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LEMMA 4.2. For m>2k+l, the group 7Tm(BU(k)) is finite.

Proof. We fix m > 3. The fibration BU(k — 1) —* BU(k), with fibre
S2k~l, yields the following long exact sequence in homotopy:

- nm(S2k-1) - 7Tm(£t/(fc - 1)) 7 - T^-jCS2*"1) ->.

By Serre [Serre], irj(S2k~l)isfinite for and we can conclude
by induction over k (with k > 1 and 2k + I < m), since when k— 1, one
has 7Tm(BU(l)) 7rm_i(f/(l)) 0 for m > 3.

From this, we now infer that the image of (4)* is zero for k < n. This
implies that g-dim(/x) n when I 0, and concludes the second proof.

Remark 4.3.

i) Since we were motivated by Elliott's classification of unital C*-algebras
of type AF by means of their K-theory, their positive cone and the K-theory
class [1] of the unit (see [Blal]), it is important to single out the fact that
the positive cone of S2n and that of S2m are non-isomorphic as monoids if n
is different from m. (There is no need here to distinguish the TT-theory class
1 of the trivial one-dimensional bundle.) Let us provide a short proof of this
claim. For n > 1, let Mn denote the positive cone of S2n (identified as above

with a sub-monoid of Z2, in order to designate its elements). The abelian
monoid Mn has a minimal set An of generators, in other words a generating
set (as a monoid) that is contained in any other generating set, namely

An {(0, 1)}U {(k, n)\kez\{0}}.
Now, consider the function a: An —* {2, 3, ...} defined, for x G An, by

dix) := min {/ > 2 | Ix decomposes as a sum of elements of An \ {x}}
Clearly, such an I exists for any x G An and cr{An) {2, 2n}. Since An and

a are isomorphism invariants of Mn, this proves our claim.

ii) For odd-dimensional spheres the positive cone is "trivial"; in other

words, ^(S2"-1) Z and K+(S2n~l) N.

5. Further properties of the cones

We now investigate naturality properties and behaviour under products of
the positive cone, the 7-cone and the c-cone.

The following result is obvious.
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PROPOSITION 5.1. Let f:X—* Ybetween connected finite

CW-complexes. Let K(Y) —> K(X) be the X-homomorphism induced by

/. Then, for any y G K(Y), one has

g-dim(/*Cy)) < g-dim(y)

7-dim(f*(y)) < 7-dim(y)

c-dim(f* (y)) < c-dim(y),

and in particular,

f*(K+(Y)) Ç K+QO

f*(Ky(Y)) Ç Ky(X)

f*(Kc(Y))CKc(X).

Furthermore, if f* is an isomorphism, then

f*(K7(Y)) K^X).

For the next corollary we need a new definition.

Definition 5.2. Let X and Y be two connected finite CW-complexes. A

map f- x —I Y is called a K°-equivalence (or K-equivalence for short) if
there exists a map g : Y —» X such that, on the level of the K°-groups,

f*°g*= IdK0(X) and 9* °/* IdgoçY) •

Note that a K-equivalence is not necessarily a homotopy equivalence:

there are homotopically non-trivial (i.e. non-contractible) finite CW-complexes

X for which K(X) 0 K(pt) ; see example iii) below.

Proposition 5.3. Iff: X —» Y is a K-equivalence, then f induces the

following isomorphisms of semigroups :

r /*
K+(Y) ^ K+(X) and K7(Y) SË K^X).

Proof Applying Proposition 5.1 twice, we get (in the notations of
Definition 5.2)

K+{X) =f o g*(K+(X)) Cf*(K+(Y)) Ç K+(X).

This establishes the first isomorphism, whereas the second one is obvious.

The following result is more technical to state.
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COROLLARY 5.4. Let X and Y be two connected finite CW-complexes.
Assume that Kl(X) 0 and that K (Y) 0. Then the projection p: XxY —> X
induces isomorphisms

K+(X) b K+(X x Y) and K^X) b K7(X x Y).

Proof. Invoking the Künneth theorem for K-theory, our hypotheses imply
that p* : K°(X) —i K°(X x Y) is an isomorphism with inverse i*, where i
is the inclusion of X in X x Y. Consequently, p* is a ^-equivalence.

The following is a useful result.

PROPOSITION 5.5. Let X and Y be connected finite CW-complexes. Assume
that the positive cone and the ^y-cone of Y coincide, and let f: X —> Y
be a map inducing an isomorphism /* : K(Y) —» K(X). Then f induces an
isomorphism ofpositive cones, and the 7-cone of X coincides with the positive
cone :

K+{Y)b K+{X) K^X).

Proof. By Proposition 5.1 we have f*(K+(Y)) f*(K^(Y)) K7(X)
and f*(K+(Y)) Ç K+(X), hence K7(X) Ç K+(X). We conclude with iii) of
Proposition 3.2.

Examples.

i) Let X be a connected finite CW-complex of dimension < 3. Since for
suitable CW-decompositions, one has BU(1)[3] BU[3] and since BU{ 1)
CP00 K(Z, 2), any K(X) [X, BU] lifts to a class in^ [X, BU(1)],
giving an isomorphism K(X) H2(X; Z) mapping x to cfx). It follows that
the positive cone coincides with the c-cone and is given by

K+(X) Nx {0} U N* x K(X) cZx K(X).

ii) Example i) applies to a closed oriented surface Xg of genus g. Since it
is torsion-free, its positive cone coincides with its c-cone and with its 7-cone.
Moreover, let /: Xg —> S2 be a map of degree 1 (it exists, since both the

2-sphere and Xg are quotients of the square [0, l]2). Then / not only induces

an isomorphism in K-theory, but also an isomorphism of positive cones, as

follows from Proposition 5.1.
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iii) Let X and Y be the Moore spaces Af(Z/3, 2q+11) - S2q+n U3 e2q+n

and Af(Z/3, 2g - 1) S2'7-1 U3 ^ respectively. In [Adams], Adams shows

that for <7 large enough, there exists a map A: X I12F —> Y such that the

induced map A* : K(Y) —» K(X) is an isomorphism (take p m — 3, / — 1

and r 6 in Theorem 1.7 and in Lemmas 12.4 and 12.5 of [Adams]).

Therefore, A is a £-isomorphism between simply connected finite CW-

complexes, but it is not a homotopy equivalence. The mapping cone CA is

a non-contractible finite CW-complex with K(CA) 0. (It is non-contractible

because its homology is non-trivial.)

iv) In [GrMo], pp. 203-206, a CW-complex X (S1 V S2) U e3 is defined,

with the property that the inclusion i : 51 X of the 1 -skeleton induces

an isomorphism in integral homology (and on the level on fundamental groups) ;

however, i is not a homotopy equivalence since 1r2(X) f2 0. Consequently, by

the universal coefficient theorem (see Corollary V.l.2 in [Bred]), i induces

an isomorphism in integral cohomology, and, by a direct application of the

Atiyah-Hirzebruch spectral sequence, also in K-theory. In particular, i is a

K-equivalence, but not an equivalence. (As CA in the preceding example, the

quotient space X/X[l] has vanishing K, however it is the closed 3-ball and

is therefore contractible.)

Let us finally mention that in [Matt], the positive cone, the c-cone and the

7-cone are also studied from the rational point of view, and rational ^-theory
is considered.

6. The cones of the products Sn x S2m 1

In this section, we will compute the cones for the products S2n x S2m~l

and S2n~l x S2m~l.

We begin with S2n x S2m~l. Since K{S2m~l) 0 and K\S2n) - 0, the

answer immediately follows from Proposition 5.5.

THEOREM 6.1. The projection p : S2n x S2m~l —> S2n induces an

isomorphism of positive cones, and, for S2n x S2'n~l, the j-cone and the

c-cone coincide with the positive cone:

K+(S2n) ^ K+(S2n x S2m_1) KAS2n x S2m~l).
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