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THE POSITIVE CONE OF SPHERES
AND SOME PRODUCTS OF SPHERES

by Michel MATTHEY *) and Ulrich SUTER

ABSTRACT. Motivated by Elliott’s K -theoretic classification of C*-algebras of type
AF, we compute the positive cone of the K-theory of some spaces. These include the
spheres, the products of an odd-dimensional sphere by a sphere, the products of the
2-sphere by a sphere, and of the products St x S, 5t xS, S°x S° and S8 x S%. This
amounts to computing the geometric dimension of stable classes of complex vector
bundles over these spaces. We establish a few general properties of the positive cone
and of approximations to it, the y-cone and the c-cone. We also get information on the
Whitehead product structure in the homotopy groups of BU(n). Moreover, we prove
a “doubling formula” for Stirling numbers of the second kind.

1. INTRODUCTION

Let G(S) be the Grothendieck group completion of an abelian semigroup S,
and let 6: S — G(S) be the corresponding universal homomorphism. The
image of 6, denoted by G.(S), is a sub-semigroup of G(S). If S has a zero,
in other words if it is an abelian monoid, then G, (S) induces a translation
invariant preordering on G(S) (i.e. a reflexive and transitive relation, but
not necessarily antisymmetric). The elements of G (S) are called positive and
G (S) is called the positive cone (see [Ell] and [Blal]). The pair (G(S), G+(S))
is an isomorphism invariant of S, and a basic question is: to what extent does
this invariant characterize the abelian semigroup S ?

The above notions are of interest in connection with the classification
problem of C*-algebras. For a unital C*-algebra A, let S = Proj(A) be the
abelian monoid of equivalence classes of projectors in the matrix algebra
M., (A). The K-theory of A, denoted by Ky(A) or K(A), is by definition

*) Partially supported by the Swiss National Science Foundation grant 20-56816.99
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the group G(Proj(A)). The positive cone in K -theory is G, (Proj(A)) and it
is denoted by K, (A). In [EIl], Elliott has put forward a program to classify
a large class of unital C*-algebras by invariants of a K -theoretic nature,
such as K(A), K (A), [1] (the K-theory class of the unit), etc. (see also
[Blal]). For a compact Hausdorff space X, the algebra C(X) of continuous
complex valued functions on X is a unital C*-algebra and its K -theory
coincides with the topological K -theory K°(X) of the space X (according to
the Swan-Serre theorem). In view of Elliott’s program and to shed light on
various conjectures, it is of great interest to determine for such spaces the
positive cone K (X) = G (Proj(C(X))). For any connected X, the preordering
determined on K°(X) by the positive cone is an ordering, as is easily checked
(see also p.84 in [Rord]).

The problem of computing the positive cone of some spaces and in
particular of spheres has been communicated to us by Alain Valette, after
a question asked by G. A. Elliott in Oberwolfach.

These notes are organized as follows. In Section 2, we recall the basic
facts from topological K -theory needed in the sequel. Among other things, we
review ~y-operations. The computation of these operations for even-dimensional
spheres puts Stirling numbers of the second kind on stage. In Section 3, we
define what we call the y-cone and the c-cone (the latter is defined in terms
of Chern classes), and we explain in what sense they are approximations of
the positive cone. We illustrate by examples that the three notions of cones
are different in general, although the ~-cone and the c-cone coincide for
torsion-free spaces.

In Section 4, we compute the positive cones of the spheres, by using some
standard homotopy theory. Section 5 is devoted to the naturality properties of
the three cones. The positive cone of the products S" x §?"~! is computed
in Section 6. The -y-cone of the products §*" x §? is easily calculated in
Section 7 by means of Chern classes. In that section, we also compute the
positive cone of §% x $2*.

The Whitehead product structure on the homotopy of the classifying space
BU(n) is closely related to the problem of determining the positive cone of
the product of two even-dimensional spheres, as is explained in Section 8.
This allows us to improve slightly a result of Bott on this structure, and gives
some precise information on the positive cone of such a product of spheres.

In Section 9, we perform the computation of the positive cones of S* x §*,
§*x 8%, §°x S® and of S x S. This is achieved by using some well-known
results on the homotopy groups of unitary groups. In Section 10, we show
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that for spaces “with only one high-dimensional cell” the ~-cone is “blind”
in some sense to be made precise there.

Section 11 is devoted to explicitly computing the -y-operations for the
products §2" % §2™ . As a consequence of these calculations, we establish a
“doubling-formula” for Stirling numbers of the second kind. Moreover, we
are led to conjecture that the same formula holds for Stirling numbers of the
first kind. (This has now been proved by Al Lundell; see Theorem 11.2.)

2. PRELIMINARIES

We start by reviewing some topological K -theory. Our basic references
are the books by Atiyah [Atiyah] and by Husemoller [Huse].

Let X be a connected finite CW-complex. (We assume all spaces and maps
to be pointed.) For each n > 0, let Vect,(X) be the set of isomorphism classes
of complex n-plane vector bundles over X, and Vect(X) their disjoint union.
There are well-known bijections

Vect,(X) = [X, BU(n)]  (n=0)

where BU(n) is the classifying space of the unitary group U(n) and [., .]
stands for the set of homotopy classes of maps. For an n-plane vector bundle
¢ over X, i.e. £ € Vect,(X), we write rk(¢) = n (it is the rank of &). The
direct sum (also called Whitney sum) and the tensor product of vector bundles
endow Vect(X) with a semiring structure. The K -theory of X is the ring K(X),
also denoted by K°(X), obtained by applying the Grothendieck construction
to Vect(X), 1.e. K(X) = G(Vect(X)). An element of K(X) is sometimes called
a virtual vector bundle. There i1s a ring isomorphism

KX) 2 [X, Z x BU],

where BU is the infinite Grassmannian, i.e. the direct limit of the classifying
spaces BU(n). We identify both rings from now on. There is a canonical
splitting K(X) = Z & [X, BU] = Z ® K(X), where K(X) = K (X) is the
subring of stable classes of vector bundles, and n € N = {0, 1,2, ...}
is represented by the n-dimensional trivial vector bundle over X. Clearly,
the Grothendieck construction gives rise to maps 6: Vect(X) — K(X) and
0,: Vect,(X) — n X kV(X) (by restriction of 6).
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DEFINITION 2.1.

i) The positive cone of X, denoted by K (X), is the image of 6. An
element ¢ € K(X) is called positive if it lies in the positive cone.

iil) The geometric dimension of x & K(X), denoted by g-dim(x), is the
smallest integer n such that (n, x) lies in the image of 0,, i.e. the least
integer n such that the stable class x is represented by an n-dimensional
vector bundle.

Since 6 is a semiring homomorphism, it is clear that K, (X) is a sub-
semiring of K(X). Notice that it is equivalent to determine the positive cone
or the map g-dim: K(X) — Z; in fact, we have

K. (X)={(n, x) € Z&KX) | n> g-dim(x)} .

Let us also notice that an element x € K(X), considered as a homotopy class
of maps X — BU, has geometric dimension < n if and only if x has a
lifting x,: X — BU(n), 1.e.

BU(n)
/ Jin i, OX, =X
X *+ BU

(Here, we identify a map with the homotopy class it represents.) Recall that
i, is a fibration with fibre U/U(n), where U = lim U(n) is the infinite unitary

group (and BU is really its classifying space). The image of 6, is equal to
the image of the composition

[X, BU(n)] -, X, BU] — n x [X, BUI, y— (1, ((n)«()) .
We write K*(X) = K%(X) @ K'(X), where the K'-group is defined by
K'X):=1[Xx,U].

For a pair of connected finite CW-complexes (X, Y), there is the famous
six-term exact sequence:

Py Lo B -2 B

T l

(V) —— KX L — K'X/Y),

where i: Y < X is the inclusion and g: X — X /Y is the quotient map.
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The n-th exterior power operation for complex vector spaces induces an
operation on vector bundles denoted by & —— A"¢, and endows K(X) with a
natural A-ring structure. For ¢ € K(X), one defines

M =) (V-1 € KX)I[A]
n>0
(the latter being the ring of formal power series with coefficients in K(X)).
The function ); is exponential, i.e. A\ (€ +7) = A (&) - A\(n). Associated to the
A-operations are the ~y-operations or Grothendieck operations ~"(§), which
are defined by their generating series as follows:

S AE) 1= () = 18

n>0

In particular, v°(¢) = 1 and 7'(€) = €. Again, the function -y, is exponential,
which implies that

YE+m =D 7O 7.
k=0

The importance of the y-operations in our context is illustrated by the following
fact (see [Atiyah], Proposition 3.1.1):

Let x € K(X); if g-dim(x) < n, then v*(x) =0 for k> n .

(Assume that (n,x) € Z & E(X) is represented by an n-dimensional vector
bundle £. Then A (§) is a polynomial of degree n in s. By the exponential
property, Ag(§) = AJ(D)" - Ag(x) = (1 4 5)" - \s(x). Letting s = t/(1 —1), we
see that v:(x) = A\ /1, (x) = (1 — 1" Ai/1-+(&§) is a polynomial of degree < n
in t.)

The representable K-theory of BU(n), i.e. [BU(n), Z x BU], is

KBUn) = ZI[7', ..., 71,

where 7% = ~k(,), for 1 <k <n, pn being the stable class of the universal
n-plane bundle p, over BU(n). Note that v*(p,) = 0, for all k > n, and that
the map j*, induced by j: BU(n) — BU(n+1) in K -theory, takes p,.; to
pn, for any [ > 0.

For a complex vector bundle ¢ over X, the n-th Chern class cn(€) is a
2n-dimensional integral cohomology class of X, i.e. cu(§) € H(X; Z). One

has cp(§) = 1, and the element c(§) = ano cn(&) € H*(X; Z), called the
total Chern class, is exponential, i.e. it satisfies

c€+mn) =cl)-cln).
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The basic properties of Chern classes (see [Huse]) imply the following
facts :

1) Two  stably equivalent bundles over X have the same Chern classes.
In particular, for an element x € K(X), the n-th Chern class
cn(x) € H*(X; Z) is well-defined.

1) If n > rk(€), then ¢,(&) =0.

iii) Let x € K(X); if g-dim(x) < n, then ci(x) =0 for k > n.

Let us also formally define the polynomial

ce(f) =Y cn®) - 1" € H*(X; D[],
n>0
which, by ii) above, is indeed a polynomial. It is also exponential.
A central feature of Chern classes is that the cohomology ring of BU(n)
1S given by
H*(BU(n); Z) = Zlcy, - - -, cal,

where ¢; = ci(p,), for 1 < k < n. Moreover, ci(p,) =0, for any k£ > n. On
the combinatorial point of view, for any n > 0, the Grassmannians BU(n)
and BU admit CW-decompositions with the same (2n + 1)-skeleton, in other
words, such that BU(n)?"t1 = BUP*+1 (This can be proved by adapting
Section 6 of [MilSt] to the complex case.)

The Chern character ch 1s a multiplicative natural transformation from
K -theory to rational cohomology

ch: K(X) — H(X; Q) = @HY(X; Q), &+ ch() =) chy(é),

q20 g>0

where chy,(§) € H*(X; Q) (X being a connected finite CW-complex). It
relates ~y-operations and Chern classes as given in the following well-known
proposition. Before stating it, we introduce some notation. For x & KX),
we let ¢j(x) be the image of c¢j(x) under the coefficient homomorphism
H¥(X; Z) — H%(X; Q), and let I(Ck, ..., ¢,) be the ideal in H®(X; Q)
generated by ¢i(x), ..., ¢,(x), where x € E(X) and n > k.

PROPOSITION 2.2. Let X be a connected finite CW-complex of dimen-
sion <2n, x € K(X), and k < n. One then has
ch(Y(x)) = & (x) + Pep1(€1(x), - . ., Ca(x)),

where Py is a polynomial in ¢i(x),... ,cy(x) contained in the ideal

Lk, ..., Cy) N ( @D H*(X; Q)).

q=k+1
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In particular,

ch(y'(x)) = &,(x) € H"(X; Q) .

Proof. For a line bundle n = 1+y, one has ch(y(y)) = 1+ (¢ —1)-¢
in H®(X; Q)[[#]], therefore, the result follows readily for the Whitney sum of
n universal line bundles over CP>® x ... x CP* (n factors) and hence for
any element x represented by a Whitney sum of line bundles. The general
case is obtained by invoking the splitting principle. [

(Proposition 2.2 shows that ~*(x) is of filtration > k, in the terminology
of Atiyah and Hirzebruch [AtHi].)

Recall that a finite CW-complex is called forsion-free if its integral
homology (or equivalently integral cohomology) contains no torsion. The
Chern classes give some “sharp information” on the geometric dimension, as
the next fundamental theorem shows.

THEOREM 2.3. Consider a connected finite CW-complex X of dimen-
sion < 2n, and x € K(X). Then

g-dim(x) < n <= c,(x) =0.

If moreover X is torsion-free, then this is also equivalent to y"(x) = 0.

Proof. If g-dim(x) < n, as already mentioned, c,(x) = 0. The converse is
a consequence of Theorem 41.5 on page 210 of [Steen] (the Chern classes of
a vector bundle are the same as the Chern classes of the associated spherical
bundle as defined in [Steen]). The last statement follows from Proposition 2.2
and injectivity of the Chern character for a torsion-free space.  []

Let us recall the K-theory of the spheres:

KO(SZH) ~ Z @ 7 KO(sZIl—I—l) ~ Z

KI(SZII) _ O KI(S?.I?,—i—l) ~ Z .
(For technical reasons, we will always implicitly exclude the O-sphere.) The
multiplicative structure on K(S*") = Z - xy, is given by x} = 0. The

y-operations and the Chern classes are as given in the next proposition.
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PROPOSITION 2.4. Let Xy, be a generator of K(S*) = Z. Then

) Y*(x2,) = (=D Y k— 1! S(n, k)-x,, where S(n, k) is a Stirling number
of the second kind.

i) c,(x2,) = (=1 Y(n — 1)! - ap,, where ay, is a suitable generator of
the cohomology group H?”(SZ”; 7)=7

Proof. It is well-known that \(xy,) = (—=D¥T1k"=1 . x,,, for k> 1 (see
Proposition 2.5 and Theorem 11.2 in Chapter 13 of [Huse]). We thus get

W) = Mp1i(2a) = 1+ (Z(—l)"“kﬂ*r’((l ~07") 22

k>1

1= (S0 (e 49

k>1 j>0

_ Z (_l)k(k+j)_k’;.tk+j  Xo
k /) k+j

k>1 j>0

(Z(Z( NWESE )xzn

m>1 k=1

I

II*

(D en = 11800 m) ) 3,

m>1

since S(n, m) = Z( Lym=k (T £ K (see (6.19) on page 251 of [GKP]), hence

the first formula (The equality (x) is obtained by substituting m = k +j.)
The second formula follows from Theorem 9.6 and Corollary 9.8 (and its
proof) in Chapter 20 of [Huse]. [

Let us finally state a lemma relating ~y-operations and Chern classes. We
shall need it further on.

LEMMA 2.5. Let Y be a connected CW—compléX (possibly infinite). Then,
for an element x € K(Y) = [Y, BU], one has

en(Y'(@) = (=1)" " (n — D! ealx) € H'(Y; Z).

Proof. Let i: BU(n — 1) — BU be the canonical map, and
i*: H*(BU; Z) = Z[cy, Ca, ... ] — Z[cy, ..., Cam1]l = H'(BU(n — 1); Z)

the induced map. Since c,(¥") € Ker(i*) N H*™BU;Z) =17 -¢,, there exists
an integer g, such that c¢,(3") = g - ¢,. Recalling that S(n, n) = 1, an easy
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computation (based on Proposition 2.4) for the sphere S*" shows that one has
gn = (=1""'(n — 1)!, as claimed. [

3. THE ~-CONE AND THE c-CONE

In general, the problem of computing the geometric dimension of vector
. bundles is very complicated, as is any general lifting problem in homotopy
. theory. So, the same is true for the positive cone. That is why we now
| introduce what we call the y-cone and the c-cone. They are supposed to be
easier to compute and might be good approximations to the positive cone. As
. we will see, these two cones coincide for torsion-free spaces.

DEFINITION 3.1.
i) The ~y-cone of X is defined by

K,X):={(n,x) e ZOKX) | ¥*(x) =0 for all k>n}.

The ~-dimension of a class x € E(X), denoted by ~-dim(x), is the least
integer n such that ~v*(x) = 0 for all k > n, in other words, it 1s the degree
(in the variable t) of the polynomial ~;(x).

ii) The c-cone of X is defined by
K.(X) = {(n,x) €ZOKX) | cx(x) =0 for all k>n}.

| The c-dimension of a class x € K (X), denoted by c-dim(x), is the least integer
n such that cx(x) =0 for all k > n, in other words, it is the degree (in the
variable ) of the polynomial c,().

: Let us point out that the “lower boundary” of the positive cone K, (X), as
{ a subset of I?(X) @ Z, coincides with the graph of the geometric dimension
function g-dim: K(X) — Z (the positive elements consisting exactly of the
boundary and the points located above it). The analogous statements hold

for the y-cone and the c-cone with respect to the corresponding dimension
function.

The following results on these objects follow readily from our preliminaries
on K -theory.
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PROPOSITION 3.2. Let X be a connected finite CW-complex. Then
i) g-dim(x) < dim(X)/2, for any x € K(X);
i) ~y-dim(x) < g-dim(x), for any x € K(X);
i) Ki(X) C Ky (X);
iv) c-dim(x) < g-dim(x), for any x € K(X);
v) K1 (X) C K(X).

This proposition shows that the -cone and the c-cone are approximations
of the positive cone, more precisely, that they constitute upper bounds of the
latter.

It turns out that the «y-cone and the c-cone coincide for torsion-free spaces,
i.e. those spaces having no torsion in their integral cohomology.

PROPOSITION 3.3. Let X be a connected finite CW-complex. If X is
torsion-free, then

K,X) = K.(X).

Proof. The result follows immediately from Proposition 2.2 and injectivity
of the Chern character for a torsion-free space. [

It is worth mentioning that there is no general comparison statement for the
~-cone and the c-cone, i.e. there are spaces with torsion for which the y-cone
is not contained in the c-cone, and spaces with torsion for which the c-cone
is not contained in the y-cone. Moreover, there exist spaces for which the
~-cone and the c-cone strictly contain the positive cone (the product S x 8%
is such an example as we will later see). We now illustrate the situation by
three examples. |

EXAMPLES.

i) Let j: BSU(3) — BU(3) be the map induced by the inclusion of the
special unitary group SU(3) in U(3). Then the composition map

BSU(3) —— BU@3) — 2 BU

lifts to a map f: BSU(3) — BSU. Consider W the homotopy fibre of f. It
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enters in a pull-back diagram

SU

| |

W ——— PBSU

| l

BSU(3) ——— BSU

|

where SU ~ QBSU «— PBSU — BSU is the path-loop fibration of BSU. The
Leray-Serre spectral sequence in cohomology for this fibration is well-known
and maps via f* to the corresponding spectral sequence for the fibration 7.
By Lemma 2.5, one has

5@ =j" 075 (c3(p3)) = ¢3(3) = 23 -
Similarly, one has f*(¢2) = c2(73), which is easily seen to vanish. For the
cohomology of W in degree < 6, letting a4 := 7*(¢2) and bs := 77(c3), we
have computed that x5 = 0 and
HSSW:Z) =7 182 302 as®L xsDL bs =7 DZL/2,
——
=~7/2
where deg(xyj1) = 2j+1. The inclusion i: ¥ := Wl < W of the 7-skeleton
of W induces an isomorphism in cohomology up to degree 6. If we let
x = i* o* 0j*(p3) € K(Y), we find c3(x) = bg # 0, whereas v*(x) = 0,
for all &k > 3. Indeed, this is clear for k > 4 since then q/k(,?)},) = 0, and
¥ (x) = 0 because its classifying map is the composition f o 7 o i, which is
homotopically trivial. Thus c-dim(x) = 3 and ~y-dim(x) < 2. Consequently, Y
is a connected finite CW-complex with a strict inclusion

K.(Y) & Ky(Y).
ii) Consider the Moore space M = M(Z/2,5), i.e. the mapping cone

of a continuous map f:S° —— §5 of degree two, or more explicitly,
M=Cr= S° U, €. The exact sequences in cohomology and in K -theory of

the cofibration S5 < M —» M /8% ~ S5 give epimorphisms
g*: 7= HS® Z) - H(M; Z) = 7.)2
g L =K% - KM)~=Z/)2.
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Let x and a be suitable generators of K(S°) and of H®(S®; Z) respectively,
and define X := ¢*(x) and a := ¢g*(a). For obvious dimensional reasons, the
Chern classes c¢(X) and cy(X) vanish. Moreover, one has c¢3(X) = g*(c3(x)) =
q*(2a) = 0 (see Proposition 2.4), hence c-dim(x) = 0. On the other hand,
we have ') = ¥ # 0, so ~-dim(x) > 1; more precisely, v*(X) is
g (=S(3,2) - x) = ¢*(-3x) =% # 0 and () = ¢*(25(3, 3) - x) = 0, so
~v-dim(x) = 2. Consequently, M is a connected finite CW-complex with a
strict inclusion
K,M) G K.(M).

iii) Let Z = Y VM be the wedge of the preceding two examples. It is
a 7-dimensional finite connected CW-complex for which none of K.,(Z) and
K.(Z) contains the other one. (The product Y x M would also do.)

To end the present section, we prove that the cones are semigroups and
homotopy invariants.

PROPOSITION 3.5. The positive cone, the ~y-cone and the c-cone of a
connected finite CW-complex X are sub-semigroups of K(X) and homotopy
invariants of X. Moreover, the positive cone is a sub-\-semiring of K(X).

Proof. The homotopy invariance is obvious for the three cones. We have
already mentioned in the preliminaries that the positive cone is a sub-semiring
of K(X). It is also clear that it is a sub-A-semiring. The “exponentiality” of
v, and of ¢ (the total Chern class) immediately show that the y-cone and the
c-cone are sub-semigroups of K(X). [

We do not know if in general the y-cone and the c-cone are sub-A-semirings
of K(X).

4. THE POSITIVE CONE OF THE SPHERES

We now intend to compute the positive cone of the spheres. For odd-
dimensional spheres, there is nothing to do since K($?"+!) = 0. Whereas for
even-dimensional spheres, one has K(S*) =1Z-x = Z, so we only have to
compute g-dim(lx) for all integers [.

By Proposition 2.4, we have

clx)=cx) =0+ D" n-D-a)f =1+ Hn-1)"a,
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where a is the orientation class of S$?*. Therefore, by Proposition 3.2, we
deduce that, for [ # 0,

n = c-dim(lx) < g-dim(lx) < dim(5**)/2 =n,
and this shows that c-dim(lx) = g-dim(lx) = n. The sphere $?" being a

torsion-free space, the following theorem follows from Proposition 3.3.

THEOREM 4.1. Let x be a generator of K(S*) = Z. Then, for 1 € Z,
0 ifl=0
n otherwise.

g-dim(lx) = {

Moreover; the positive cone, the c-cone and the y-cone of S coincide :

Ko (S = K.(S") = K,(S?) =N x 0 U {(, x) | [ > n} CZ x K(S™.

Z
! . R

|

There is another, purely homotopic, proof of the theorem. It is based
on Bott’s celebrated results on the homotopy groups of BU(n) and Serre’s
computation of the rational homotopy groups of spheres. Let us also present
this proof. We have

[S*", BU(k)] = m,(BU(k)) and K(S**) = [$?", BU] = mp,(BU).

Consider the long exact sequence of the fibration BU(k) *, BU -

= WU UK)) — TonBUK)) 225 103, (BU) — a1 (U JUK)) — . ..
The fibre U/U(k) of i is 2k-connected (see for example [MiTo], p.216) and
it follows that (i), is an isomorphism for n < k. According to Bott [Bott2],
we have m,(BU) = Z. It is well-known that for k < n, the group m,(BU(k))
is finite. Let us however give a short proof of this result.
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LEMMA 4.2. For m > 2k+ 1, the group m,(BU(k)) is finite.

Proof. We fix m > 3. The fibration BU(k — 1) — BU(k), with fibre
S*~1, yields the following long exact sequence in homotopy :

o= T(S* Y = 1, (BUk — 1)) — Tm(BUK)) — T (S — .

By Serre [Serre], mj(S*~1) is finite for j # 2k — 1, and we can conclude
by induction over k (with k > 1 and 2k + 1 < m), since when k = 1, one
has 7, (BU(1)) = m,—1(U(1)) =0 for m > 3. L]

From this, we now infer that the image of (i), is zero for k < n. This
implies that g-dim(lx) =n when [ # 0, and concludes the second proof.

REMARK 4.3.

1) Since we were motivated by Elliott’s classification of unital C*-algebras
of type AF by means of their K-theory, their positive cone and the K -theory
class [1] of the unit (see [Blal]), it is important to single out the fact that
the positive cone of $?* and that of $¥" are non-isomorphic as monoids if
is different from m. (There is no need here to distinguish the K-theory class
1 of the trivial one-dimensional bundle.) Let us provide a short proof of this
claim. For n > 1, let M, denote the positive cone of $2" (identified as above
with a sub-monoid of Z?, in order to designate its elements). The abelian
monoid M, has a minimal set A, of generators, in other words a generating
set (as a monoid) that is contained in any other generating set, namely

A= {0, DY U{(k, ) | k € Z\ {0}}.
Now, consider the function o: A, — {2, 3, ...} defined, for x € A,, by
o(x) :==min {/ > 2 | Ix decomposes as a sum of elements of A, \ {x}} .

Clearly, such an [ exists for any x € A, and o(4,) = {2, 2n}. Since A, and
o are isomorphism invariants of M, , this proves our claim.

i1) For odd-dimensional spheres the positive cone is “trivial”; in other
words, K(S*"~1)=7Z and K, (S*"~!)=N.

5. FURTHER PROPERTIES OF THE CONES

We now investigate naturality properties and behaviour under products of
the positive cone, the y-cone and the c-cone.
The following result is obvious.
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PROPOSITION 5.1. Let f: X — Y be a map between connected finite
CW-complexes. Let f*: K(Y) — K(X) be the \-homomorphism induced by
f. Then, for any y € K(Y), one has

g-dim(f*(v)) < g-dim(y)
v-dim(f* (y)) < 7-dim(y)
c-dim(f*(y)) < c-dim(y),
and in particular,
[rEL(Y) C K (X)
fH(K,(Y)) € Ky(X)
fH(K(Y)) € K(X).
Furthermore, if f* is an isomorphism, then

f*(Kfy(Y)) = K’y(X) .
For the next corollary we need a new definition.

DEFINITION 5.2. Let X and Y be two connected finite CW-complexes. A
map f: X — Y is called a K°-equivalence (or K -equivalence for short) if
there exists a map g: Y — X such that, on the level of the KO—groups,

f* O g* = IdKO(X) and g* Of* = IdKO(y) .

Note that a K-equivalence is not necessarily a homotopy equivalence:
there are homotopically non-trivial (i.e. non-contractible) finite CW-complexes
X for which K(X) = 0 = K(pt); see example ii1) below.

PROPOSITION 5.3. If f: X — Y is a K-equivalence, then f induces the
following isomorphisms of semigroups :

* *

f f
K .(V)2K.(X) and K,(¥)ZK,(X).

Proof. Applying Proposition 5.1 twice, we get (in the notations of
Definition 5.2)

K, (X)=f"0g"(K+:(X)) €/ (K(Y)) € Ky (X).

This establishes the first isomorphism, whereas the second one is obvious. []

The following result is more technical to state.
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COROLLARY 5.4. Let X and Y be two connected finite CW-complexes. As-

sume that Kl (X) = 0 and that IZO(Y) = 0. Then the projection p: XxY — X
induces isomorphisms

* *

KyO2K.(XXY) and K,X) 2K, (Xx7Y).

Proof. Invoking the Kiinneth theorem for K -theory, our hypotheses imply
that p*: K%(X) — K%(X x Y) is an isomorphism with inverse i*, where i
is the inclusion of X in X x Y. Consequently, p* is a K-equivalence. [

The following is a useful result.

PROPOSITION 5.5. Let X and Y be connected finite CW-complexes. Assume
that the positive cone and the y-cone of Y coincide, and let f: X — Y
be a map inducing an isomorphism [*: K(Y) — K(X). Then f induces an
isomorphism of positive cones, and the ~y-cone of X coincides with the positive
cone:

Kk

K (1) 2 K1 (X) = Ky (X).

Proof. By Proposition 5.1 we have f*(K((Y)) = f*(K,(Y)) = K, (X)
and f*(K(Y)) € K, (X), hence K,(X) C K;(X). We conclude with iii) of
Proposition 3.2. [

EXAMPLES.

i) Let X be a connected finite CW-complex of dimension < 3. Since for
suitable CW-decompositions, one has BU(1)P! = BUP! and since BU(1) =
CP*® = K(Z, 2), any x € E(X) = [X, BU] lifts to a class in_[X, BU(1)],
giving an isomorphism K(X) =~ HXX; Z) mapping x to ci(x). It follows that
the positive cone coincides with the c-cone and is given by

K. (X)=Nx {0} UN"xKX)CZxKX).

ii) Example 1) applies to a closed oriented surface X, of genus g. Since it
is torsion-free, its positive cone coincides with its c-cone and with its y-cone.
Moreover, let f: X, — S? be a map of degree 1 (it exists, since both the
2-sphere and X, are quotients of the square [0, 1]*). Then f not only induces
an isomorphism in K-theory, but also an isomorphism of positive cones, as
follows from Proposition 5.1..
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iii) Let X and Y be the Moore spaces M(Z/3, 2g+11) = S2a+11 |, g2a+12
and M(Z/3,2g — 1) = S%~1 U3 €% respectively. In [Adams], Adams shows
that for ¢ large enough, there exists a map A: X = >12y — Y such that the
induced map A™*: E(Y) — E(X) is an isomorphism (take p =m =3, f = 1
and 7 = 6 in Theorem 1.7 and in Lemmas 12.4 and 12.5 of [Adams]).
Therefore, A is a K-isomorphism between simply connected finite CW-
complexes, but it is not a homotopy equivalence. The mapping cone Cy IS
a non-contractible finite CW-complex with E(CA) — (. (It is non-contractible
because its homology is non-trivial.)

iv) In [GrMo], pp.203-206, a CW-complex X = (S' V $2yU e is defined,
with the property that the inclusion i: ' = X!!) < X of the 1-skeleton induces
an isomorphism in integral homology (and on the level on fundamental groups);
however, i 1S not a homotopy equivalence since m2(X) # 0. Consequently, by
the universal coefficient theorem (see Corollary V.7.2 in [Bred]), i induces
an isomorphism in integral cohomology, and, by a direct application of the
Atiyah-Hirzebruch spectral sequence, also in K-theory. In particular, i is a
K -equivalence, but not an equivalence. (As C, in the preceding example, the
quotient space X/X™ has vanishing K, however it is the closed 3-ball and
is therefore contractible.)

Let us finally mention that in [Matt], the positive cone, the c-cone and the
~-cone are also studied from the rational point of view, and rational K -theory
is considered.

6. THE CONES OF THE PRODUCTS S" x §2m—1

In this section, we will compute the cones for the products S x §2m~1
and SZn—l % SZm-—l )

We begin with $2* x §2"~!. Since K(5*"~!) =0 and K'(S*") = 0, the
answer immediately follows from Proposition 5.5.

THEOREM 6.1. The projection p: S x §"=! — §¥ induces an
isomorphism of positive cones, and, for S x S*"~!  the ~-cone and the
c-cone coincide with the positive cone:

*

P
K+(Szn) ~ K+(S2n > SZm—l) — KW(SQU < SZm—l) )
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We now turn to the product $?*~! x $?"~! From the six-term exact
sequence of the pair ($**~! x §2m=1  §2n—1\/ 2m—1y \ith quotient the smash
product §**~! A $2m~1 homeomorphic to $2"+2"~2 we get an isomorphism

q*: E(52m+2n—2) N E(SZn—l ¢ SZm—l)

induced by the quotient map g: $**~! x §2n=1 _, §2m+22=2 By Theorem 4.1,
the space ¥ = $2"*2m=2 gatisfies the hypothesis of Proposition 5.5 and we
deduce the

THEOREM 6.2. The map q: S~ ! x §2m=1 — §2m+2n=2 jnduces an
isomorphism of positive cones, and, for S*"~! x §?"~1  the ~-cone and the
c-cone coincide with the positive cone:

q*
K+(SZm+2n—2) o K+(SZH—1 % S2m—1) — K,Y(Szn_l % S2m—l).

REMARK 6.3. According to Blackadar ([Bla2], 6.10.2), the positive cone
of the n-torus (S')" has been partially computed by Villadsen.

7. THE 7-CONE OF S x §?" AND THE POSITIVE CONE OF S2 x §2”

The positive cone was rather easy to compute for a product of an odd-
dimensional sphere by any sphere, whereas the case of a product of two
even-dimensional spheres is much more involved. On the other hand, the
v-cone of such a product is in the scope of the present notes. We perform
this calculation by computing the c-cone and appealing to Proposition 3.3.

By the Kinneth theorem, we have an isomorphism

K(S™) @ K(S*™) — K($" x §%), £ @ — p*(&) - ¢* (1),

where p and g are the projections onto the factors. Writing K(S?") = Z - x
and E(Szm) = Z - x;, and letting y; := p*(x;) and y, := g*(x,), we deduce
that

K™ xS =Z-y1®Z -y, ®Z-y1y,.

The product structure on K(S" x $2™) is given by y* = 0 and y5 = 0.
One has y;y, = 7*(y), where m: §2" x §2™ — §21 A §27 o2 §2n+2m and 3 ig a
suitable generator of K(S**t2™). Let i: §2% < §21x§2™ and j: S2™ < §2 x §2m
be the inclusions. One has i*(y;) = x; and j*(y;) = x», and (by Theorem 4.1
and a double application of Proposition 5.1), for any k& € Z \ {0}, one has
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g-dim(ky;) = g-dim(kx;) = n; similarly g-dim(ky,) = g-dim(kx;) = m. This
justifies that, from now on, we write x; and x, for y; and y, respectively.

Let ap € H*(S*:;7Z) and a, € H?(S*™;Z) be suitable generators
(referring to Proposition 2.4). As before, it is justified to write

H (S xS 7)=7 0,07 -0 ®ZL - a1a, .

Let us assume n < m. Consider an element x = ax; + bxy + Ix;x; in the
group K(S* x $?™). For the Chern classes, invoking Proposition 2.4 and
“exponentiality”. of the total Chern class, we compute
c(x) = c(axy)c(bxy)c(lx1x)
=1+D"ta— D a + D™ bm — D ap
+ (=1)""ab(n — D! m— D! —Iln+m— D) - aa,.

This immediately gives the y-cone (which coincides with the c-cone) in terms
of the ~y-dimension function.

THEOREM 7.1. For n < m, the ~y-dimension on E(SZ” X Szm) Is given as
follows : for x = ax| + bxy + Ix;xy € K(§** x §*™), one has

a0 zfa:b:l:()
P ifa#0,b=1=0
y-dimeo) = 9§ if b#£0, l=ab(n—1D!(m—1)!/(n+m—1)!

L n+m ifl#ab(m— 1D (m—D!/(n+m—1)!
Moreover, for k # 0, one has

g-dim(kx;) =n and g-dim(kxy) =m.

This theorem allows us to give some interesting information on the positive
cone of the product $?* x §?". We will state the result as Theorem 8.2 in

the following section, because the tools developed there allow one to make a
crucial improvement.

Combined with Theorem 2.3, Theorem 7.1 enables one to compute
completely the positive cone of S$? x §2*.

THEOREM 7.2. For the product S? x S**, we have
K (5% x 8%) = K.(S* x §%") = K, (S x §*%).
The latter is given by Theorem 7.1.
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8. THE WHITEHEAD PRODUCT AND THE POSITIVE CONE

We will establish an interesting connection between the positive cone of
a product $?" x §?" and the Whitehead product structure on the homotopy
groups of the spaces BU(k). As an application we will get some precise
information on the positive cone of $¥* x S§2",

Let us first recall the basic properties of the Whitehead product (the reader
may refer to [White]). The product SP x S? has a cell structure Obtained by
attaching a (p + g)-cell to SP vV S7. More precisely, there exists a suitable
pointed map fy: SPT9~1 — P \/ §7 such that SP x §7 is homeomorphic to
the mapping cone of f; :

SPx 8722 Cpy = (SPV S8) Uy, et

Given a pointed map g =aV 3: $? VS? — X, where X is a CW-complex,
there exists (up to homotopy) an extension §: S x §7 — X of g if and
only if the composition g o fy is homotopically trivial. Now, considering o
and (3 as elements of the homotopy groups Tp(X) and 7, (X) respectively,
the composition (o V §) o fy determines an element in the homotopy group
Tp4+9—1(X). This defines a map

Tp(X) X 7y(X) — Tp1g-1(X), (o, B) — [, B1:=(aV B)ofy,

which by definition is the Whitehead product. One can show that it is
Z -bilinear (provided that p, g > 2), i.e.

[a1 + g, 8] =[a1, Bl + [, ] and [«, B1 + B2] = [o, Bi]l + [«, Ba].

Moreover, the Whitehead product is natural with respect to pointed maps, i.e.
if f: X — Y is a pointed map between CW-complexes, then

We now want to study the case where X = BU(I). Let x; and x, be two
generators of E(SZ”) and E(Sz’") respectively, and assume 1 < n < m. By
Theorem 4.1, we know that g-dim(x;) = n and that g-dim(x,) = m. Letting
q > m, we consider x; and x, as maps from S$** (respectively $*") to BU
that lift to BU(q). The element x; +x, of K(S*" V §2™) = K(S?") @ K(S*™)
can be represented by the map x; Vx,: $2* V S — BU, and it also lifts to
a map z: $*"V §* —s BU(g).
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CLAIM. For k € {m,m+1, ..., m+n— 1}, there is no extension of
z=x1 Vxp: SV S§¥ — BU(k) to a map §** x S — BU(k).

Let y: §%" x $?" — BU(s) be an extension of z for some s > m.
Let x be the composition of y with the map is: BU(s) — BU. This
means that g-dim(x) < s and that *(x) = x; + x, € K(5** V §?"), where
. is the inclusion of S$?* v $¥" in the product S x $?". Recall that
)M + 1) =31 +x0+Z-x1x C K(S¥ x $2). So, there exists an
integer [ such that x = x; + x, + Ix;x,, and consequently

M) = (1) i+ m— D —(n— DI (m— D) - x1x £ 0.

We see that s > g-dim(x) > y-dim(x) > n + m. This proves the claim.

As a direct consequence, by considering x; and x, as elements (in fact
generators) of m,(BU(k)) and m,,(BU(k)) respectively, we get the following
result on the Whitehead product:

[x1, x2] 75 0 in Tontom—1(BUKk)), for m <k <n-+m.

We would now like to get some information on the order of [x;, x,] in the
homotopy group my,42m—1(BU(k)). By Z-bilinearity of the Whitehead product,
we have ab[x;, x;] = [ax;, bx,] for any integers a and b. Replacing x; by ax;
and x, by bx; in the preceding computation (in particular x = ax; +bxy +Ix1x;
for some /), one easily verifies that

ablxy, x1 =0
(*) in T om—1(BUK)) p = I(n+m—1)! —ab(n — D! (m — 1) =0
form<k<n+m

and this implies that ab is a multiple of (n +m — )!/((n — D! (m — 1)!).
Notice that [xi, x2] € T q2m—1(BU(k)) has to be a torsion element. Indeed,
by Lemma 4.2, the group 7,12, 1(BU(m)) is finite, and the result follows
from naturality of the Whitehead product. (In fact, one can show that any
group o+ (BU())) is finite; this is proved like Lemma 4.2, by appealing to
a result of Borel and Hirzebruch: see Remark i) in Section 9.) We have thus
obtained the following theorem.

THEOREM 8.1. Let 1 < n <m and m < k < n-+m. Let X1 and x

be generators of the homotopy groups m,(BU(k)) = Z. and Tom(BUk)) =2 Z

respectively. Then the Whitehead product [x;, x,] € Tontam—1(BU(k)) is non-
(n+m—1)!

(m—D!'m—- 1!

zero. Moreover, its order is a multiple of
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By the implication (x), if ab[x;, x;] = 0 in Tont+2m—1(BU(k)) for some
k with m < k < n+m, then for [ = ab(n — 1)!(m — D!/(n+m — 1)!, the
geometric dimension of x := ax; +bx, +Ix1x, is < k (and for any other value
of [, g-dim(x) is m + n, provided that ab # 0). Surprisingly, this condition
only depends on / and on the product ab. Consequently, from Theorem 2.3
together with Theorem 7.1, we obtain the following result.

THEOREM 8.2. The geometric dimension on E(SZ” X 8™, with n < m,
is given as follows : for x = ax; + bxy + Ix;x, € K(§*" x Sy

(0 fa=b=1=0
n ifa#0, b=1=0
g-dim(x) = ¢ m fa=0b+#01=0

s(ab) fb#0, I=abn—1)(m—1)!/(n+m—1)!
 n+m fl#Fab(n—1m—1)/(n+m—1)!

where s(ab) € {m, m+1, ..., n+m— 1} only depends on the product ab
(for fixed n and m).

As a direct consequence of Theorems 8.1 and 8.2, we have

COROLLARY 8.3. The order of the Whitehead product [x1, x2] in
Tontom—1(BUM +m — 1)) is exactly (n+m — 1)!/((n — D! (m — D).

REMARK 8.4.

1) This result has been established only using information on the ~y-cone
of §% x $?™ (and Serre’s theorem on the rational homotopy of spheres). If
one is able to compute its positive cone, one then can easily compute the
exact order of [x1, x,] in the various homotopy groups o2, 1(BU(K)), for
m<k<n+m:itis given by

(n+m— 1)!
n—D!'(m— 1!

mm@z1@mm0 m+@+am)g@.

i) In 1960, Bott [Bott3] has proved Corollary 8.3 by different methods.
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9. THE POSITIVE CONE OF SOME PRODUCTS OF EVEN-DIMENSIONAL SPHERES

In this section, using known results from the theory of homotopy groups
of spheres, we compute the positive cone of $* x §*, §* x $¢, §° x §° and
S® x S®. This computation will in particular show that the positive cone and
the v-cone do not coincide for S* x S*. Keeping notations as in Section 7,
we describe the positive cone in terms of the geometric dimension function.

A) We start with the case of S* x $%.

| THEOREM 9.1. The geomftric dimension on K(S*xS%) is given as follows :
- for x = ax; + bxy + Ix;x; € K(S* x §%), one has

| (0 ifa=b=1=0

2 ifa#0, b=1=0

2 if b£0, l=ab/6, | even

3 ifb#£0, l=ab/6, | odd

4 if l # ab/6

Proof. Theorem 8.2 reduces the problem to the computation of the
~ function s = s(ab), i.e. to calculating g-dim(x) for the particular stable classes
~ x = ax; + bxy + (ab/6)x1x, (where ab is a multiple of 6), or equivalently
the order of [xi, x;] in both groups 77(BU(3)) and 7w7(BU(2)) (with a little
abuse of notation, we denote both Whitehead products by the same symbol).
By Samelson [Sam], one has

m(BU(2)) = 16(U(2)) = m6(SU(2)) = 76(S°) = Z/12,

precisely generated by [x;, xp]. This shows that for these particular values
of x, g-dim(x) = 2 if and only if ab is a multiple of 12. This completes the
proof. [

g-dim(x) = <

\

REMARK 9.2.
1) Borel and Hirzebruch in [BoHi] (p.355), applying Bott’s results of
[Bottl], have proved that
Tont1(BU(n)) = mn(SUn)) = Z/n! (n > 2),
hence m7(BU(3)) = Z/6. Moreover, Corollary 8.3 shows that the order of
[x1, x2] in m7(BU(3)) is 6; it is consequently a generator.

ii) As already alluded to, we have just proved that $* x §* has its positive
cone strictly contained in its y-cone, although it is a torsion-free space.
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B) As for §* x §*, classical results from the theory of homotopy groups
of the unitary groups allow one to compute the positive cone of $* x S¢. In
this case, it coincides with the ~y-cone.

THEOREM 9.3. For the product S* % S°, one has
K4 (8* x 8% = K.(S* x 8% = K (8" x §%).
The latter is described in Theorem 7.1.

Proof. By Lundell’s tables [Lun] (see also [Mim]) and by Remark 1)
above, one has

mo(BUB3)) =2 Z/12 and mo(BU(4)) = Z./24 .

Corollary 8.3 shows that [x, x,] is of order 12 in 7o(BU(4)). By naturality
of the Whitehead product, the homomorphism j, = mo(j), induced by
the map j: BU@B) — BU(4), takes the product [xi, x;] € mo(BU(3)) to
[x1, x2] € m9(BU(4)). This implies that [xi, x,] is of order 12 in mo(BU(3))
too, and that [ax;, bx;] vanishes in mo(BU(3)) precisely when it is zero in
mo(BU(4)). Together with Theorem 8.2, this completes the proof. L]

REMARK 9.4. This proof shows in particular that [x, x,] is a generator
of m9(BU(3)) = Z/12 and that the map j,: mo(BU(3)) — mo(BU(4)) is
injective.

C) By similar methods, we now show that the positive cone and the
y-cone coincide for S® x $® and then for S° x S8.

THEOREM 9.5. For the product S® x S°, one has
K4 (S° x $% = K.(S° x 8% = K.,($° x §°).
The latter is given by Theorem 7.1 .

Proof. By Lundell’s tables [Lun] (see also [Mim]), one has
1 (BUB)) 2 Z/30 and m;(BU(5)) 2 Z/120.

Corollary 8.3 shows that [x1, x,] is of order 30 in 7;(BU(5)). By naturality,
the map j, = m1(j), induced by j: BU(3) — BU(5), takes the Whitehead
product [x1, xo] € 71(BU(3)) to [x1, x;] € m1(BU(S)). This implies that
[x1, x2] 1s of order 30 i m;(BU(3)) too, and that [ax;, bx,] vanishes
in m;(BU(3)) precisely when it is zero in m(BU(5)). Together with
Theorem 8.2, this completes the proof. []
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REMARK 9.6.
i) This shows that [x;, x,] generates m1(BU(3)) = Z./30 and that the map
j«: m1(BU3)) — 71 (BU(S)) 18 injective.

ii) We were also able to prove this theorem without appealing to results
on homotopy groups of BU(n). Using spectral sequence arguments, we have
computed the first few stages of the Moore-Postnikov tower of the map
BSU(3) — BSU(5). This computation, being extremely lengthy, is not given
here (see [Matt]).

Now we move on to the product S® x 8.

THEOREM 9.7. For the product S® x S, one has
Ko (S° x 8%) = K.(S® x %) = K, (S® x 5%).
The latter is described in Theorem 7.1.
Proof. By Lundell’s tables [Lun] (see also [Mim]), one has
T3(BU@) = Z/60 and m3(BU(6)) =2 Z/720.

Corollary 8.3 shows that [x;, x,] is of order 60 in m3(BU(6)). By naturality,
the map j, = m3(j), induced by j: BU(4) — BU(6), takes the Whitehead
product [xi, x;] € m3(BU4)) to [x1, x2] € m3(BU(6)). This implies that
[x1, xo] is of order 60 in m;3(BU(4)) too, and that [ax;, bxy] vanishes
in m3(BU(4)) precisely when it is zero in m3(BU(6)). Together with
Theorem 8.2, this completes the proof. []

REMARK 9.8. The proof shows that [x;, x;] is a generator of the group
m13(BU4)) = Z/60 and that the map j.: m3(BU4)) — m3(BU(6)) is
injective.

10. “GAPS IN COHOMOLOGY” AND THE 7y-CONE

In the present section, we are interested in spaces having a “gap in
cohomology”, more precisely we look at spaces obtained by attaching a
single large-dimensional cell to a finite CW-complex Y. For such spaces,
the integral cohomology is zero between the dimension of Y and the top-
dimensional class. The products S" x §™ are typical examples (see Section 8).
For this kind of spaces, the c-cone obviously cannot give information in the
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dimensions corresponding to the gap. At first sight, one could think that the
7v-cone is more powerful in this range. Unfortunately, this is not the case:
we show that the y-cone (or equivalently the ~-dimension function) is also
“blind” in some sense. Here is the precise statement.

PROPOSITION 10.1. Let Y be a connected finite CW-complex of dimension
< 2n, and let X = C; = Y U; &> be the mapping cone of a map
fi 8t ¥, with m > 1. Then, for x € K(X), one has

Y =0 = Yx) =0 forall I=1,....m.

In other words, if v-dim(x) < n+ m, then vy-dim(x) < n.

Proof. By assumption, one has H*(X; Z) = 0 for 2n < k < 2n+2m and
H>2"(X; Z) = Z. Let x € K(X) such that 4™ (x) = 0. By Proposition 2.2,
keeping the same notation, we have

ch(y* () = &(x) + Prp1(@1(), - .., Crpm)),

and 0 = ch(y""(x)) = Cp4m(x). Due to the “gap” in the cohomology of X,
we find that, for £k > n, we have

ch(v*(x)) = 0.

By the particular cohomological properties of X, the Chern character is
injective for elements of filtration > n in E(X) (see [AtHi]). Being zero
or of filtration > k (as Proposition 2.2 shows), v*(x) has to vanish for k > n.
This concludes the proof. [

*

11. A “DOUBLING FORMULA” FOR STIRLING NUMBERS OF THE SECOND KIND

In the present section, we calculate.the ~y-operations for the product
§2" x $?" . From this computation and Proposition 10.1, we deduce again the
7y-cone, as appearing in Theorem 7.1. This example illustrates that computing
the c-cone is in general easier than computing the ~y-cone. On the other hand,
the latter calculation leads to an interesting “doubling formula” for Stirling
numbers of the second kind. We will also conjecture the analogous formula

for Stirling numbers of the first kind.
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Keeping notations as in Section 7, we have
K" xS =7 x,0Z x,®Z - x1x) .

We still assume n < m. Using the known --operations for even-dimensional
spheres, one can easily calculate v* for S?* x $?* : For x = axj + bx, + Ix; x5,

one has clearly v*(x) = ~*(ax; + bxy) + v*(Ix;x,) and this allows one to
compute

V") = (1) m 4+ g — 1)!

n

: (lS(m—l—n, m—l—q)—abz
k=q

S, H)S(m, m+ g — k)
m+qg—1 ) " X1X2
k(")
for ¢ > 1; in particular

Y = (=)™ M+ m—1)! — ab n—D!m—1D) xixy.

For ™, we have to distinguish the case n = m from the case n < m. One
gets

V') = (D" lam— D x + (D" b= 1) xy + (— 1))

m—1
(m—1)! (lS(Zm, m)—ab Y S(m, k]z?i"f’l)m — k)) X%
k=1 k

4 when n = m, whereas

V') = D" b m =D + (1) — 1!
m—1
: (lS(n +m, m) — ab Z S, k)S’(nni,lm _ k)> - X1
k=1 k( k )

§ when n < m.

| We want to compute the y-dimension of x = axy +bxy + Ixixy. If [ =0,
the result is clear. We can now assume that [ £ 0. If [ is different from
| ab(n—1)!(m—1)!/(n+m—1)!, we see that v-dim(x) = n+m. On the other
® side, if  has precisely this value, then 7™(x) # 0, because in this case b # 0,
and by Proposition 10.1 we get ~-dim(x) = m precisely. This gives another
| proof of Theorem 7.1.

Let us now pass to the “doubling formula”.
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THEOREM 11.1. Let g < n <m be positive integers; then

n

Sim+n, m+q) = n("+':_1) Z
k=g

S(n, k)S(m, m+ g — k)

(")

We called this a “doubling formula” because, particularizing to n = m,
we get an expression allowing one to compute S(2n, n + ¢) in terms of the
numbers S(n, k) with g <k <n-—1.

Proof. This is an immediate consequence of Proposition 10.1 and the
above computations. [

An alternative proof would be to invoke Theorem 7.1 rather than Propo-
sition 10.1.

After trying to verify on a computer the analogous formula for Stirling
numbers of the first kind, namely

=~

s, ) =) (k) Cr)St—k+, 7,

J

I
=

we were led to conjecture it:

THEOREM 11.2. Let g < n < m be positive integers, then
ety Z s(n, K)s(m, m+q — k).

: ()

s(m+n, m+ q) ——-n(
k=q

We call it a “theorem”, since, after we had informed him about Theo-
rem 11.1 and our conjecture, Al Lundell sent us a proof of the latter. The
elegant proof is “elementary” in the following sense: it uses only some basic
formulas for Stirling numbers (such as generating functions) and a contour
argument in the computation of an integral, but no K-theory. Moreover, his
proof encompasses the Stirling numbers of both the first and the second kind
in a unified way.
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