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150 . : M. MATTHEY AND U. SUTER

8. THE WHITEHEAD PRODUCT AND THE POSITIVE CONE

We will establish an interesting connection between the positive cone of
a product $?" x §?" and the Whitehead product structure on the homotopy
groups of the spaces BU(k). As an application we will get some precise
information on the positive cone of $¥* x S§2",

Let us first recall the basic properties of the Whitehead product (the reader
may refer to [White]). The product SP x S? has a cell structure Obtained by
attaching a (p + g)-cell to SP vV S7. More precisely, there exists a suitable
pointed map fy: SPT9~1 — P \/ §7 such that SP x §7 is homeomorphic to
the mapping cone of f; :

SPx 8722 Cpy = (SPV S8) Uy, et

Given a pointed map g =aV 3: $? VS? — X, where X is a CW-complex,
there exists (up to homotopy) an extension §: S x §7 — X of g if and
only if the composition g o fy is homotopically trivial. Now, considering o
and (3 as elements of the homotopy groups Tp(X) and 7, (X) respectively,
the composition (o V §) o fy determines an element in the homotopy group
Tp4+9—1(X). This defines a map

Tp(X) X 7y(X) — Tp1g-1(X), (o, B) — [, B1:=(aV B)ofy,

which by definition is the Whitehead product. One can show that it is
Z -bilinear (provided that p, g > 2), i.e.

[a1 + g, 8] =[a1, Bl + [, ] and [«, B1 + B2] = [o, Bi]l + [«, Ba].

Moreover, the Whitehead product is natural with respect to pointed maps, i.e.
if f: X — Y is a pointed map between CW-complexes, then

We now want to study the case where X = BU(I). Let x; and x, be two
generators of E(SZ”) and E(Sz’") respectively, and assume 1 < n < m. By
Theorem 4.1, we know that g-dim(x;) = n and that g-dim(x,) = m. Letting
q > m, we consider x; and x, as maps from S$** (respectively $*") to BU
that lift to BU(q). The element x; +x, of K(S*" V §2™) = K(S?") @ K(S*™)
can be represented by the map x; Vx,: $2* V S — BU, and it also lifts to
a map z: $*"V §* —s BU(g).
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CLAIM. For k € {m,m+1, ..., m+n— 1}, there is no extension of
z=x1 Vxp: SV S§¥ — BU(k) to a map §** x S — BU(k).

Let y: §%" x $?" — BU(s) be an extension of z for some s > m.
Let x be the composition of y with the map is: BU(s) — BU. This
means that g-dim(x) < s and that *(x) = x; + x, € K(5** V §?"), where
. is the inclusion of S$?* v $¥" in the product S x $?". Recall that
)M + 1) =31 +x0+Z-x1x C K(S¥ x $2). So, there exists an
integer [ such that x = x; + x, + Ix;x,, and consequently

M) = (1) i+ m— D —(n— DI (m— D) - x1x £ 0.

We see that s > g-dim(x) > y-dim(x) > n + m. This proves the claim.

As a direct consequence, by considering x; and x, as elements (in fact
generators) of m,(BU(k)) and m,,(BU(k)) respectively, we get the following
result on the Whitehead product:

[x1, x2] 75 0 in Tontom—1(BUKk)), for m <k <n-+m.

We would now like to get some information on the order of [x;, x,] in the
homotopy group my,42m—1(BU(k)). By Z-bilinearity of the Whitehead product,
we have ab[x;, x;] = [ax;, bx,] for any integers a and b. Replacing x; by ax;
and x, by bx; in the preceding computation (in particular x = ax; +bxy +Ix1x;
for some /), one easily verifies that

ablxy, x1 =0
(*) in T om—1(BUK)) p = I(n+m—1)! —ab(n — D! (m — 1) =0
form<k<n+m

and this implies that ab is a multiple of (n +m — )!/((n — D! (m — 1)!).
Notice that [xi, x2] € T q2m—1(BU(k)) has to be a torsion element. Indeed,
by Lemma 4.2, the group 7,12, 1(BU(m)) is finite, and the result follows
from naturality of the Whitehead product. (In fact, one can show that any
group o+ (BU())) is finite; this is proved like Lemma 4.2, by appealing to
a result of Borel and Hirzebruch: see Remark i) in Section 9.) We have thus
obtained the following theorem.

THEOREM 8.1. Let 1 < n <m and m < k < n-+m. Let X1 and x

be generators of the homotopy groups m,(BU(k)) = Z. and Tom(BUk)) =2 Z

respectively. Then the Whitehead product [x;, x,] € Tontam—1(BU(k)) is non-
(n+m—1)!

(m—D!'m—- 1!

zero. Moreover, its order is a multiple of
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By the implication (x), if ab[x;, x;] = 0 in Tont+2m—1(BU(k)) for some
k with m < k < n+m, then for [ = ab(n — 1)!(m — D!/(n+m — 1)!, the
geometric dimension of x := ax; +bx, +Ix1x, is < k (and for any other value
of [, g-dim(x) is m + n, provided that ab # 0). Surprisingly, this condition
only depends on / and on the product ab. Consequently, from Theorem 2.3
together with Theorem 7.1, we obtain the following result.

THEOREM 8.2. The geometric dimension on E(SZ” X 8™, with n < m,
is given as follows : for x = ax; + bxy + Ix;x, € K(§*" x Sy

(0 fa=b=1=0
n ifa#0, b=1=0
g-dim(x) = ¢ m fa=0b+#01=0

s(ab) fb#0, I=abn—1)(m—1)!/(n+m—1)!
 n+m fl#Fab(n—1m—1)/(n+m—1)!

where s(ab) € {m, m+1, ..., n+m— 1} only depends on the product ab
(for fixed n and m).

As a direct consequence of Theorems 8.1 and 8.2, we have

COROLLARY 8.3. The order of the Whitehead product [x1, x2] in
Tontom—1(BUM +m — 1)) is exactly (n+m — 1)!/((n — D! (m — D).

REMARK 8.4.

1) This result has been established only using information on the ~y-cone
of §% x $?™ (and Serre’s theorem on the rational homotopy of spheres). If
one is able to compute its positive cone, one then can easily compute the
exact order of [x1, x,] in the various homotopy groups o2, 1(BU(K)), for
m<k<n+m:itis given by

(n+m— 1)!
n—D!'(m— 1!

mm@z1@mm0 m+@+am)g@.

i) In 1960, Bott [Bott3] has proved Corollary 8.3 by different methods.
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