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computation (based on Proposition 2.4) for the sphere S2n shows that one has

qn - 1)!, as claimed.

3. The 7-coNE and the c-cone

In general, the problem of computing the geometric dimension of vector

j bundles is very complicated, as is any general lifting problem in homotopy
1 theory. So, the same is true for the positive cone. That is why we now

1 introduce what we call the 7-cone and the c-cone. They are supposed to be

j easier to compute and might be good approximations to the positive cone. As

I we will see, these two cones coincide for torsion-free spaces.
I

j Definition 3.1.

i) The 7-cone of X is defined by

j K7(X) := {(«, x)GZ © K(X) I 7*Cr) 0 for all k >

j The 7-dimensionof a class x G K(X), denoted by 7-dim(x), is the least

integer n such that ik(x)0 for all in other words, it is the degree

(in the variable t) of the polynomial 7f(x).

ii) The c-cone of X is defined by

j KC(X):= {{n,x)GZ ® K(X) \ ck(x) 0 for all

I The c-dimension of a class x G K(X), denoted by c-dim(x), is the least integer

J n such that ck(x) 0 for all k > n, in other words, it is the degree (in the

j variable t) of the polynomial cx(t).

Let us point out that the "lower boundary" of the positive cone K+ (X), as

a subset of K(X) 0 Z, coincides with the graph of the geometric dimension

function g-dim: K(X) —> Z (the positive elements consisting exactly of the

boundary and the points located above it). The analogous statements hold

for the 7-cone and the c-cone with respect to the corresponding dimension

function.

The following results on these objects follow readily from our preliminaries
on K-theory.
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PROPOSITION 3.2. Let X be a connected finite CW-complex. Then

i) g-dim(x) < dim(X)/2, for any x G K(X) ;

ii) 7-dim(x) < g-dim(x), for any x G KÇX) ;

iii) K+(X) Ç K^X) ;

iv) c-dim(X) < g-dim(x), for any x G K(X) ;

v) K+(X)ÇKC(X).

This proposition shows that the 7-cone and the c-cone are approximations
of the positive cone, more precisely, that they constitute upper bounds of the

latter.

It turns out that the 7-cone and the c-cone coincide for torsion-free spaces,
i.e. those spaces having no torsion in their integral cohomology.

PROPOSITION 3.3. Let X be a connected finite CW-complex. If X is

torsion-free, then

K7(X) Kc(X).

Proof The result follows immediately from Proposition 2.2 and injectivity
of the Chern character for a torsion-free space.

It is worth mentioning that there is no general comparison statement for the

7-cone and the c-cone, i.e. there are spaces with torsion for which the 7-cone
is not contained in the c-cone, and spaces with torsion for which the c-cone

is not contained in the 7-cone. Moreover, there exist spaces for which the

7-cone and the c-cone strictly contain the positive cone (the product S4 x S4

is such an example as we will later see). We now illustrate the situation by
three examples.

Examples.

i) Let j: BSU{3) — BU{3) be the map induced by the inclusion of the

special unitary group SU{3) in U(3). Then the composition map

BSU(3) —BU3)73
> BU

lifts to a map /: BSU(3) —> BSU. Consider W the homotopy fibre of /. It
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enters in a pull-back diagram

SU SU
n r

W PBSU

4 1

BSU(3) ->BSU

where SU - Q.BSUPBSU— BSU is the path-loop fibration of BSU. The

Leray-Serre spectral sequence in cohomology for this fibration is well-known

and maps via /* to the corresponding spectral sequence for the fibration ir.
By Lemma 2.5, one has

f*(cs) =f ° 73*fe(P3)) ^3(73) 2c3

Similarly, one has /*(?2) ^2(73), which is easily seen to vanish. For the

cohomology of W in degree < 6, letting <24. := 7t*(?2) and bß := 7r*(c3), we

have computed that x\ 0 and

H^6(W; Z) Z-l®Z-x3©Z-a4©Z-i5®Z^6 Z4©Z/2,
=Z/2

where degfey+i) 2/+1. The inclusion i: Y := W[1] ^ W of the 7-skeleton

of W induces an isomorphism in cohomology up to degree 6. If we let

X := f o 7T* o j*(p3) G K(Y)9 we find c3(v) b6 ^ 0, whereas 7*(x) 0,
for all k > 3. Indeed, this is clear for k > 4 since then 7*(p3) 0, and

73(x) - 0 because its classifying map is the composition /otto/, which is

homotopically trivial. Thus c-dim(x) 3 and 7-dim(x) < 2. Consequently, Y

is a connected finite CW-complex with a strict inclusion

KC(Y) £ K7(Y).

ii) Consider the Moore space M M(Z/2, 5), i.e. the mapping cone

of a continuous map /: S5 —S5 of degree two, or more explicitly,
M Cf S5 U2 £6. The exact sequences in cohomology and in K -theory of

the cofibration S5 M -» M/S5 ~ S6 give epimorphisms

q* : Z ^ H6^6; Z) -» Z) » Z/2

4* : Z ^ £(S6) £(M) 9* Z/2.
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Let x and a be suitable generators of K(S6) and of H6(S6; Z) respectively,
and define x := q*(x) and ä := q*(a). For obvious dimensional reasons, the

Chern classes cfix) and C2(x) vanish. Moreover, one has c^{x) — q*(c?>(x))

q*(2a) 0 (see Proposition 2.4), hence c-dim(x) 0. On the other hand,

we have jl(x) x fé 0, so 7-dim(x) > 1 ; more precisely, 72(x) is

q*(-S(3, 2) • x) q*(—3x) x ± 0 and 73(x) q*(2S(3, 3) • x) 0, so

7"dim(x) 2. Consequently, M is a connected finite CW-complex with a

strict inclusion

Kry(M) £ KC(M).

iii) Let Z — Y \J M be the wedge of the preceding two examples. It is

a 7-dimensional finite connected CW-complex for which none of K^(Z) and

KC(Z) contains the other one. (The product Y x M would also do.)

To end the present section, we prove that the cones are semigroups and

homotopy invariants.

PROPOSITION 3.5. The positive cone, the j-cone and the c-cone of a

connected finite CW-complex X are sub-semigroups of K(X) and homotopy

invariants of X. Moreover, the positive cone is a sub-X-semiring of K(X).

Proof The homotopy invariance is obvious for the three cones. We have

already mentioned in the preliminaries that the positive cone is a sub-semiring

of K(X). It is also clear that it is a sub-A-semiring. The uexponentiality" of

yt and of c (the total Chern class) immediately show that the 7-cone and the

c-cone are sub-semigroups of K(X).

We do not know if in general the 7-cone and the c-cone are sub-A-semirings

of K(X).

4. The positive cone of the spheres

We now intend to compute the positive cone of the spheres. For odd-

dimensional spheres, there is nothing to do since K(S2n+l) 0. Whereas for
even-dimensional spheres, one has K(S2n) Z - x Z, so we only have to

compute g-dim(Zx) for all integers I.

By Proposition 2.4, we have

c(lx) c(x)1(1 + (-1 )n~\n-1)!-7=1+ (-1 -1)1
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