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Equivalently, this “remainder” R(z) can be written

p—1
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The (periodic) correlations of H(z) in degrees = 2 mod 4 are strictly zero.
This includes in particular the correlation of degree 2p. Hence, the modular
Hadamard matrix associated with the sequence (polynomial) of the Theorem
is indeed of type 1 as asserted. The correlations in degrees = 0 mod 4 are
2(p—1). Note that the correlation in degree p 18 2(p—1)egpe; because 2 +z77
also appears in the sum 30 _ (z*~! +z7® D) for v = £HL.

REMARK. It seems probable, from computer-assisted experimentation, that
p—1 may be the maximum modulus for a modular circulant Hadamard matrix
of type 1 and size 4p. However, the power of 2 dividing p — 1 is certainly
not always maximal as the power of 2 dividing the modulus of a modular
CHM of type 1 and size 4p. There are many values of p (where p is prime
and satisfies p =9 mod 16) for which a variant of the formula for H(z) in
the above Theorem yields a 16-modular CHM. The first few such values of
p are p="73, 89, 233, .... On the other hand, it seems for example that
indeed no 16-modular, type 1 CHM of size 4p exists for p = 41.

We hope to come back on the general question of 16-modular circulant
Hadamard matrices of type 1 in a future publication.

3. CIRCULANT MODULAR HADAMARD MATRICES OF TYPE 2

In this section we produce circulant modular Hadamard matrices of type 2
and size n = 2(g+1), where g is an arbitrary odd prime power. The existence
of such objects is a corollary of a theorem from the 1971 paper [DGS].

We are grateful to Roland Bacher for valuable discussions about some
unpublished work of his which helped in obtaining the following result.

THEOREM 2. For every n = 2(q + 1), where q is an odd prime power,
there exists a binary sequence X = (xo,...,x,—1) with x; = £1 for all i
(0 <i<n-1), such that w(X) =0 for all k # 0,%. In other words, circ(X)
is a circulant modular Hadamard matrix of type 2 and size n.
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Proof. Set xs =xp =1 and x14; = —X; forall i=1,2,...,5 — 1. The
sequence X = (x1,X,...,%,—1) is therefore determined by its subsequence
Y= (xl,XQ, cee ,x'_zl_l).

We have (X)) =n, 72(X) = 4 —n, and
Y(X) = 2(op(Y) — oz —(Y))

for all k=1,2,...,5 — 1 as easily checked, where oy is the kth aperiodic
correlation coefficient. Of course, v, x(X) = %(X) forall k=1,2,...,5—1.

In order to prove the theorem, it therefore suffices to exhibit a binary
sequence Y = (x1,xz,...,x2_1) of length 5 — 1 = g, satisfying the equation
a(Y) — az_(Y) =0 for every k=1,2,..., 5 — L.

For this purpose, we recall the notion of a negacyclic matrix, introduced
by Delsarte, Goethals and Seidel in their paper [DGS].

By definition it is simply a matrix of the form

/ Ugp U I/tr\

—Uy Uy U1 . 5 Uy

—Ur—1 —Ur U R Ur—2

K —U —Uy ... —Uy Up )

which we will denote by NC(ug, uy,...,u,).

Explicitly, the entries ¢;; of the matrix NC(ug, uy,...,u,) are
Ui if 0<i<j<r,
= { i if O<j<i<r.
It 1s very easy to see that the binary sequence Y = (X1, %2, ..., X21)
satisfies o (Y) — az_(Y) =0 forevery k=1,2,...,5 —1 if and only if the
negacyclic matrix C = NC(0,xy,...,xz_1) is a conference matrix, that is if

C-C'=(—DI.

Now, Delsarte, Goethals and Seidel have explicitly constructed negacyclic
conference matrices of every size of the form g+ 1, where ¢ = p/ with p an
odd prime and f a positive integer, in Section 7 of [DGS]. These negacyclic
conference matrices are equivalent to the usual Paley conference matrices
based on the quadratic character x: F; — {1} of the finite field F,. [J

NOTE. After having submitted the present paper for publication, we came
across the These d’Habilitation of Philippe Langevin (Toulon). There, a concept
which is closely related to our type 2 sequences is studied. P. Langevin uses

the terminology “almost perfect sequences” and his treatment also relies on
[DGS].
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Thus, we now find it preferable to drop the type 1 / type 2 terminology
and rather call enhanced modular the modular matrices of type 1. We intend
to use this new designation in future publications on the subject.
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