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8. The Whitehead product and the positive cone

We will establish an interesting connection between the positive cone of
a product S2n x S2m and the Whitehead product structure on the homotopy
groups of the spaces BU(k). As an application we will get some precise
information on the positive cone of S2n x S2m.

Let us first recall the basic properties of the Whitehead product (the reader
may refer to [White]). The product Sp x Sq has a cell structure obtained by
attaching a (p + #)-cell to Sp V Sq. More precisely, there exists a suitable
pointed map f0: Sp+q~l —> Sp V Sq such that Sp x Sq is homeomorphic to
the mapping cone of /0 :

SPxS9 2* Cfo (Sp V Sq) U/o ep+q

Given a pointed map g a V ß: Sp V Sq —> A, where A is a CW-complex,
there exists (up to homotopy) an extension g: Sp x Sq —> A of g if and
only if the composition g o f0 is homotopically trivial. Now, considering a
and ß as elements of the homotopy groups np(X) and 7rq(X) respectively,
the composition (a V ß) o/0 determines an element in the homotopy group
7Tp+q_i(X). This defines a map

7Tp(X) x 7Vq(X) —> 7Tp+q-i(X), (a, ß) I—» [a, ß] := (a V ß) o/0

which by definition is the Whitehead product. One can show that it is
Z-bilinear (provided that p, q > 2), i.e.

[ai+ a2, /3] [«i, ß] + [a2, ß]and[a, ßx + ß2] ß{\ + [a,

Moreover, the Whitehead product is natural with respect to pointed maps, i.e.

if / : X—> 7 is a pointed map between CW-complexes, then

I/*(oO,/*(/?)] =/*([«, /?]).

We now want to study the case where X BU(l). Let xx and x2 be two
generators of K{Sln) and K(S2"') respectively, and assume 1 < < By
Theorem 4.1, we know that g-dim(xi) n and that g-dim(x2) Letting
q>m, we consider xx and x2 as maps from S2n (respectively S2'" to BU
that lift to BU(q).Theelement xx +x2 of K(S2n V ® K{S2m)

can be represented by the map xxVx2 : S2" V S2m —> BU, and it also lifts to
a map z: S2" V S2m —» BU(q).
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CLAIM. For k G {m, m + 1, m + n — 1}, there is no extension of
z xi V x2 : S2n V S2m —> ££/(£) to a map S2n x S2m —> BU(k).

Let y: S2n x S2m —* BU(s) be an extension of z for some s > m.
Let x be the composition of y with the map is: BU(s) —* BU. This

means that g-dim(x) < 5 and that l*(x) x\ + x2 G K{Sln V S2m), where

l is the inclusion of 52/î V S2m in the product S2n x S2m. Recall that

(C)-1(xi + x2) xi + x2 + Z • xix2 C iT(S2n x S2m). So, there exists an

integer I such that x x\ + X2 + /xiX2, and consequently

yn+m(x) {-l)nJrm-\l(n + rn- l)\ - (n - 1 )!(m- 1)!)-xix2

We see that ^ > g-dim(x) > 7-dim(x) >n + m. This proves the claim.

As a direct consequence, by considering x\ and x2 as elements (in fact

generators) of n2n(BU(k)) and 7r2m(BU(k)) respectively, we get the following
result on the Whitehead product:

[xi, x2] ^ 0 in 7T2n-\-2m-i(BU(k)), for m < k < n + m.

We would now like to get some information on the order of [xi, x2] in the

homotopy group 7r2n+2m_i (£[/(£)). By Z -bilinearity of the Whitehead product,
we have ab[xi, x2] [axi, bx2] for any integers a and b. Replacing x\ by ax\
and x2 by bx2 in the preceding computation (in particular x ax\ +Z?x2 + /xix2
for some /), one easily verifies that

ab[xi, x2] 0 "j

(*) in ir2n+2m-i(BU(k)) > ^ l{n + m- 1)! - ab(n - 1)! (m — 1)! 0

for m < k < n + m J

and this implies that ab is a multiple of (n + m — 1)!/((«- 1 1)!).
Notice that [x\,xj\e TTin+im-\(BlJ(k)) has to be a torsion element. Indeed,
by Lemma 4.2, the group ir2n+2m-i(BU(m)) is finite, and the result follows
from naturality of the Whitehead product. (In fact, one can show that any
group 7t2;+i (BU(j))isfinite; this is proved like Lemma 4.2, by appealing to
a result of Borel and Hirzebruch : see Remark i) in Section 9.) We have thus
obtained the following theorem.

Theorem 8.1. Let 1 < n < mand m < k < n + m. X\ and x2
be generators of the homotopy groups Z and tt Z
respectively. Then the Whitehead product x2J G is -

(n + m — 1)'
zero. Moreover, its order is a multiple of — ——7 l)!(m- 1)!'
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By the implication (*), if ab[xu x2] 0 in 7T2n+2m-i(BU(k)) for some
k with m < k < n + m, then for I ab(n — l)\(m — l)\/(n +m — 1)\, the
geometric dimension of x := axx + bx2 + lxxx2 is < k (and for any other value
of Z, g-dim(x) is m-\-n, provided that ab ^ 0). Surprisingly, this condition
only depends on I and on the product ab. Consequently, from Theorem 2.3
together with Theorem 7.1, we obtain the following result.

THEOREM 8.2. The geometric dimension on K(S2n x S2m), with n < m,
is given as follows: for x axx + bx2 + lxxx2 G K(S2n x S2m),

;-dim(x)

'0 if a b I 0

n if a 0, b I 0

m if a 0, b 0, I 0

s(ab) if b 0, / ab(n — 1)! (m — 1)1/(n + m — 1)!

n + m if I ab (n — 1)! (m — l)\/(n + m — 1)!

where s{ab) G {m, ra+1, + m — 1} only depends on the product ab
(for fixed n and m

As a direct consequence of Theorems 8.1 and 8.2, we have

COROLLARY 8.3. The order of the Whitehead product [xx, x2] in
n2n+2m-\(BU(n + m - 1)) is exactly (n + m- 1)1/((n - 1)! (m - 1)!).

Remark 8.4.

i) This result has been established only using information on the 7-cone
of S2n x S2m (and Serre's theorem on the rational homotopy of spheres). If
one is able to compute its positive cone, one then can easily compute the
exact order of [x\, x2] in the various homotopy groups 7r2„+2m-i (BU(k)), for
m < k < n + m : it is given by

mi„{( > 1 I g-dim+« + &,«) < t}

ii) In 1960, Bott [Bott3] has proved Corollary 8.3 by different methods.
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