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f(p(z)) of any generator z G Z/pZ is conjugate to a F G Sp(2«, Z). Then

dj(p) ~ p*(cj) Cj(p). We define the total Chern class of a representation p
to be

c(p) := 1 + c\(p) + c%(p) + • • • + cn(p).

It has the well-known properties c(p 0 a) c(p)c(a), c(mp) — c(p)m, where

p, a are representations and m is a positive integer.

2.2 SYMPLECTIC CHARACTERISTIC CLASSES AND CHERN CLASSES

THEOREM 2.1. Let p be an odd prime. Then for any n 1,..., (p — l)/2
there exists a representation p: T^jpTj —» U((p—1)/2) such that the n-th Chern
class cn(p) is nonzero and the representation fop: Z/pZ —» Sp (p — 1,R)
factors, up to conjugation, through a representation p : Z/pZ —f Sp (p — 1, Z).

The representation p factors through Sp (p - 1, Z) if the image p(z) of
a generator z G Z/pZ satisfies the condition stated in Theorem 1.2. Then,
because cn(p) ^ 0, we have 4(p) ^ 0 where p: Z/pZ -> Sp (p - 1, Z) is the
representation corresponding to p.

Proof of Theorem 2.1. Let U be the set of subsets T C (Z/pZ)* of
cardinality \X\ - (p - l)/2, and j G I implies p-jfT. The cardinality
of Z7 is 2(p~1)/2 aiwayS assume the elements j G I to be represented
by integers j with 1 ^ j < p. Note that we will use the same notation
for the elements of T and their representatives. For j 1,... ,p — 1 let
pp. TjjpT —> U(l) be the one-dimensional representation with p/(z) := ej2nl/p

for a fixed generator z G TjpX. For a given T we define px to be the direct
sum of the representations p}, j G I. Let x := ci(pj), then the total Chern
class of px is

c(pi)c(® Pj) JJ(l
jeI jei

The representations pT are those which factor through Sp (p - 1, Z). For
a given IUwedefine —1:= {p - j \ j p I}. Then and

lu -1 (Z/pZ)*. Moreover, we get c(px)c(p-i) 1 The n-th
Chern class cn(px) is nonzero if and only if the coefficient a„ of xn in the
total Chern class c(px) is nonzero. Let := {/j,... e U ; then we
define

Ol 5 • • • Jl— 1? -jhjl+l% • • • 5J(p—D/2} Cl IA.

We assume that 1 ^ n^ (p-l)/2exists such that for each set J the
coefficient an of xn in c(px) is zero. It is impossible that n (p — \)/2
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because aip_iy2 is the product of the j X and therefore nonzero. Now let
n^fi 0, n ^ (p — l)/2 ; then we define for any I — 1,..., (p — l)/2

bln--= E II;'.
/£X\{/z} JG7

|7|=n

Then the coefficient of x" in c(px) is bln + jibln_x. Because of our
assumption, the coefficients of x" in c(px) and in c(pxz) are bln -f fibln_x — 0

and bln — jibln_x 0 respectively. This implies that bln 0, 0 and

a"+i= e iljcx jeJ
\J\=n+l

hex jeJ y/ex
|/|=n

The factor l/(n+-l) appears because in the second line we have n+ 1 times
each term appearing in the sum of the first line. Therefore an+i 0 for each

set X G U, and by induction we get a{p^iy2 0 for each set X G U, which
is impossible.

Let Sp(Z) := (J Sp(2w,Z).
rù>. 1

THEOREM 2.2. For every j 1, dfiZ) G H2;(Sp(Z),Z) has infinite order.

Proof. This theorem is a corollary of Theorem 2.1. A consequence of the

stability result stated in section 2.1 is that for p — 1 > 8/ + 8 the inclusion

Sp (p — 1 Z) —> Sp (Z)

induces an isomorphism

H2/(Sp (Z), Z) H2;(Sp - 1, Z), Z).

In Theorem 2.1 we have shown that for any odd prime p and any integer

j 1,..., (p — l)/2 a representation pj: Z/pZ —* U((p — l)/2) exists that
factors through Sp (p — 1,Z) and for which the j-th Chern class cfipx) is

nonzero. Then the j-th symplectic class dfipx) is also nonzero. Here the
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representation pT:Z/pZ— Sp (p - I, Z) is the one corresponding to pX- We

have an induced homomorphism

p*x : H2y(Sp (p -1, Z), Z) —* H2y'(Z/pZ, Z)

t/,(Z) I—>

Herewith for any p the class dj(Z)G H2,(Sp (p 1,Z),Z) is nonzero and

has either infinite order or finite order divisible by p, since it restricts non-

trivially to H2y(Z/pZ, Z). This shows that dj(Z) G H2y(Sp(Z),Z) has inhnite

order.

This is a new proof of a result of A. Borel [3]. He proved that

H*(Sp(Z),Q) Q[dud3,...]. Moreover, each d2i can be expressed as a

polynomial in the d2j+1 's. This implies that all the dfZ)'s have infinite order.
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