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LEMMA 4.2. For m > 2k+ 1, the group m,(BU(k)) is finite.

Proof. We fix m > 3. The fibration BU(k — 1) — BU(k), with fibre
S*~1, yields the following long exact sequence in homotopy :

o= T(S* Y = 1, (BUk — 1)) — Tm(BUK)) — T (S — .

By Serre [Serre], mj(S*~1) is finite for j # 2k — 1, and we can conclude
by induction over k (with k > 1 and 2k + 1 < m), since when k = 1, one
has 7, (BU(1)) = m,—1(U(1)) =0 for m > 3. L]

From this, we now infer that the image of (i), is zero for k < n. This
implies that g-dim(lx) =n when [ # 0, and concludes the second proof.

REMARK 4.3.

1) Since we were motivated by Elliott’s classification of unital C*-algebras
of type AF by means of their K-theory, their positive cone and the K -theory
class [1] of the unit (see [Blal]), it is important to single out the fact that
the positive cone of $?* and that of $¥" are non-isomorphic as monoids if
is different from m. (There is no need here to distinguish the K-theory class
1 of the trivial one-dimensional bundle.) Let us provide a short proof of this
claim. For n > 1, let M, denote the positive cone of $2" (identified as above
with a sub-monoid of Z?, in order to designate its elements). The abelian
monoid M, has a minimal set A, of generators, in other words a generating
set (as a monoid) that is contained in any other generating set, namely

A= {0, DY U{(k, ) | k € Z\ {0}}.
Now, consider the function o: A, — {2, 3, ...} defined, for x € A,, by
o(x) :==min {/ > 2 | Ix decomposes as a sum of elements of A, \ {x}} .

Clearly, such an [ exists for any x € A, and o(4,) = {2, 2n}. Since A, and
o are isomorphism invariants of M, , this proves our claim.

i1) For odd-dimensional spheres the positive cone is “trivial”; in other
words, K(S*"~1)=7Z and K, (S*"~!)=N.

5. FURTHER PROPERTIES OF THE CONES

We now investigate naturality properties and behaviour under products of
the positive cone, the y-cone and the c-cone.
The following result is obvious.
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PROPOSITION 5.1. Let f: X — Y be a map between connected finite
CW-complexes. Let f*: K(Y) — K(X) be the \-homomorphism induced by
f. Then, for any y € K(Y), one has

g-dim(f*(v)) < g-dim(y)
v-dim(f* (y)) < 7-dim(y)
c-dim(f*(y)) < c-dim(y),
and in particular,
[rEL(Y) C K (X)
fH(K,(Y)) € Ky(X)
fH(K(Y)) € K(X).
Furthermore, if f* is an isomorphism, then

f*(Kfy(Y)) = K’y(X) .
For the next corollary we need a new definition.

DEFINITION 5.2. Let X and Y be two connected finite CW-complexes. A
map f: X — Y is called a K°-equivalence (or K -equivalence for short) if
there exists a map g: Y — X such that, on the level of the KO—groups,

f* O g* = IdKO(X) and g* Of* = IdKO(y) .

Note that a K-equivalence is not necessarily a homotopy equivalence:
there are homotopically non-trivial (i.e. non-contractible) finite CW-complexes
X for which K(X) = 0 = K(pt); see example ii1) below.

PROPOSITION 5.3. If f: X — Y is a K-equivalence, then f induces the
following isomorphisms of semigroups :

* *

f f
K .(V)2K.(X) and K,(¥)ZK,(X).

Proof. Applying Proposition 5.1 twice, we get (in the notations of
Definition 5.2)

K, (X)=f"0g"(K+:(X)) €/ (K(Y)) € Ky (X).

This establishes the first isomorphism, whereas the second one is obvious. []

The following result is more technical to state.
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COROLLARY 5.4. Let X and Y be two connected finite CW-complexes. As-

sume that Kl (X) = 0 and that IZO(Y) = 0. Then the projection p: XxY — X
induces isomorphisms

* *

KyO2K.(XXY) and K,X) 2K, (Xx7Y).

Proof. Invoking the Kiinneth theorem for K -theory, our hypotheses imply
that p*: K%(X) — K%(X x Y) is an isomorphism with inverse i*, where i
is the inclusion of X in X x Y. Consequently, p* is a K-equivalence. [

The following is a useful result.

PROPOSITION 5.5. Let X and Y be connected finite CW-complexes. Assume
that the positive cone and the y-cone of Y coincide, and let f: X — Y
be a map inducing an isomorphism [*: K(Y) — K(X). Then f induces an
isomorphism of positive cones, and the ~y-cone of X coincides with the positive
cone:

Kk

K (1) 2 K1 (X) = Ky (X).

Proof. By Proposition 5.1 we have f*(K((Y)) = f*(K,(Y)) = K, (X)
and f*(K(Y)) € K, (X), hence K,(X) C K;(X). We conclude with iii) of
Proposition 3.2. [

EXAMPLES.

i) Let X be a connected finite CW-complex of dimension < 3. Since for
suitable CW-decompositions, one has BU(1)P! = BUP! and since BU(1) =
CP*® = K(Z, 2), any x € E(X) = [X, BU] lifts to a class in_[X, BU(1)],
giving an isomorphism K(X) =~ HXX; Z) mapping x to ci(x). It follows that
the positive cone coincides with the c-cone and is given by

K. (X)=Nx {0} UN"xKX)CZxKX).

ii) Example 1) applies to a closed oriented surface X, of genus g. Since it
is torsion-free, its positive cone coincides with its c-cone and with its y-cone.
Moreover, let f: X, — S? be a map of degree 1 (it exists, since both the
2-sphere and X, are quotients of the square [0, 1]*). Then f not only induces
an isomorphism in K-theory, but also an isomorphism of positive cones, as
follows from Proposition 5.1..
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iii) Let X and Y be the Moore spaces M(Z/3, 2g+11) = S2a+11 |, g2a+12
and M(Z/3,2g — 1) = S%~1 U3 €% respectively. In [Adams], Adams shows
that for ¢ large enough, there exists a map A: X = >12y — Y such that the
induced map A™*: E(Y) — E(X) is an isomorphism (take p =m =3, f = 1
and 7 = 6 in Theorem 1.7 and in Lemmas 12.4 and 12.5 of [Adams]).
Therefore, A is a K-isomorphism between simply connected finite CW-
complexes, but it is not a homotopy equivalence. The mapping cone Cy IS
a non-contractible finite CW-complex with E(CA) — (. (It is non-contractible
because its homology is non-trivial.)

iv) In [GrMo], pp.203-206, a CW-complex X = (S' V $2yU e is defined,
with the property that the inclusion i: ' = X!!) < X of the 1-skeleton induces
an isomorphism in integral homology (and on the level on fundamental groups);
however, i 1S not a homotopy equivalence since m2(X) # 0. Consequently, by
the universal coefficient theorem (see Corollary V.7.2 in [Bred]), i induces
an isomorphism in integral cohomology, and, by a direct application of the
Atiyah-Hirzebruch spectral sequence, also in K-theory. In particular, i is a
K -equivalence, but not an equivalence. (As C, in the preceding example, the
quotient space X/X™ has vanishing K, however it is the closed 3-ball and
is therefore contractible.)

Let us finally mention that in [Matt], the positive cone, the c-cone and the
~-cone are also studied from the rational point of view, and rational K -theory
is considered.

6. THE CONES OF THE PRODUCTS S" x §2m—1

In this section, we will compute the cones for the products S x §2m~1
and SZn—l % SZm-—l )

We begin with $2* x §2"~!. Since K(5*"~!) =0 and K'(S*") = 0, the
answer immediately follows from Proposition 5.5.

THEOREM 6.1. The projection p: S x §"=! — §¥ induces an
isomorphism of positive cones, and, for S x S*"~!  the ~-cone and the
c-cone coincide with the positive cone:

*

P
K+(Szn) ~ K+(S2n > SZm—l) — KW(SQU < SZm—l) )




	5. FURTHER PROPERTIES OF THE CONES

