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&(p(z)) of any generator z € Z/pZ is conjugate to a Y € Sp(2n,Z). Then
di(p) = p*(c;) = cj(p). We define the total Chern class of a representation p
to be

c(p) =1+ c1(p) + c2(p) + -+ + ca(p) -

It has the well-known properties c(p ® o) = c(p)c(o), c(mp) = c(p)™, where
p, o are representations and m is a positive integer.

2.2  SYMPLECTIC CHARACTERISTIC CLASSES AND CHERN CLASSES

THEOREM 2.1. Let p be an odd prime. Then for any n=1,...,(p—1)/2
there exists a representation p: Z/pZ, — U((p—1)/2) such that the n-th Chern
class c,(p) is nonzero and the representation ¢ o p: Z/pZ — Sp(p — 1,R)
Jactors, up to conjugation, through a representation p: Z/pZ — Sp(p—1,7Z).

The representation p factors through Sp(p — 1,Z) if the image p(z) of
a generator z € Z/pZ satisfies the condition stated in Theorem 1.2. Then,
because c,(p) # 0, we have d,(p) # 0 where p: Z/pZ — Sp(p —1,Z) is the
representation corresponding to p.

Proof of Theorem 2.1. Let U be the set of subsets 7 C (Z/pZ)* of
cardinality |Z| = (p — 1)/2, and j € 7 implies p —j ¢ T. The cardinality
of U is 2¢07D/2 We always assume the elements j € 7 to be represented
by integers j with 1 < j < p. Note that we will use the same notation
for the elements of 7 and their representatives. For j = 1,..., p—1 let
pj: Z/pZ — U(1) be the one-dimensional representation with pi(z) := &2mi/p
for a fixed generator z € Z/pZ. For a given 7 we define 57 to be the direct
sum of the representations ﬁj, J€Z. Let x := c1(py), then the total Chern
class of p7 is

(o) =c(@ ) =1+
JET jeT
The representations pr are those which factor through Sp(p — 1,Z). For
a given 7 € U we define —Z := {p—j |j € I}. Then —Z € U and
1U -1 = (Z/pZ)*. Moreover, we get c(pr)c(p_z) = 1 — x*~L. The n-th
Chern class c,(p7) is nonzero if and only if the coefficient a, of x" in the

total Chern class ¢(p7) is nonzero. Let 7 := {1, ... ,j(p_l)/z} € U ; then we
define

Ly = Ajus ity ~Jisdists - - Jp—1y2} EU.

We assume that 1 < n < (p — 1)/2 exists such that for each set Z € I/ the
coefficient a, of x" in c(pz) is zero. It is impossible that n = p—1)/2
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because d(p_l) /2 18 the product of the j € 7 and therefore nonzero. Now let
n#0, n# (p—1)/2; then we define for any [=1,...,(p —1)/2

b = Z Hj, by :=1.
JEI\{ii} J&J
|J|=n

Then the coefficient of x* in c(p7) is a, = bfl + jlbfl_l. Because of our

assumption, the coefficients of x" in c¢(pz) and in c(pz,) are B, +jib',_ | =0
and b}, — jib,_, = 0 respectively. This implies that b, =0, b, | =0 and

ai= >, 117

JCT  jeJ
|J|=n+1
1 | N
:n+lz<]l Z HJ>:n+IZ]lb”:0°
nel  JCI\{i} J&J JET

|J|=n

The factor 1/(n+ 1) appears because in the second line we have n+ 1 times
each term appearing in the sum of the first line. Therefore a,,.; = 0 for each
set Z € U, and by induction we get a1y, = 0 for each set 7 € U/, which
is impossible.  []

Let Sp(Z) := |J Sp(2n,Z).
n>x1

THEOREM 2.2. For every j > 1, di(Z) € HY (Sp(Z),Z) has infinite order.

Proof. This theorem 1is a corollary of Theorem 2.1. A consequence of the
stability result stated in section 2.1 is that for p — 1 > 8j 4 8 the inclusion

Sp(p —1,2Z) — Sp(Z)
induces an isomorphism
HZ(Sp (Z),Z) — B¥(Sp(p — 1,Z),Z).

In Theorem 2.1 we have shown that for any odd prime p and any integer
j=1,...,(p —1)/2 a representation pr: Z/pZ — U((p — 1)/2) exists that
factors through Sp(p — 1,Z) and for which the j-th Chern class c;(pz) is
nonzero. Then the j-th symplectic class d;(pz) is also nonzero. Here the
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representation pz: Z/pZ — Sp (p —1,Z) is the one corresponding to pr. We
have an induced homomorphism

o H¥(Sp(p — 1,2),Z) — HY(Z/pZ,Z)
di(Z) — di(pz) -

Herewith for any p the class di(Z) € sz(Sp(p —1,7),7Z) is nonzero and
has either infinite order or finite order divisible by p, since it restricts non-
trivially to H¥(Z/pZ,Z). This shows that d;,(Z) € H%(Sp (Z),Z) has infinite
order. [

This is a new proof of a result of A. Borel [3]. He proved that
H*(Sp(Z),Q) = Qldi,ds,...]. Moreover, each dy can be expressed as a
polynomial in the dy;y;’s. This implies that all the d;(Z)’s have infinite order.
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