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116 _ C. BUSCH

It is the group of isometries of the skew-symmetric bilinear form

(,):R"™xR"™ —R
(x,y) — (x,y) == x"Jy.

It follows from a result of Biurgisser [5] that elements of odd prime order
p exist in Sp(2n,Z) if and only if 2n > p — 1.

PROPOSITION 1.1. The eigenvalues of a matrix Y € Sp(p — 1,Z) of odd
prime order p are the primitive p-th roots of unity, hence the zeros of the
polynomial

mx) =x""1+.. . +x+1.

Proof. If X is an eigenvalue of Y, we have A =1 or A = &, a primitive
p-th root of unity, and the characteristic polynomial of Y divides x” — 1

and has integer coefficients. Since m(x) is irreducible over Q, the claim
follows. [

1.2 A RELATION BETWEEN U(Z1) AND Sp(p — 1,7Z)

Let X € U(n), ie., X € GL(n,C) and X*X = I, where X* = X' and I,
is the n X n-identity matrix. We can write X = A + iB with A,B € M(n,R),
the ring of real matrices. We now define the following map

¢: Um) — Sp(2n,R)

. A B\
X:A—I—1B|—><_B A):.¢(X).

The map ¢ is an injective homomorphism. Moreover, it is well-known that ¢
maps U(n) onto a maximal compact subgroup of Sp(2n,R). In this section
we will prove the following theorem. '

THEOREM 1.2. Let X € U((p — 1)/2) be of odd prime order p. We define
¢: Ullp —1)/2) — Sp(@ — 1,R) as above. Then ¢(X) € Sp(p — L,R) is
conjugate to Y € Sp (p — 1,Z) if and only if the eigenvalues A1, ..., Ap—1y/2
of X are such that

{,)\1, ce ,)\(p—l)/Zaj\—la “ % s 7X(p—~1)/2}

is a complete set of primitive p-th roots of unity.
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The condition on the eigenvalues of X is necessary: It is an easy computa-
tion to show that if Ay, ..., Ap_1)/2 are the eigenvalues of X € U((p — 1)/2),
then

Ay Apat)/2s ALy - , Ap—1)/2

are the eigenvalues of ¢(X) € Sp(p — L,R). So if ¢(X) € Sp(p — 1, R)
is conjugate to Y € Sp(p — 1,Z), the condition on the eigenvalues of
X € U((p — 1)/2) holds by Proposition 1.1. That the condition on the
eigenvalues is also sufficient will be proved in 1.2.2.

Note that X;,X, € U(n) are conjugate in U(n) if and only if ¢(X;), p(X2)
are conjugate in Sp (2n, R), because ¢(U(n)) is a maximal compact subgroup
of Sp(2n,R). The eigenvalues of a unitary matrix X determine the conjugacy
class of X in U((p — 1)/2). We will take any Y € Sp(p — 1,Z) of prime
order p and show, assuming Y is conjugate in Sp (p — 1,R) to ¢(X), how to
compute the eigenvalues of X € U((p — 1) /2). Then we will prove that if we
run through the conjugacy classes of matrices ¥ € Sp(p—1,7) of prime order
p, we will run through the conjugacy classes of matrices X ecUlp-1/2)
that satisfy the necessary condition. An interesting corollary is the following
(see also 1.2.2).

COROLLARY 1.3. The number of conjugacy classes of elements of order
p in Sp(p —1,7Z) that are conjugate in Sp(p —1,R) to elements of the form
#(X), where X € U((p — 1)/2), is greater or equal to 20~D/2,

1.2.1 INVARIANT SUBSPACES

Each matrix Y € Sp (p—1,Z) of odd prime order p defines an isomorphism
o: ZP~! — ZP~1 which is an isometry of the skew-symmetric bilinear form
g: 70! x ZP~' — Z defined by q(x,y) := (x,y) = x'Jy where x,y € Z/~!
and J is like in the definition of the symplectic group. From now on we
will sometimes take the R-linear or the C-linear extensions of o and of g
without making any remark. But this will always be clear from the context.

Let v; € CP?~! be an eigenvector corresponding to the eigenvalue
g .= &?™/P of the C-linear extension of o. Then the complex conjugate
U, is an eigenvector to the eigenvalue £~/ because o is given by a real
matrix. The real vectors v; +v; and —i(v; — ;) span a o-invariant sub-
space of RP~!, which we will denote by V;. The dimension of V; is 2 and
RF'=Vi@®---®V,_1)2. The space V;®g C is the sum of the eigenspaces
corresponding to & and £7V.
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DEFINITION.  We define the sign of V; to be

sign(V;) := sign q(x, o(x)) ,

where x € V; is any nonzero element.

LEMMA 1.4. The sign sign(V;) is well-defined, i.e., independent of the
choice of x.

Proof. Let 0 # x := a(v; +9;) + B(—i(v; — 7)) € V; where o, 3 € R and
v;,U; as above. Then a simple computation shows that

q(x,0(x)) = =2i (o + *)q(v;,Tj)sin6; # 0,

with 60; := j2m /p. Therefore, sign q(x,o(x)) does not depend on the choice
of 0£xeV;,. [ |

Forxe Vi, ye Vy with j#k, j,k=1,...,(p—1)/2, we have g(x,y) = 0.
Therefore g is nondegenerate on V; and g(v;,v;) = —q(vj, v;) # 0. Because
sin¢; > 0, we have

sign(V;) = sign(—iq(v;, 7)) .
This equation implies that —isign(Vy)q(v;,v;) is positive. We define a new
basis of V; by:
w; 1= (=2isign(Vy) q(v;, 7)) (v + 7)),
wj = — sign(V;) (—2isign(V)) q(v;, 7)™/ *(—i (v — 7)) .
LEMMA 1.5.  The vectors uy,...,Up_1)/2, Ui, ..., Up_1y2 form a sym-
plectic basis of RP7I.
Proof. It is clear that this is a basis of RP™!. For.i # j with
Lji=1,...,(p—1)/2
Q(uia uj) — q@laﬁj) = Q(ulya}) - 07

This shows that the basis uy,...,up_1y/2, Ui,...,Up_1y2 is symplectic. [

The matrix corresponding to oly,;: V; — V; in the basis u;,u; is the
following :
- cos 0; — sign(V;) sin 6;
(sign(Vj) sin 6); cos 0, > '
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We want to write this matrix in the form
cos?; sin;
—sind; cosd; )’
because in this case o: RP~! — RP~! is given in the basis u,.. S Up—1)/2,
u,. .. ,Up—1y/2 by the image of a diagonal matrix in X € U((p — 1)/2) with

the i, j=1,.. .,(p — 1)/2, being the eigenvalues of X. Comparing both
2 X 2-matrices we see that we should put

p { 0; if sign(V;) = —1
o lom -6 if sign(V) = +1.

This proves the following

PROPOSITION 1.6. Let Y € Sp(p — 1,Z) of odd prime order p define
an isometry o: ZP~' — 7P Let ¢ := £27/p, RP-1 — Vid- @ Vey_1p
where V;, j=1,...,(p—1)/2, is the invariant subspace corresponding to the
eigenvalues &, &P~ of the extension of o to an isomorphism of RP™!. Then
there exists X € U((p—1)/2) such that Y is conjugate to ¢(X) € Sp(»—1,R).
Moreover;

if sign(Vy) = —1 then & is an eigenvalue of X, and
if sign(Vy) =1 then £ is an eigenvalue of X.

1.2.2  THE PROOF OF THEOREM 1.2

It remains to show that the condition on the eigenvalues of X € U((p—1) /2)
is sufficient. We put Z/27Z = {£1}. Let M be the set of Y < Splp — 1,7)
of odd prime order p. We define a mapping

Wi M — (Z/2Z)P—D/?
Y+— (Sign(vl)a ve oy Sign(v@—l)/2)> ?

where V; and sign(V)), j=1,... ,(p —1)/2, are defined as above. It follows
from Proposition 1.6 that the necessary condition in Theorem 1.2 is sufficient
if and only if ¢ is surjective. Therefore we now have to prove the surjectivity
of 4. First we will prove that in each conjugacy class of matrices of order p
in Sp(p —1,Z[1/p]) one can find a matrix in Sp(p—1,Z). Let M, be the
set of matrices of order p in Sp(p — 1,Z[1/p]). With the same procedure as
for Y € M, we can define Vi, sign(V)), j = L,...,p—1)/2, for Y,e M,,
and we get statements for Sp(p — 1,Z[1/p]) that are similar to those for
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Sp(p — 1,Z). We will show the surjectivity of the mapping
Yp: M, — (Z/2Z)(1’_1)/2
Y, — (sign(V1), ..., sign(Vi—1)2)) -
Then we have shown that 1 is surjective since matrices of M, that are in
the same conjugacy class have the same image under 1, .

Let P be the set of pairs (a,a), where 0 # a C Z[£] is an ideal
and a € Z[£] such that aa = (a) C Z[£] is a principal ideal. The bar
denotes complex conjugation and @ = {@ | a € a}. Let P, be the set of pairs
(ap,a), where 0 # a, C Z[1/p][£] is an ideal and a € Z[1/p][£] such that

apd, = (a) € Z[1 /pll€] is a principal ideal. We define an equivalence relation
on P and on P, :

(a,a) ~ (b,b) & I\, u € Z[£] \ {0} such that
Ao = pb and Aa = ppb

(ap, @) ~ (by,b) < I\, € Z[1/p]l€] \ {0} such that
Aa, = pb, and Ma = b . '

We denote by [a,a] and [a,,a] the equivalence class of (a,a) and (ap,a)
respectively. Moreover, P and P, denote the sets of equivalence classes in
P and P, respectively. The sets of equivalence classes P and P, are abelian
groups. The multiplication is given by [a,a][b, b] = [ab, ab], the units in P
and P, are [Z[{],1] and [Z][] /p1[€], 1] respectively, and the inverse of [a,a]
is [da,a] because

[a,al[§, a] = [ad, a*] = [(a),a’] = [0, 1]

where O = Z[£] if [a,a] € P, and O =Z[1/pll&] if [a,a] € P,.

According to the articles of Brown [4] and of Sjerve and Yang [11], a
bijection exists between the elements of P (resp. P,) and the conjugacy
classes of elements of order p in Sp(p—1,Z) (resp. Sp(p —1,Z[1/p])). For
the convenience of the reader, we will recall how this bijection is constructed.
Let Y € Sp(p — 1,Z) be of odd prime order p. Let a be a Z[{]-module
whose underlying Z-module is Z7~!, with the action of £ given by Y. Such
a module is a fractional ideal in Q(&). Let

v = (ala we 7ap—1)T = Z[g]p—l

be an eigenvector of Y to the eigenvalue ¢, that is Yv; = &ui. Then the
module a we described above is the ideal

a:Z()é1+"'+Z()zp_1.
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Since the eigenvector v; is unique up to multiples, the ideal a is unique
up to fractional equivalence. Let Y’ = GYG~! with G € Sp(p — 1,Z). Then
w; = Gu; is an eigenvector for Y’ to the eigenvalue ¢ and the corresponding
ideal is also a. Let a = D~ 'olJu;, where D = p&®+D/2/(¢ — 1), then
[a,a] is the equivalence class we are searching for. So we have defined a
mapping, which sends the conjugacy class of Y to the equivalence class
[a,a] € P. In [11] is shown that this mapping is a bijection. The construction
for Sp(p — 1,Z[1/p]) is analogous.

Let Cy := Co(Z[£]) be the subgroup of the ideal class group C = C(Z[£])
given by

={aeC|ad=(a), a=a for some a € Z[£]}.

Let C, := C(Z[1/pl[£]) denote the ideal class group of the Dedekind domain
Z[1/p][£]. We define a subgroup Cy := Co(Z[1/pl[£]) of C,:

Cpo = {0, € C, | 0,0, = (a), a=a for some a € Z[1/p][£]}.

It follows directly from the definition, that for a € Cy (resp. a € Cy) holds
[a,a] € P (resp. [a,a] € P,). But here we have a = @, which was not
requested in the definition of P and P,. But for an equivalence class [a,a]
we can always choose a such that a = a. For a proof of this fact see [11].

Let U be the group of units in Z[{] and Ut := {u € U | u = u} the
group of units in Z[£+£71]. Let N: Q(€) — QE+£¢7Y, a— N(a) = aa, be
the norm mapping and N(U) := {uti = N(u) | u € U}. Let U, be the group
of units in Z[1/pl§] and U :={u € U, |u=u}, N(U,) := {uui | u € U,}.
Clearly N(U) Cc U™, N(U,) C U+, and we can define the abelian groups
U*/N(U) and Uf/N(U,). It is well-known (see Washington [12]) that
Up = U-(1-¢&) where (1—¢) is the group generated by 1 — &, and
UF=Ut-(1-681-¢1) where (1 =81 —¢7h) is the subgroup of
(1 —¢&) generated by (1 —&)(1 —¢~1). Hence

*) (U} : NU) = [UT : NU)] = 201/

where the last equation is a consequence of the Dirichlet unit theorem.
According to the articles of Brown [4] and of Sjerve and Yang [11], there
are short exact sequences of abelian groups

| —— UY/NU) —2 = P — s Gy —— 1,

I —— UF/NU,) —— P, - oy — 1,

where S(uN(U)) = [Z[£],u], 6,(uN(U)) = [Z[1/p][€],ul, n([a,a]) = [a] and
np([ay,al) = [a,]. Theorem 3 in the article of Sjerve and Yang [11] states that
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the number of elements in P is 2¢~D/24~ . Here h~ := h/h* where h and
h™ are the class numbers of Q(§) and Q(¢ + £~ 1) respectively. It follows
from Proposition 7 in the article of Brown [4] that the cardinality of P, is
20-D/2p= too0.

Now we will define homomorphisms p;, p and p, such that the following
diagram commutes.

1 —— Ut/N®U) 2 S AN, |

T

I —— UH/NU,) —

. Pp Tlp Cpo - 1
We define a homomorphism of abelian groups :

p1: UT/N(U) — U /N(U,)
uNU) —— uN(U,) .

We have already seen that U, = U - (1 — &) where (1 — &) is the subgroup
generated by 1 — ¢. This implies that

NUp) =NU) - (1 -1 — &),

Let uN(U) # vN(U) € U*T/N(U), then uN(U,) # vN(U,). Indeed, if
uN(Up) = vN(U,), then w € N(U,) exists with u = wv. But w ¢ N(U)
since uN(U) # vN(U). On the other hand u = wv and u,v € Ut imply that
w € UT. But N(U,) € UT and this yields a contradiction. Therefore 01 is
injective and p; is an isomorphism since the equation (*) holds.

Now we will define p,: Cy — Coo. Let a C Z[£] be an ideal. Then
we consider the ideal a, € Z[1/p][£] generated by the elements oz with
a € a, z € Z[1/pll€]. Since each z € Z[1/p][£] can be written as z = 7 /p",
where r € N and 7/ € Z[£], we get a, = aZ[1/p][£]. So we can define a
homomorphism

p2: Co — Cpo

[a] = [a,].

Let [a],[b] € Co, [a] # [b]. Then [a,] # [b,]. Indeed, let a and b be
representatives of [a] and [b] respectively. Then [a,] = [b,] would mean
that there exist A\, u € Z[1/p][£] with Aa, = pb,. But then we would
have [a] = [b]. Herewith p, is injective and p, is an 1somorphism since
IC()I = ICOI?, =h" < 0.




SYMPLECTIC CHARACTERISTIC CLASSES 123

Now it remains to define
p: P—7P,
[a,a] — [ap,al.

Let aa = (a). Then a,a, = (a), a principal ideal in Z[1/p][€], and herewith
p is well-defined. It follows directly from the definitions that p o 6=20,0p
and py on =1, 0 p. So the squares commute and, as a consequence of the
five-lemma, p is an isomorphism.

Since P and P, are isomorphic, each conjugacy class of elements of order
p in Sp(p —1,Z[1/p]) contains an element of Sp (p — 1,7Z). This means that
the isomorphism p: P — P, corresponds to mapping conjugacy classes of
elements of order p in Sp(p—1,Z) to conjugacy classes of elements of order
p in Sp(p — 1,Z[1/p)).

Now we will recall parts of the discussion in [11] that are important for
our purposes. Let ¥ € Sp(p — 1,Z) be of prime order p and let

v = (a1, ..., 0 )" € Z[EP

be an eigenvector corresponding to the eigenvalue &, that is Yv; = vy.
Let a be the Z-module generated by «;,...,c,—1. Then a is an integral
ideal in Z[£] where the action of & on the Z-module a is given by Y.
Let v € Gal(Q(£)/Q) with (&) =&, j=1,...,p—1, be an element of
the Galois group. Then v; = (vj(a1), ... ,vj(ap_l))T is an eigenvector to the
eigenvalue & . Now let ¢ = D'l JG, where D = p&®+V/2 /(¢ 1), D = —D.
Then Sjerve and Yang showed that (a,a) is a pair with aa = (a). Following
the same procedure, we can find for a given matrix Y, € Sp(p — 1,Z[1/p])
an ideal a, C Z[1/p][£] such that a,a, = (a).

The sign of the invariant subspace corresponding to the eigenvalues &/, &~
of Y is

sign(V;) = sign Im(g(v;, 7)) = sign(—iv;(Da))

where the sign of z € Z[€ + £¢7!] is the sign of u(z) for the real embedding
v of Z[E + &1 with (€ + €71 = €27/P 4 ¢~27/P Now we see that 1) is
surjective if and only if

Y': {a € Z[€] ] Ta with (a,a) € P} — (Z/2Z)P~1/?
with
a— (sign(11(@)), . . ., sign(yp-1y/2(@)))

is surjective. We call a € Q(§) a Hermitian square if x € Q(£) exists such
that xx = a. Now we use Lemma 2.3 in the article of Alexander, Conner,
Hamrick and Vick [2]. We repeat the statement of this lemma.
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LEMMA 1.7. Let a # 0 be a Z[1/p][€]-ideal with dd = aZ[l/p]l&].
Then a is a Hermitian square if and only if it is positive in every ordering

of QE+E7H.

This implies that
yp: {a € Z[1/pl€] | a with (a,a) € P,} — (Z/2Z)®~ 1/
with
a — (Sign(fyl (a)),... ,sign(fy(p_l)/2(a)))

is surjective. But then 1), is surjective and therefore Y 1is surjective too.
Herewith we have completed the proof of Theorem 1.2.

1.2.3 CONCERNING LEMMA 1.7

We give here some more information on Lemma 1.7 since it is crucial in
the proof of Theorem 1.2 and only a sketch of a proof is given in [2].

One direction is obvious. To see that the lemma is true, it is necessary
to study Hilbert symbols in Q(¢ + £1). We define o := & +&~! — 2. Then
Q) = Q¢+ £ 1H)(/0). Let p be a prime in Q¢ + £~1). A fundamental
property of the Hilbert symbol is

a,o

(7) =1 <« a is a norm of the extension Q(£)/Q(€ +¢71).

A proof of this property can be found in the books [9] and [10] of Neukirch.
So a is a Hermitian square if and only if

<a;30*> = 1 for all primes, finite or infinite, in Q¢ + &™) .

We first consider the infinite primes. Therefore we use the connection of the
Hilbert symbol with the norm residue symbol (see [9] and [10]). For infinite
primes we have the norm residue symbol for C/R

(,C/R): R" — Gal(C/R)
defined by _

(a,C/R)v—1 = =1

The kernel of this homomorphism is

R>0 = N¢/r(C*) = {zZ | z € C*}
where C* and R* denote the multiplicative subgroup of C and R respectively.
So the positivity required in Lemma 1.7 implies that the Hilbert symbol is 1

at infinite primes. It remains to consider the finite primes. The Hilbert symbol
is also 1 at the inert primes because of the following lemma.
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LEMMA 1.8. If a € Q€ +£7Y), then there is a fractional ideal a C Q(§)
with ad = aZ[£] if and only if at every inert prime p C Z[€ +£71] we have

(“;‘j) =1.

Proof. See [1]. [

If p is a prime in Q(¢ + £~1) that splits, then the Hilbert symbol
(cz,a ) _ 1
p
(see [1]). So it remains to consider the ramified primes in Q(¢ + ¢~1). But
the only prime that ramifies is oZ[£ + £~!]. Then, by the reciprocity law of

Hilbert symbols (see [9]), the Hilbert symbol at this prime is 1.
This proves Lemma 1.7.

1.2.4 AN INTERESTING REMARK

Let U be the group of units in Z[¢] and Ut = {u € U | u = u}. Let
u € Ut \ N(U) where N is the norm map. Then [a,a] € P implies that
[a,ua]l € P and [a,a] # [a,ua]. Let Y be a representative of the conjugacy
class of matrices corresponding to [a,a]. We have seen that the sign(V;) of
Y 1s given by a. Let us fix the ideal a. The question that arises now is if the
restriction of 9 to the conjugacy classes of matrices corresponding to [a, ua],
where u 18 as above, is surjective. But this restriction is not surjective for
each prime. Let & and A" be the class numbers of Q(¢) and Q(¢ + ¢71)
respectively. Then A~ = h/h™ . Let C denote the group of cyclotomic units in
Q(&) and let C* = CNZ[E+E']. Tt is known that [Z[E4+£71* : CT] = bt
We can find in the article of Garbanati [8] that A~ is odd if and only if CT
contains units of all signatures, which means that every totally positive unit
in CT is the square of a unit of C. So in case h™ is odd,

w: UT\ N(U) — (Z,/22)P~ D/
u— (sign(m@), . .., sign(yp—1y2(1)))

is surjective, and this implies the surjectivity of 1)’. However it may be
possible that Z[{ + £7'1* contains units of all signatures even if C+ does
not. This can only happen if 2™ is even and then we do not know if w is
surjective. If A~ is even and A' is odd, we have no surjectivity of w, and
the restriction of 9’ to {a € Z[¢] | (a,a) € P} for a fixed ideal & is not
surjective either. This happens for example for the primes 29 and 113.
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