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that for spaces “with only one high-dimensional cell” the ~-cone is “blind”
in some sense to be made precise there.

Section 11 is devoted to explicitly computing the -y-operations for the
products §2" % §2™ . As a consequence of these calculations, we establish a
“doubling-formula” for Stirling numbers of the second kind. Moreover, we
are led to conjecture that the same formula holds for Stirling numbers of the
first kind. (This has now been proved by Al Lundell; see Theorem 11.2.)

2. PRELIMINARIES

We start by reviewing some topological K -theory. Our basic references
are the books by Atiyah [Atiyah] and by Husemoller [Huse].

Let X be a connected finite CW-complex. (We assume all spaces and maps
to be pointed.) For each n > 0, let Vect,(X) be the set of isomorphism classes
of complex n-plane vector bundles over X, and Vect(X) their disjoint union.
There are well-known bijections

Vect,(X) = [X, BU(n)]  (n=0)

where BU(n) is the classifying space of the unitary group U(n) and [., .]
stands for the set of homotopy classes of maps. For an n-plane vector bundle
¢ over X, i.e. £ € Vect,(X), we write rk(¢) = n (it is the rank of &). The
direct sum (also called Whitney sum) and the tensor product of vector bundles
endow Vect(X) with a semiring structure. The K -theory of X is the ring K(X),
also denoted by K°(X), obtained by applying the Grothendieck construction
to Vect(X), 1.e. K(X) = G(Vect(X)). An element of K(X) is sometimes called
a virtual vector bundle. There i1s a ring isomorphism

KX) 2 [X, Z x BU],

where BU is the infinite Grassmannian, i.e. the direct limit of the classifying
spaces BU(n). We identify both rings from now on. There is a canonical
splitting K(X) = Z & [X, BU] = Z ® K(X), where K(X) = K (X) is the
subring of stable classes of vector bundles, and n € N = {0, 1,2, ...}
is represented by the n-dimensional trivial vector bundle over X. Clearly,
the Grothendieck construction gives rise to maps 6: Vect(X) — K(X) and
0,: Vect,(X) — n X kV(X) (by restriction of 6).
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DEFINITION 2.1.

i) The positive cone of X, denoted by K (X), is the image of 6. An
element ¢ € K(X) is called positive if it lies in the positive cone.

iil) The geometric dimension of x & K(X), denoted by g-dim(x), is the
smallest integer n such that (n, x) lies in the image of 0,, i.e. the least
integer n such that the stable class x is represented by an n-dimensional
vector bundle.

Since 6 is a semiring homomorphism, it is clear that K, (X) is a sub-
semiring of K(X). Notice that it is equivalent to determine the positive cone
or the map g-dim: K(X) — Z; in fact, we have

K. (X)={(n, x) € Z&KX) | n> g-dim(x)} .

Let us also notice that an element x € K(X), considered as a homotopy class
of maps X — BU, has geometric dimension < n if and only if x has a
lifting x,: X — BU(n), 1.e.

BU(n)
/ Jin i, OX, =X
X *+ BU

(Here, we identify a map with the homotopy class it represents.) Recall that
i, is a fibration with fibre U/U(n), where U = lim U(n) is the infinite unitary

group (and BU is really its classifying space). The image of 6, is equal to
the image of the composition

[X, BU(n)] -, X, BU] — n x [X, BUI, y— (1, ((n)«()) .
We write K*(X) = K%(X) @ K'(X), where the K'-group is defined by
K'X):=1[Xx,U].

For a pair of connected finite CW-complexes (X, Y), there is the famous
six-term exact sequence:

Py Lo B -2 B

T l

(V) —— KX L — K'X/Y),

where i: Y < X is the inclusion and g: X — X /Y is the quotient map.




THE POSITIVE CONE OF SPHERES 135

The n-th exterior power operation for complex vector spaces induces an
operation on vector bundles denoted by & —— A"¢, and endows K(X) with a
natural A-ring structure. For ¢ € K(X), one defines

M =) (V-1 € KX)I[A]
n>0
(the latter being the ring of formal power series with coefficients in K(X)).
The function ); is exponential, i.e. A\ (€ +7) = A (&) - A\(n). Associated to the
A-operations are the ~y-operations or Grothendieck operations ~"(§), which
are defined by their generating series as follows:

S AE) 1= () = 18

n>0

In particular, v°(¢) = 1 and 7'(€) = €. Again, the function -y, is exponential,
which implies that

YE+m =D 7O 7.
k=0

The importance of the y-operations in our context is illustrated by the following
fact (see [Atiyah], Proposition 3.1.1):

Let x € K(X); if g-dim(x) < n, then v*(x) =0 for k> n .

(Assume that (n,x) € Z & E(X) is represented by an n-dimensional vector
bundle £. Then A (§) is a polynomial of degree n in s. By the exponential
property, Ag(§) = AJ(D)" - Ag(x) = (1 4 5)" - \s(x). Letting s = t/(1 —1), we
see that v:(x) = A\ /1, (x) = (1 — 1" Ai/1-+(&§) is a polynomial of degree < n
in t.)

The representable K-theory of BU(n), i.e. [BU(n), Z x BU], is

KBUn) = ZI[7', ..., 71,

where 7% = ~k(,), for 1 <k <n, pn being the stable class of the universal
n-plane bundle p, over BU(n). Note that v*(p,) = 0, for all k > n, and that
the map j*, induced by j: BU(n) — BU(n+1) in K -theory, takes p,.; to
pn, for any [ > 0.

For a complex vector bundle ¢ over X, the n-th Chern class cn(€) is a
2n-dimensional integral cohomology class of X, i.e. cu(§) € H(X; Z). One

has cp(§) = 1, and the element c(§) = ano cn(&) € H*(X; Z), called the
total Chern class, is exponential, i.e. it satisfies

c€+mn) =cl)-cln).




h

136 M. MATTHEY AND U. SUTER

The basic properties of Chern classes (see [Huse]) imply the following
facts :

1) Two  stably equivalent bundles over X have the same Chern classes.
In particular, for an element x € K(X), the n-th Chern class
cn(x) € H*(X; Z) is well-defined.

1) If n > rk(€), then ¢,(&) =0.

iii) Let x € K(X); if g-dim(x) < n, then ci(x) =0 for k > n.

Let us also formally define the polynomial

ce(f) =Y cn®) - 1" € H*(X; D[],
n>0
which, by ii) above, is indeed a polynomial. It is also exponential.
A central feature of Chern classes is that the cohomology ring of BU(n)
1S given by
H*(BU(n); Z) = Zlcy, - - -, cal,

where ¢; = ci(p,), for 1 < k < n. Moreover, ci(p,) =0, for any k£ > n. On
the combinatorial point of view, for any n > 0, the Grassmannians BU(n)
and BU admit CW-decompositions with the same (2n + 1)-skeleton, in other
words, such that BU(n)?"t1 = BUP*+1 (This can be proved by adapting
Section 6 of [MilSt] to the complex case.)

The Chern character ch 1s a multiplicative natural transformation from
K -theory to rational cohomology

ch: K(X) — H(X; Q) = @HY(X; Q), &+ ch() =) chy(é),

q20 g>0

where chy,(§) € H*(X; Q) (X being a connected finite CW-complex). It
relates ~y-operations and Chern classes as given in the following well-known
proposition. Before stating it, we introduce some notation. For x & KX),
we let ¢j(x) be the image of c¢j(x) under the coefficient homomorphism
H¥(X; Z) — H%(X; Q), and let I(Ck, ..., ¢,) be the ideal in H®(X; Q)
generated by ¢i(x), ..., ¢,(x), where x € E(X) and n > k.

PROPOSITION 2.2. Let X be a connected finite CW-complex of dimen-
sion <2n, x € K(X), and k < n. One then has
ch(Y(x)) = & (x) + Pep1(€1(x), - . ., Ca(x)),

where Py is a polynomial in ¢i(x),... ,cy(x) contained in the ideal

Lk, ..., Cy) N ( @D H*(X; Q)).

q=k+1
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In particular,

ch(y'(x)) = &,(x) € H"(X; Q) .

Proof. For a line bundle n = 1+y, one has ch(y(y)) = 1+ (¢ —1)-¢
in H®(X; Q)[[#]], therefore, the result follows readily for the Whitney sum of
n universal line bundles over CP>® x ... x CP* (n factors) and hence for
any element x represented by a Whitney sum of line bundles. The general
case is obtained by invoking the splitting principle. [

(Proposition 2.2 shows that ~*(x) is of filtration > k, in the terminology
of Atiyah and Hirzebruch [AtHi].)

Recall that a finite CW-complex is called forsion-free if its integral
homology (or equivalently integral cohomology) contains no torsion. The
Chern classes give some “sharp information” on the geometric dimension, as
the next fundamental theorem shows.

THEOREM 2.3. Consider a connected finite CW-complex X of dimen-
sion < 2n, and x € K(X). Then

g-dim(x) < n <= c,(x) =0.

If moreover X is torsion-free, then this is also equivalent to y"(x) = 0.

Proof. If g-dim(x) < n, as already mentioned, c,(x) = 0. The converse is
a consequence of Theorem 41.5 on page 210 of [Steen] (the Chern classes of
a vector bundle are the same as the Chern classes of the associated spherical
bundle as defined in [Steen]). The last statement follows from Proposition 2.2
and injectivity of the Chern character for a torsion-free space.  []

Let us recall the K-theory of the spheres:

KO(SZH) ~ Z @ 7 KO(sZIl—I—l) ~ Z

KI(SZII) _ O KI(S?.I?,—i—l) ~ Z .
(For technical reasons, we will always implicitly exclude the O-sphere.) The
multiplicative structure on K(S*") = Z - xy, is given by x} = 0. The

y-operations and the Chern classes are as given in the next proposition.
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PROPOSITION 2.4. Let Xy, be a generator of K(S*) = Z. Then

) Y*(x2,) = (=D Y k— 1! S(n, k)-x,, where S(n, k) is a Stirling number
of the second kind.

i) c,(x2,) = (=1 Y(n — 1)! - ap,, where ay, is a suitable generator of
the cohomology group H?”(SZ”; 7)=7

Proof. It is well-known that \(xy,) = (—=D¥T1k"=1 . x,,, for k> 1 (see
Proposition 2.5 and Theorem 11.2 in Chapter 13 of [Huse]). We thus get

W) = Mp1i(2a) = 1+ (Z(—l)"“kﬂ*r’((l ~07") 22

k>1

1= (S0 (e 49

k>1 j>0

_ Z (_l)k(k+j)_k’;.tk+j  Xo
k /) k+j

k>1 j>0

(Z(Z( NWESE )xzn

m>1 k=1

I

II*

(D en = 11800 m) ) 3,

m>1

since S(n, m) = Z( Lym=k (T £ K (see (6.19) on page 251 of [GKP]), hence

the first formula (The equality (x) is obtained by substituting m = k +j.)
The second formula follows from Theorem 9.6 and Corollary 9.8 (and its
proof) in Chapter 20 of [Huse]. [

Let us finally state a lemma relating ~y-operations and Chern classes. We
shall need it further on.

LEMMA 2.5. Let Y be a connected CW—compléX (possibly infinite). Then,
for an element x € K(Y) = [Y, BU], one has

en(Y'(@) = (=1)" " (n — D! ealx) € H'(Y; Z).

Proof. Let i: BU(n — 1) — BU be the canonical map, and
i*: H*(BU; Z) = Z[cy, Ca, ... ] — Z[cy, ..., Cam1]l = H'(BU(n — 1); Z)

the induced map. Since c,(¥") € Ker(i*) N H*™BU;Z) =17 -¢,, there exists
an integer g, such that c¢,(3") = g - ¢,. Recalling that S(n, n) = 1, an easy
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computation (based on Proposition 2.4) for the sphere S*" shows that one has
gn = (=1""'(n — 1)!, as claimed. [

3. THE ~-CONE AND THE c-CONE

In general, the problem of computing the geometric dimension of vector
. bundles is very complicated, as is any general lifting problem in homotopy
. theory. So, the same is true for the positive cone. That is why we now
| introduce what we call the y-cone and the c-cone. They are supposed to be
easier to compute and might be good approximations to the positive cone. As
. we will see, these two cones coincide for torsion-free spaces.

DEFINITION 3.1.
i) The ~y-cone of X is defined by

K,X):={(n,x) e ZOKX) | ¥*(x) =0 for all k>n}.

The ~-dimension of a class x € E(X), denoted by ~-dim(x), is the least
integer n such that ~v*(x) = 0 for all k > n, in other words, it 1s the degree
(in the variable t) of the polynomial ~;(x).

ii) The c-cone of X is defined by
K.(X) = {(n,x) €ZOKX) | cx(x) =0 for all k>n}.

| The c-dimension of a class x € K (X), denoted by c-dim(x), is the least integer
n such that cx(x) =0 for all k > n, in other words, it is the degree (in the
variable ) of the polynomial c,().

: Let us point out that the “lower boundary” of the positive cone K, (X), as
{ a subset of I?(X) @ Z, coincides with the graph of the geometric dimension
function g-dim: K(X) — Z (the positive elements consisting exactly of the
boundary and the points located above it). The analogous statements hold

for the y-cone and the c-cone with respect to the corresponding dimension
function.

The following results on these objects follow readily from our preliminaries
on K -theory.
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