the quadric surface V(RP?). Since V is an embedding,
the points V;_; and Vs lie on one side of the conic through (V, ..., Vita) if
and only if the points V(V;—;) and V(V;;s) lie on one side of the corresponding
hyperplane. [

Next we show that the polygon Q is strictly convex. Given 4 indices
i1,i2,13,14, we consider two lines in RP?: (V;,,V;,) and (V;,V;,); the union
of these lines is a conic that does not meet P any more. The corresponding
hyperplane in RP5 contains the vertices V(V;,), V(V.,), V(Vy,), V(V;) and
intersects Q with multiplicity 4.

Theorem 2.6 now follows from Theorem 3.11 for d = 5, provided Q is
in general position. Otherwise, we replace P by a convex polygon P’, close
to P, such that the corresponding polygon Q' is in general position. Then,
as above, P’ has at least 6 extremal quintuples of vertices, and therefore so
does P. This completes the proof.

To prove Theorems 2.2 and 2.10, one replaces the map (4.1) by the
Veronese map V : RP? — RP°

Vi@x:y:g)— (F+y 25 1y 2x)
and by the Segre map S: RP! x RP! — RP’
S (1 1 y1), (%2 1 ¥2)) = (X1xp © X1y2 D Y1X2 D YiY2),

respectively. The proofs of strict convexity for the corresponding polygons Q
reproduce ‘those in the smooth case (see [15]).




PROJECTIVE GEOMETRY OF POLYGONS 17

4.2 CONCLUDING REMARKS

It would be interesting to provide discrete analogues of other “4-vertex
type” theorems known in the smooth case, and to find their specifically discrete
proofs. We give two examples.

The following statement is a discrete version of the celebrated Mobius
theorem (in dimension 2, “flattening” means “inflection”) — see [9]:

An embedded non-contractible closed polygon in RP? has at least 3
flattenings.

The notion of flattening for a polygonal line extends, in an obvious way,
from RP? to the sphere S?. One has the following statement:

An embedded closed polygon in S? bisecting the area has at least 4
flattenings.

In the smooth case this was proved by B. Segre [14] and by V. Arnold
(see [1, 2)]).

We are confident that these statements hold true and can be proved in a
similar way as in the smooth case. However, a detailed discussion would go
beyond the limits of this article.

In conclusion, let us formulate a conjecture. For k > d 4+ 2 the following
statement is stronger than Theorem 3.11.

CONJECTURE 4.2. A strictly convex polygon in RP? that intersects a
hyperplane with multiplicity k has at least k flattenings.

In the smooth case this is precisely Barner’s result in full generality [3].
Conjecture 4.2 would imply strengthenings of Theorems 2.2, 2.6 and 2.10 —
see [15] for the smooth case. For instance, the following result would hold.

Let X and Y be two n-tuples of points in RP! (see Section 2.3 ). If the
closed broken line ((xl,yl), (x2,¥2), . .. ,(xn,yn)) in RP! x RP! intersects the
graph of a projective transformation with multiplicity k, then there exist at
least k extremal triples of indices.
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