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iii) Let X and Y be the Moore spaces M(Z/3, 2g+11) = S2a+11 |, g2a+12
and M(Z/3,2g — 1) = S%~1 U3 €% respectively. In [Adams], Adams shows
that for ¢ large enough, there exists a map A: X = >12y — Y such that the
induced map A™*: E(Y) — E(X) is an isomorphism (take p =m =3, f = 1
and 7 = 6 in Theorem 1.7 and in Lemmas 12.4 and 12.5 of [Adams]).
Therefore, A is a K-isomorphism between simply connected finite CW-
complexes, but it is not a homotopy equivalence. The mapping cone Cy IS
a non-contractible finite CW-complex with E(CA) — (. (It is non-contractible
because its homology is non-trivial.)

iv) In [GrMo], pp.203-206, a CW-complex X = (S' V $2yU e is defined,
with the property that the inclusion i: ' = X!!) < X of the 1-skeleton induces
an isomorphism in integral homology (and on the level on fundamental groups);
however, i 1S not a homotopy equivalence since m2(X) # 0. Consequently, by
the universal coefficient theorem (see Corollary V.7.2 in [Bred]), i induces
an isomorphism in integral cohomology, and, by a direct application of the
Atiyah-Hirzebruch spectral sequence, also in K-theory. In particular, i is a
K -equivalence, but not an equivalence. (As C, in the preceding example, the
quotient space X/X™ has vanishing K, however it is the closed 3-ball and
is therefore contractible.)

Let us finally mention that in [Matt], the positive cone, the c-cone and the
~-cone are also studied from the rational point of view, and rational K -theory
is considered.

6. THE CONES OF THE PRODUCTS S" x §2m—1

In this section, we will compute the cones for the products S x §2m~1
and SZn—l % SZm-—l )

We begin with $2* x §2"~!. Since K(5*"~!) =0 and K'(S*") = 0, the
answer immediately follows from Proposition 5.5.

THEOREM 6.1. The projection p: S x §"=! — §¥ induces an
isomorphism of positive cones, and, for S x S*"~!  the ~-cone and the
c-cone coincide with the positive cone:

*

P
K+(Szn) ~ K+(S2n > SZm—l) — KW(SQU < SZm—l) )
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We now turn to the product $?*~! x $?"~! From the six-term exact
sequence of the pair ($**~! x §2m=1  §2n—1\/ 2m—1y \ith quotient the smash
product §**~! A $2m~1 homeomorphic to $2"+2"~2 we get an isomorphism

q*: E(52m+2n—2) N E(SZn—l ¢ SZm—l)

induced by the quotient map g: $**~! x §2n=1 _, §2m+22=2 By Theorem 4.1,
the space ¥ = $2"*2m=2 gatisfies the hypothesis of Proposition 5.5 and we
deduce the

THEOREM 6.2. The map q: S~ ! x §2m=1 — §2m+2n=2 jnduces an
isomorphism of positive cones, and, for S*"~! x §?"~1  the ~-cone and the
c-cone coincide with the positive cone:

q*
K+(SZm+2n—2) o K+(SZH—1 % S2m—1) — K,Y(Szn_l % S2m—l).

REMARK 6.3. According to Blackadar ([Bla2], 6.10.2), the positive cone
of the n-torus (S')" has been partially computed by Villadsen.

7. THE 7-CONE OF S x §?" AND THE POSITIVE CONE OF S2 x §2”

The positive cone was rather easy to compute for a product of an odd-
dimensional sphere by any sphere, whereas the case of a product of two
even-dimensional spheres is much more involved. On the other hand, the
v-cone of such a product is in the scope of the present notes. We perform
this calculation by computing the c-cone and appealing to Proposition 3.3.

By the Kinneth theorem, we have an isomorphism

K(S™) @ K(S*™) — K($" x §%), £ @ — p*(&) - ¢* (1),

where p and g are the projections onto the factors. Writing K(S?") = Z - x
and E(Szm) = Z - x;, and letting y; := p*(x;) and y, := g*(x,), we deduce
that

K™ xS =Z-y1®Z -y, ®Z-y1y,.

The product structure on K(S" x $2™) is given by y* = 0 and y5 = 0.
One has y;y, = 7*(y), where m: §2" x §2™ — §21 A §27 o2 §2n+2m and 3 ig a
suitable generator of K(S**t2™). Let i: §2% < §21x§2™ and j: S2™ < §2 x §2m
be the inclusions. One has i*(y;) = x; and j*(y;) = x», and (by Theorem 4.1
and a double application of Proposition 5.1), for any k& € Z \ {0}, one has
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