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CIRCULANT MODULAR HADAMARD MATRICES

by Shalom Eliahou*) and Michel Kervaire

1. Introduction

Besides Hadamard's conjecture proper, one of the major open problems

concerning Hadamard matrices is Ryser's conjecture, according to which there

are no circulant Hadamard matrices of size greater than 4; cf. [R].

In the light of Ryser's conjecture, it might prove interesting to consider

the weaker notion of a circulant modular Hadamard matrix, and ask for what

moduli and sizes such matrices happen to exist.

On the one hand, one hopes that non-existence results may shed some light
on Ryser's conjecture. On the other hand, computer experimentation reveals

the existence of families of modular circulant Hadamard matrices of given
sizes and moduli with intriguing patterns. In the present note we exhibit one

such infinite family with a large modulus m.

Notation. Let X (x0,xi,..., i be a sequence of even size n, with

Xi ± 1 for all i — 0,... ,n — 1. We denote the k-th periodic correlation
coefficient of X by

n— 1

7 k(X) ^
/=o

where the subscripts are read modulo n, for every k (0 < k < n — 1).

Clearly, 7%(X) is the dot product of X with its k-th left shift or®, where

cr&® — • • • > 1), again with indices read modulo n. Observe
that 70® n and that 7„_^(Z) 7^(A) for k 1,..., n — 1.

*) During the preparation of this paper, the first author partially benefited from a research
contract with the Fonds National Suisse pour la Recherche Scientifique.
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A circulant matrix circ(X) is associated to X. The rows of circ(A) are
the shifts cr-k(X), k 0,...,n-l of the sequence X.

Of course, the conjunction of the conditions yk(X) 0 for all k= 1^is equivalent to Hcirc(A) being a circulant Hadamard matrix, while
7 k(X) 0 mod m for all k 1,...,§ means that H circ(X) is an
m-modular circulant Hadamard matrix.

There are two trivial examples of circulant modular Hadamard matrices
with a large modulus. One is the constant all-one matrix J circ(l,..., 1).
The matrix / is an «-modular circulant Hadamard matrix (CHM for short)
of size n.

The other example is J' circ(-l, 1,..., 1) / - where I is the
identity matrix of size n. Here, J' (/')' 4) -whence J' is
an (n - 4)-modular CHM of size n.

In order to exhibit interesting examples of circulant modular Hadamard
matrices, we shall require that some of the correlations 7&(X) be actually zero,
not only zero modulo m.

Using the notation H(z)E"=o -L <"' Z[zj/(V' - i) as usual, the
correlations jk jk(X) arise as coefficients in the identity

I — 1

(1) H(z)H(z~l) n +Y,7*(z*+ + 7fG Z - 1),
k=l

where Z [z\/(zn-1)may be viewed as the group ring ZC„ of the cyclic group
of order n generated by z.

The special position of 7s in this formula suggests that it be treated
separately, as in the following (tentative) definition.

Definition. Let H circ(X) be an m-modular circulant Hadamard matrix
of even size n. We say that His of type 1 if 7n/2(Z) 0. We say that
is of type 2 if yk(X) 0 for all k fOff

Ryser's conjecture amounts to saying that, in size greater than 4, there is
no circulant modular Hadamard matrix which is simultaneously of types 1

and 2.
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Even though the constraints for type 2 seem to be much stronger than the

one for type 1, this may not necessarily be so. Consider, for example, the

case of size n 20 and modulus m 16. Let

X (1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,-1).
Then, quite surprisingly perhaps, circ(2f) is a 16-modular CHM of type 2, as

X satisfies the equalities jkQO 0 for all k / 0,10, and 710® -16.
However, it follows from formula (1) above that there is no 16-modular

CHM of type 1 in size 20. Indeed, for n 20, substituting z 1 in formula
(1) with 710 0 yields H(l)2 20 + 2 ELiIk

The condition 7* 0 mod 16 for k 1,..., 9 would imply (H(l)/2)2 5
'1 mod 8, contradicting the fact that 5 is not a square modulo 8. Hence, the

I condition 710(A) 0 alone forbids the other correlation coefficients of X, at
j positive indices k, to vanish simultaneously modulo 16.
j The same argument shows that for odd with q z/z 1 mod 8, there is no
; 16-modular CHM of length 4 qsatisfying72q 0 mod 32.
I

j In this note, we exhibit (in the next section) a 4-parameter family of
j (p - 1)-modular circulant Hadamard matrices of type 1 and of size 4 for

j every prime number p such that p 1 mod 4.

As to circulant modular Hadamard matrices of type 2, it turns out that
j they can be obtained from a well known paper of Delsarte, Goethals and

Seidel [DGS], This is explained in Section 3.

2. A FAMILY OF — 1)-MODULAR

circulant Hadamard matrices of size 4

Let p be a prime satisfying p 1 mod 4. We are going to prove the
j

existence of (p - 1)-modular circulant Hadamard matrices of type 1 and
:| size 4 p.Wegive explicitly below the first row (x0,jclt... of such a
;j matrix as a polynomial H(z) E-=ö' *ïè e Z[z]/(z4p - 1), where all

coefficients x, equal ±1 and H(z)H(-r] modulo (p - I )ZC4p. In order
to write down H(z) we need some notation.

1 Let So c [l,/7 — 1] U [p + 1,2p — 1] be the set of squares modulo 2p,
which are prime to p. Note that if j is a square mod p, then j is also a
square mod 2p. Indeed, if there exists c such that c2 s + kp and k is odd,
then (c + p)2 c2 + 2cp + p2=s + 2cp + (k + p)p s mod 2p.

il
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Let Si ([l,/7 — 1] U [p + 1,2p — l])\So be the set of non-squares mod
2/7, prime to p. We have |S0 D [l,p - l]j \S0 fl [p + 1,2p - 1]| so
that |S01 p - 1. Similarly, |Si n [l,/7 — 1]| |5i fl \p + 1,2p - 1]|=
and |5i | —p — 1 also.

Let/o(z) and/i(z) be the Hall polynomials of So and S\ respectively. That
is, fi(z) Zsest G ZCV for / 0,1. We shall need fi(z2) & and
fi(~z2) ^ZseSi(~^yz2s - Our objective is the proof of the following theorem.

THEOREM 1. Let fo and fl be as defined above and let e0, e\, e2, e2 be
4 independent parameters with values e0, ei, e2, £3 ±1. 77z^ polynomial
H(z) G ZC4p Z[z]/(z4^ - 1) given by

H(z) e0(l +/o(z2) + z2p) + £ifo(z2)zp + e2/i(-z2) + e3 (l +/i(-z2) - z2p) zp

hasall its coefficients of the monomials 1 equal to ±1 and
satisfies the identity

H(z)H(zTl) =4p +l)R(z)

for some polynomial R(z) G Z[z]/(z4'' - 1) given below in formula (11)
which the coefficient of z2p is zero.

The exponents of z in H and R are to be read modulo 4/7. We use
(abusively) the term "polynomial" for the elements of Z[z]/(z4p - 1). The
assertion on the coefficients of H is easy to verify by direct observation and
is left to the reader.

The parameter e0 is clearly the coefficient of the constant term in the
displayed expression for H(z). The coefficient of z in H(z) is ei on the
condition that p 1 mod 8. Indeed, in this case 2 is a square mod p.
Also 3/7+1 is a square mod 2p and therefore. 2-E~L G Sq. Thus, the term
z z23J¥-+p appears in £]fo(z2)zp.If pmod 8, then +-1 e 5) and z

appears in H(z) with the coefficient (-l)3^ e3 +£3. The hrst appearance
of e2 in H(z) depends on the minimum of .S), a number for which there is
no known formula.

For the proof of the theorem we separate a preliminary part, which only
depends on symmetry properties of the set S0, from the final calculation,
which properly depends on the hypothesis that S0 is constructed from the set
of quadratic residues mod p.
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We first derive the properties of H(z)H{z~l) coming from the symmetries

of the set So and its complement S\ ([1 ,p — 1] U [p + 1,2p — l])\So. We

denote by <p: [1 ,p — 1] U [p + 1,2p — 1] — [1 ,p — 1] U [p + 1,2p — 1] the flip
defined by the formula <p(x) 2p — x.

Whenever the set So is stable under <p, the existence of p: So So, and

hence (p: S\ — S\, implies the following properties of the sums ^^.z25 as

well as for the sets Si with ^ 0,1 :

(2) ^z-2s e^1^-25 •

ses, seSj seSi ses,

This follows simply by applying the involution p.
For instance,

X^-D'z2* ^(-ir(V
ses, ses.

]T(-1)(2" -r-s)72(2p-s)

seSi

y>i)v2î,
seSi

since z4p 1. This means that fo(~z2) and fi(—z2) are both self-reciprocal
polynomials: /o(—z2) =/o(—z~2) and f\(—z2) =/i(—z~2). The proof for the

other formula (without the sign) is essentially the same.

We also have a "baker's flip" p, mapping [l,p — 1] U [p + 1,2p — 1] onto
itself, defined by

p(x)
p — x if x G [l,p — 1],

\ 3p — x if x G [p + 1, 2p — 1].

If So and S\ are stable under p, the existence of the automorphisms p: 5/ —> S;

for i 0,1 implies the following formulas :

(3) o-z2p)Yz2s °>(1+z2oy^(-i)GJ 0.
seSi seSi

Here we apply pon S,n[l,p - 1], and on n + l,2p - 1], We have

Y^i-o^z2^
ses, ses,

E (-irvM+ (-1
ses,n[l,/? l] 5,G5;n[/?+1,2p—i]
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Remembering that z4p 1, we obtain

j2(-i)sz2s ~z2pY^(~
sESi s£Si

— _Z2P ^^_l^P-S)r^{2p-S)
sESi

r''yVi.)V\
sESi

using the automorphism p as above. Again, the proof for the formula without
the sign is the same.

As a corollary, we get

(4) fi(~z2)fj(z2) (£(-1 )sz20 (J2 =0 '

sESi

obtained by observing that (1 +z2p) and (1 -z2p) both kill the above product.
The first factor is killed by 1 + z2p. The second one by 1 — z2p. It follows
that 2= (1 +z2p) + (l — z2/?) annihilates the left-hand side of (4), which must
be 0 since 2 is not a zero-divisor in ZC4p.

We can begin the calculation of some terms in H{z)H(z~l). Under the

hypothesis p 1 mod 4 of the theorem, — 1 is a square mod p and — 1 is

also a square mod 2p. Therefore, p — 1 G So and it follows that So, Si are
stable by both involutions p, (p. The formulas (2), (3) and (4) apply.

As a consequence, we obtain that the coefficients of £o £2, £i s2, £0 £3

and £163 in H{z)H{z~l) all vanish. For instance, in the coefficient of £0£3
in H(z)H(z~l), which is

2(i + (y>zo+z2p)(1++z-n,sESo sESi

the products of 1 + z2p with 1 — z2p and J]vG5l(-iyz25 are 0. Furthermore,
the products of YlseSo ^ 1 ~ z2p and with a*so vanish.

The coefficients of the other terms £o£2, £1^2 and £163 are seen to be
0 by the same arguments based on formulas (2), (3) and (4). The coefficient
of £2 £3 is

(zp + zi)£-)(1+^(-i)G2i - z2p).
sES\ SESi

Although of a somewhat different nature, it also vanishes by formula (3),

observing that zp + z~p zp(l + z2p).



CIRCULANT MODULAR HADAMARD MATRICES 109

The only remaining terms in H{z)H(z *) are

H(z)H(z~l) (1 +/0(z2) + z2pf+ (1 +/i(-z2) - + (/i(-z2))2

+ {Hz2))2+ 2e0 £y(1+/o(z2) + I

We end up with an expression H(z)H(z~l) C + Co,i eç> £\.
An easy calculation using formula (3) and the simple remarks (1 + z2p)2

2(1 + z2p), (1 - z2pf 2(1 - z2p), yields

C 2{(/o(z2))2 + 2fo(z2) + (fi(~z2))2 + + 4,

and similarly
Co,i 2((/0(z2))2 + +

which require the computation of the two squares (fj(z2))2 (E.ve.s',,

and (M-z2))2 (EJeSl(-DsA)2.

We shall actually need to calculate all four quantities (fo(z2))2, (fi(z2))2,
(fo(—z2))2, (fi(~z2))2. For brevity, we use the notation

V f,(z2) J2z2s> Y< M-z2) - '1 )iz2i '

sÇïSj s G S

for i 0,1.
Note first that X0+Xl= Y^Zo z2v -z2p), where we

have set T Y?ZZo z2vSimilarly, F0 + (1 -
U -(1 - zlp), where U E^E'C-l Yz2u.

Observe that z2TTand z2U— U.Itfollows that

(5) X2 + 2X0Xi + Xf(T -(1+ z2p))2 + 2(1 + z2p)

We also have (Xo —X\)T |*S017" — \S\\T 0, and thus

(6) X2 - X2 (T-(1 + z2p))(X0 - XO -2(X0 - X0,

remembering formula (3).
The main point is the calculation of - X{)2, which is reminiscent of

the familiar calculation with Gauss sums.

Let (77): z ' { ± ' } be the quadratic character at the prime p extended

to the integers as usual: (j) 0 if x is divisible by p, (J) +1 if x, prime
to p, is a quadratic residue modulo p(i.e.,x y2 modulo p for some y)
and (7) -1 if x is prime to p and not a quadratic residue modulo p. We

are assuming p 1 mod 4, and hence (y-j 1.
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Notice that X0 - Xx £Lo {f)^2x (ELo (jD^X1 + z2p) since

(|) for all x. For all integers x,y we have (^-) (^) (|) and
thus

(X0 - XO2 2(53 53 (1 +
x=0 y—0

Now, observe that z2(-t+p\l +z2p) z2t(l+z2p) for any integer t. It follows
that, identifying the set of integers [l,p—l] with F* Fp\{0} by the natural

projection Z —> F^, we have

(X0 - Xj)2 2(5] (f)z2(x+y)) (1 + z2p)

F;

The crucial point is that the right-hand side is well defined, without
ambiguity even though the expression E^ef* ^y)z2{x^y) in itself is only

defined modulo (.z2p — 1).

For fixed x G F*, as y runs over F*, so does —yx ; therefore

(Xo - Xi)2 2( (^)r~f(l v')(1 + z2p)

x,yF;

2<y)(i; ©^'-")a+r').
*,y£F;

Summing over x for y 1 and then for CE F*\{1}, we get

(x0-x1)2 2(f){(p-i)+ 53 (2)53^}d+^).
yeF;\{i} *eF;

Since £>eF; $ °> we have EyeF;\{i} QD "!• Using if) +1. and

coming back to a summation over [l,p — 1],

p-1
(Xo - Xj)2 2 {(p-1) - 5^z&}(1 +

X— 1

2 (p-1)(1 + z2p) - 2 (T-(1 + z2p)) + z2p) - 2

This gives us

(7) Xl-2X0Xi+ Xf 2p(1 + -22".
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Combining this result with the equations (5) and (6), we see that

xl + 2X0X! +x\ 2(p- 2)T + 2(1 +
X2 - X2 ^-2(X0 - X,),

Xl- 2XqX\+X2l=-2T + 2p(l+z2p).

It is now easy to deduce from these equations the result :

(8) Xq + 2Xo —X\-\- 2X\ — P~2~(T + 1 + z2p).

Of course we would also like to have a similar formula for Yq, Y\. The

analogue of equation (5) is

Yl + 2YqYi+Y\ (U~{\ -z2p2)U + 2(1 -
on observing that z2U —U, so that z2sU (— I fU and U2 2pU. It is

easy, though somewhat boring, to imitate with To and Y\ the derivation of
the formulas (5), (6) and (7). The needed assertion, that (^)(-l)'z2'(l - z2p)

only depends on the class of tmod p, is valid and the argument goes through.

The analogue of the above equation (8) is

(9) T02 + 2T0 Y2+2Fi E=1(U+ 1 - z2p)

However, we can simply embed the ring ZC^ into Z[i]C4p, the group
ring of C^p over the Gaussian integers Z[i], i (a/—1), and then apply to
the calculations of X0, X\ the automorphism a of the ring Z[i][z]/(z4p - 1)

induced by a(z) (a/-T)£. The substitution of (af—Y)z for z is compatible
with z4p 1 and a(Xt) Yt, a(T) U and a(z2p) ~z2p. The result is

indeed formula (9) above.

Using T+U 2 XX=o ' anc^ plugging these expressions into the formula
for H(z)H(z~l) C + C0,i e0 e\, we get

p-l
C (q - \)(T + U + 2) + 4 4p + 2(p -

V=l

and

_ i 2p

Co,i ^-CT + (1 + z2p))(zp + z~p)(-1) (J) +(p-l)(zp + z3p).

V 1

Finally, H(z)H(z~l) 4p + (p — 1 )R(z), where

P-1 2p

(10) R(Z) 2Z4" + {]Tz2"-1 + z" + z3"} £0 £1 •

V— 1 L/=l
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Equivalently, this "remainder" R(z) can be written

(11) R(z) 2 J2(z4" + Z~4u) + + 2"(2^1}) } £o £1 •

V=l v=\

The (periodic) correlations of H(z) in degrees 2 mod 4 are strictly zero.
This includes in particular the correlation of degree 2p. Hence, the modular
Hadamard matrix associated with the sequence (polynomial) of the Theorem
is indeed of type 1 as asserted. The correlations in degrees 0 mod 4 are

2(p-l). Note that the correlation in degree p is 2(p-l)s0£i because zp+z~p
also appears in the sum + z~(2ïy_1)) for v

Remark. It seems probable, from computer-assisted experimentation, that

p— 1 may be the maximum modulus for a modular circulant Hadamard matrix
of type 1 and size 4p. However, the power of 2 dividing p - 1 is certainly
not always maximal as the power of 2 dividing the modulus of a modular
CHM of type 1 and size 4p. There are many values of p (where p is prime
and satisfies p 9 mod 16) for which a variant of the formula for H(z) in
the above Theorem yields a 16-modular CHM. The first few such values of
p are p 73, 89, 233, On the other hand, it seems for example that
indeed no 16-modular, type 1 CHM of size 4p exists for p 41.

We hope to come back on the general question of 16-modular circulant
Hadamard matrices of type 1 in a future publication.

3. Circulant modular Hadamard matrices of type 2

In this section we produce circulant modular Hadamard matrices of type 2
and size n 2(g+1), where q is an arbitrary odd prime power. The existence
of such objects is a corollary of a theorem from the 1971 paper [DGS].

We are grateful to Roland Bacher for valuable discussions about some
unpublished work of his which helped in obtaining the following result.

THEOREM 2. For every n m 2(q +1), where q is an odd prime power,
there exists a binary sequence X (x0,... ,x/7_i) with xt ±1 for all i
(0 < i < n — 1), such that 7k(X) — 0 for all ln other words, circ(X)
is a circulant modular Hadamard matrix of type 2 and size n.
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Proof. Set xn xo 1 and x>i+i —xt for all i— 1,2, — 1. The

sequence X (xi,x2, • • • ,*n-i) is therefore determined by its subsequence

Y

We have 70 (X) rc, 75(X) 4 — w, and

7*(X) 2(aic(Y) - an_k(Y))

for all & 1,2,..., I — 1 as easily checked, where is the kth aperiodic
correlation coefficient. Of course, jn_k(X) 7k(X) for all k 1,2,..., | — 1.

In order to prove the theorem, it therefore suffices to exhibit a binary

sequence Y Oi,x2,... ,*§-1) of length § - I q, satisfying the equation
CKfc(y) - an__k(Y) 0 for every k 1,2,..., \ - 1.

For this purpose, we recall the notion of a negacyclic matrix, introduced

by Delsarte, Goethals and Seidel in their paper [DGS].

By definition it is simply a matrix of the form

Uo U\ ur \
— Ur Uq U\ Ur—\

— Ur—\ —ur Uq Ur-2

«0 /

/ ui ~>

CQ i
L Ur-i-\

\ —U\ —U2 • • • —Ur

which we will denote by NC{uq, u\,..., ur).
Explicitly, the entries qj of the matrix NC(uq, u\, ur) are

if 0 < i < j < r,
r-i+j+i if 0

It is very easy to see that the binary sequence Y (xi,X2„, • • ,xa„i)
satisfies ak(Y)- aa_^(y) 0 for every 1,2,.. M | - 1 if and only if the

negacyclic matrix C NC(0,xU- ,*§-0 is a conference matrix, that is if
C C (f - 1)/.

Now, Delsarte, Goethals and Seidel have explicitly constructed negacyclic
conference matrices of every size of the form 1, where q // with p an
odd prime and / a positive integer, in Section 7 of [DGS]. These negacyclic
conference matrices are equivalent to the usual Paley conference matrices
based on the quadratic character {±1} of the finite field F?.

Note. After having submitted the present paper for publication, we came
across the Thèse d'Habilitation of Philippe Langevin (Toulon). There, a concept
which is closely related to our type 2 sequences is studied. P. Langevin uses
the terminology "almost perfect sequences" and his treatment also relies on
[DGS].
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Thus, we now find it preferable to drop the type 1 / type 2 terminology
and rather call enhanced modular the modular matrices of type 1. We intend
to use this new designation in future publications on the subject.
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