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CIRCULANT MODULAR HADAMARD MATRICES

by Shalom ELIAHOU ) and Michel KERVAIRE

1. INTRODUCTION

Besides Hadamard’s conjecture proper, one of the major open problems
concerning Hadamard matrices is Ryser’s conjecture, according to which there
are no circulant Hadamard matrices of size greater than 4; cf. [R].

In the light of Ryser’s conjecture, it might prove interesting to consider
the weaker notion of a circulant modular Hadamard matrix, and ask for what
moduli and sizes such matrices happen to exist.

On the one hand, one hopes that non-existence results may shed some light
on Ryser’s conjecture. On the other hand, computer experimentation reveals
the existence of families of modular circulant Hadamard matrices of given
sizes and moduli with intriguing patterns. In the present note we exhibit one
such infinite family with a large modulus m.

NOTATION. Let X = (xo,x1,...,X,—1) be a sequence of even size n, with
x; = +1 for all i =0,...,n— 1. We denote the k-th periodic correlation
coefficient of X by

n—1

WX) = > xiXipk,

i=0
where the subscripts are read modulo n, for every £ (0 <k <n-—1).

Clearly, v(X) is the dot product of X with its k-th left shift o;(X), where

or(X) = (g, Xkt1y - - - Xk+n—1), again with indices read modulo n. Observe
that vo(X) = n and that v, _(X) = wX) for k=1,...,n—1.

") During the preparation of this paper, the first author partially benefited from a research
contract with the Fonds National Suisse pour la Recherche Scientifique.
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A circulant matrix circ(X) is associated to X. The rows of circ(X) are
the shifts o_;(X),k=0,...,n— 1 of the sequence X.

Of course, the conjunction of the conditions v4(X) = 0 for all k = Lisvozy
is equivalent to H = circ(X) being a circulant Hadamard matrix, while
Y (X) = 0 mod m for all k = 1,...,5 means that H = circ(X) is an

m-modular circulant Hadamard matrix.

There are two trivial examples of circulant modular Hadamard matrices
with a large modulus. One is the constant all-one matrix J — circ(l,...,1).
The matrix J is an n-modular circulant Hadamard matrix (CHM for short)
of size n.

The other example is J' = circ(—1,1,...,1) = J — 21, where I is the
identity matrix of size n. Here, J' - (J')' = nl + (n — 4)(J — I), whence J' is
an (n —4)-modular CHM of size n.

In order to exhibit interesting examples of circulant modular Hadamard
matrices, we shall require that some of the correlations ~,(X) be actually zero,
not only zero modulo m.

Using the notation H(z) = Z;:Ol xi7 € Z[z]/(z" — 1) as usual, the
correlations -y, = (X) arise as coefficients in the identity

21

(D H@QHCH=n+Y @+ +m € Z/@ - 1),
k=1

where Z[z]/(z" —1) may be viewed as the group ring ZC, of the cyclic group
of order n generated by z.

The special position of 7z in this formula suggests that <t be treated
separately, as in the following (tentative) definition.

DEFINITION. Let H = circ(X) be an m-modular circulant Hadamard matrix
of even size n. We say that H is of type 1 if Yns2(X) = 0. We say that H
is of type 2 if 3(X) =0 for all k#0,%.

Ryser’s conjecture amounts to saying that, in size greater than 4, there is
no circulant modular Hadamard matrix which is simultaneously of types 1
and 2.
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Even though the constraints for type 2 seem to be much stronger than the
one for type 1, this may not necessarily be so. Consider, for example, the
case of size n =20 and modulus m = 16. Let

X =1,1,1,-1,1,-1,-1,-1,-1,1,1,—-1,-1,1,—1,1,1, 1,1, - 1).

Then, quite surprisingly perhaps, circ(X) is a 16-modular CHM of type 2, as
X satisfies the equalities v(X) =0 for all k # 0, 10, and ~;o(X) = —16.

However, it follows from formula (1) above that there is no 16-modular
CHM of type 1 in size 20. Indeed, for n = 20, substituting z = 1 in formula
(1) with 9 =0 yields H(1)> =20+257_, y.

The condition 7, =0 mod 16 for k = 1,...,9 would imply (H(l)/2)2 =5
mod 8, contradicting the fact that 5 is not a square modulo 8. Hence, the
condition y;9(X) = O alone forbids the other correlation coefficients of X, at
positive indices k, to vanish simultaneously modulo 16.

The same argument shows that for ¢ odd with ¢ Z 1 mod 8, there is no
16-modular CHM of length 4¢ satisfying v,, =0 mod 32.

In this note, we exhibit (in the next section) a 4-parameter family of
(p — 1)-modular circulant Hadamard matrices of type 1 and of size 4p for
every prime number p such that p =1 mod 4.

As to circulant modular Hadamard matrices of type 2, it turns out that
they can be obtained from a well known paper of Delsarte, Goethals and
Seidel [DGS]. This is explained in Section 3.

2. A FAMILY OF (p — 1)-MODULAR
CIRCULANT HADAMARD MATRICES OF SIZE 4p.

Let p be a prime satisfying p = 1 mod 4. We are going to prove the
existence of (p — 1)-modular circulant Hadamard matrices of type 1 and
size 4p. We give explicitly below the first row (X0, X1, ...,X4p_1) of such a
matrix as a polynomial H(z) = Z?ﬁgl X7 € ZCy, = Z[7]/(z*P — 1), where all
coefficients x; equal +1 and H(z)H(z™') = 4p modulo (p — 1)ZCy,. In order
to write down H(z) we need some notation.

Let So C [1,p —1]U[p+1,2p — 1] be the set of squares modulo 2p,
which are prime to p. Note that if s is a square mod p, then s is also a
square mod 2p. Indeed, if there exists ¢ such that ¢2 — s+kp and k is odd,
then (c + p)*=c? + 2cp + p*=s+ 2cp+(k+p)p =5 mod 2p.
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Let $1 =(1,p—11U[p+1,2p — 1])\S, be the set of non- squares mod
2p, prime to p. We have [SoN[l,p—1]| = SoNp+1,2p—1]| = —2—1, SO
that [So| = p — 1. Similarly, |$; N[1,p—1]| = |$; N [p+1,2p — 1]|= 25
and |Si]|=p—1 also.

Let fo(z) and fi(z) be the Hall polynomials of S, and S; respectively That
18, fi(z) = ) ses, 2 € LCyp for i =0,1. We shall need fi(z2) = D es, 2 and
fi(=7%) = > ses,(—1)°z% . Our objective is the proof of the following theorem.

THEOREM 1. Let fy and fi be as defined above and let €0, €1, €2, €3 be
4 independent parameters with values €, €1, €5, €3 = +1. The polynomial

H(z) € ZCyp = Z[2]/(z% — 1) given by

H(z) = eo(1 +fo(@®) + %) + e1 @) 2 + e2fi(=22) + &3 (1 + (=) — 22) 2

has all its coefficients of the monomials 1,z,7%,. .., 77! equal to +1 and

satisfies the identity
H(H(z™") = 4p + (p — DR(2)

Jor some polynomial R(z) € Z[z]/ % — 1) given below in formula (11) in
which the coefficient of 7% is zero.

The exponents of z in H and R are to be read modulo 4p. We use
(abusively) the term “polynomial” for the elements of Z[z]/(z* — 1). The
assertion on the coefficients of H is easy to verify by direct observation and
is left to the reader.

The parameter gy is clearly the coefficient of the constant term in the
displayed expression for H(z). The coefficient of z in H(z) is €; on the
condition that p = 1 mod 8. Indeed, in this case 2 is a square mod p.
Also 3p + 1 is a square mod 2p and therefore. 3p tl ¢ Sy. Thus, the term

2= appears in e1o@)2. If p =5 mod 5, then 221 € 5, and -

appears in H(z) with the coefficient (— 1) £ €3 = +e3. The ﬁrst appearance
of &, in H(z) depends on the minimum of S;, a number for which there is
no known formula.

For the proof of the theorem we separate a preliminary part, which only
depends on symmetry properties of the set Sy, from the final calculation,
which properly depends on the hypothesis that Sy is constructed from the set
of quadratic residues mod p.
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We first derive the properties of H(z)H (z~!) coming from the symmetries
of the set Sy and its complement S; = ([1,p — 1JU[p+ 1,2p — 1D\So. We
denote by ¢: [1,p—11U[p+1,2p—1] — [1,p—11U[p+1,2p — 1] the flip
defined by the formula o(x) = 2p — x. ‘

Whenever the set S, is stable under ¢, the existence of ¢: Sy — So, and
hence ¢: S; — S;, implies the following properties of the sums S: 7% as
well as Zsesi(—l)szzs for the sets S; with i = 0,1 :

2) STeE=N"2, 0 Y =T =) (.

SES; SES; SES; SES;
This follows simply by applying the involution ¢.
For instance,

Z(_l)sZ% — Z(—l)‘P(S>ZZ‘P<S>

sES; SES;

_ Z(_l)(zp—wzz(zp—s)

SES;

— Z(_l)sZ—ZS ’

sES;

since z* = 1. This means that fy(—z?) and f;(—z?) are both self-reciprocal
polynomials : fy(—z?) = fo(—z~2) and f1(—z?) = fi(—z"2). The proof for the
other formula (without the sign) is essentially the same.

We also have a “baker’s flip” p, mapping [1,p —1]U[p+1,2p — 1] onto
itself, defined by

p—X if xell,p—1],
plx) = .
3p—x if xe[p+1,2p—1].

If So and §; are stable under p, the existence of the automorphisms p: S; — S;
for i = 0,1 implies the following formulas:

3) 1=2M) #=0, 1+ (1) =0.
SES; SES;
Here we apply p on S;N[l,p—1], and on S;N[p+1,2p — 1]. We have

D (17 = D (=192

SES; SES;

- Z (—1P—520=9 4 Z (—1)P—5 2005

s€SiN[1,p—1] s€SiN[p+1,2p—1]
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Remembering that z% = 1, we obtain

Z(_l)SZZS — _Z2p Z(_l)sz—Qs
SES; / SES; )
S Z(_ 1)(2P—S)Z2(2p~5)
SES;
— _Z2p Z(_I)SZZS :
SES;
using the automorphism ¢ as above. Again, the proof for the formula without
the sign is the same.

As a corollary, we get

4) KDL = O (=12) (D ) =0,

SES; IESJ‘

obtained by observing that (1+z%) and (1 —z*) both kill the above product.
The first factor is killed by 1 + z?. The second one by 1 — z%. It follows
that 2-= (1 +z??) + (1 — z%) annihilates the left-hand side of (4), which must
be 0 since 2 is not a zero-divisor in ZCy,.

We can begin the calculation of some terms in H(z)H(z~'). Under the
hypothesis p =1 mod 4 of the theorem, —1 is a square mod p and —1 is
also a square mod 2p. Therefore, p — 1 € Sy and it follows that Sy, S; are
stable by both involutions p, ¢. The formulas (2), (3) and (4) apply.

As a consequence, we obtain that the coefficients of cge,, €162, €93
and €13 in H(z)H(z™') all vanish. For instance, in the coefficient of ege;3
in H@H(z~"), which is

2(1 + () )+ z2p> (1 + (O _(-1) - zzp) @ +2z77),
sESy SES| *

the products of 1+ z% with 1 —z? and ZseSl (—1)°z*° are 0. Furthermore,
the products of »_ S 7% with 1 —z% and with Zsesl(—l)szzs also vanish.

The coefficients of the other terms €ye,, €162 and €1e3 are seen to be
0 by the same arguments based on formulas (2), (3) and (4). The coefficient
of eye3. 18

(ZP + Z*P)(Z(_I)SZZS) (1 4+ Z(_I)SZZS . ZZP) )
SES| SES]

Although of a somewhat different nature, it also vanishes by formula (3),
observing that z2 + z 77 = 22(1 + 7).
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The only remaining terms in H@H(Z™Y) are

HOHE™) = (14+AE) +77) + (1 +ACD =)+ (h-D)’
+ (H@) + 22061 (1 + /oD + P +277).

We end up with an expression HHGzZ H=C+ Co,1€0¢€1-
An easy calculation using formula (3) and the simple remarks (1 +7#)? =
21 +7%7), (1 —7%)? =2(1 — 7%P), yields

C = 2{(fo(2))* + 2fo(2>) + (i(=2)* + 2fi(—=2*)} + 4,

and similarly
Co, = 2((o@)* + 2/()) @ +27P),
2
which require the computation of the two squares (fy(z%))* = (Zseso %)
2
and (fi(=29))* = (X, (—1°2%)".

We shall actually need to calculate all four quantities (fo(z?)?, (f1(z*))?,
(fo(—22))?, (fi(—z%))?. For brevity, we use the notation

Xi=flH=) &,  Yi=f=H=) (-7,
SES; SES;
for i=0,1.

Note first that Xo + X; = Zipz_ol ¥ —(14+27%) =T — (1 +7%), where we
have set T = S2-' 22 Similarly, Yo+ Y; = 3.7 (=122 — (1 — %) =
U— (1 —2z?), where U = Zi‘;_ol(—l)”zz”.

Observe that 22T =T and 72U = —U. It follows that

(5)  Xg+2XoXi +Xi = (T — (1 + 7)) =200 — )T +2(1 + 7).
We also have (Xo — X\)T = |So|T — |S$1|T = 0, and thus
(6) Xg—X; =T —(1+22)Xo — X1) = —2(Xo — X)),

remembering formula (3).

The main point is the calculation of (Xy — X;)?, which is reminiscent of
the familiar calculation with Gauss sums.

Let (;): Z — {£1} be the quadratic character at the prime p extended

to the integers as usual : (g) = 0 1f x is divisible by p, (;—;) = +1 if x, prime

to p, is a quadratic residue modulo p (ie., x = y* modulo p for some y)
and (}{-) = —1 if x is prime to p and not a quadratic residue modulo p. We

are assuming p = 1 mod 4, and hence (‘71) =1.
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Notice that Xo — X; = .2/ )z = P, (3)2)(1 + z%) since

(22) = (2) for all x. For all integers x,y we have (£2) = (3)(%) and

p p p p/ \p
thus
p—1 p—1
Xo — X1)* = Z(Z > (%y)z%”y)) (1+2%).
x=0 y=0

Now, observe that z20+P)(1+2z%) = 7%/(1+4-z%) for any integer ¢. It follows
that, identifying the set of integers [1,p—1] with F; = F,\{0} by the natural
projection Z — F,, we have |

Ko =X =2( D ()21 +27).

x,yeF;

The crucial point is that the right-hand side is well defined, without
ambiguity even though the expression > %y)zz(xﬂ) in itself is only
defined modulo (z% — 1).

For fixed x € F

x,yeF; (

as y runs over F}, so does —yx; therefore

p? p’
doxip =2 3 (£92400)a 1.2
x,y€Fy
= 2(_71>< > (%)Zz"“‘”)(l +2%).
x,yEF;

Summing over x for y =1 and then for y € F\{1}, we get

Xo—X)* =20{@—-D+ > @D Fra+>).

yEF:\{1} xcFx

. . N
Since 3 . (2) =0, we have o yer\(1} () = —1. Using (3}) = +1, and
coming back to a summation over [1,p — 1], s

p—1

Xo—X)*=2{(p—1)— > FH1+7¥)

x=1
=2(p — DA +2%) — AT — (1 +2%)) = 2p(1 + %) — 2T .

This gives us

(7) X3 — 2XoX; + X? = 2p(1 + %) — 2T.
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Combining this result with the equations (5) and (6), we see that

X2 4+ 2XoX; + X2 =2(p — DT + 21 + %),
X2 — X% = —2(Xo — X1),
X2 — 2XoX; + X2 = 2T +2p(1 +27).

It is now easy to deduce from these equations the result:
(8) X2 42Xy = X2 +2X; = ENT+1+77).

Of course we would also like to have a similar formula for Yy, Y;. The
analogue of equation (5) is

Y24 2YoY, + Y2 = (U — (1 —2%)? = 2(p — U + 2(1 — 27),

on observing that 72U = —U, so that 72U = (—1)U and U? = 2pU. It is

easy, though somewhat boring, to imitate with Y, and Y; the derivation of

the formulas (5), (6) and (7). The needed assertion, that (%)(—1)"z(1 — z*)

only depends on the class of # mod p, is valid and the argument goes through.
The analogue of the above equation (8) 1s

9) Y2 4 2Yp = Y7 +2Y = (U +1—27).

However, we can simply embed the ring ZCy, into Z[i]Cy,, the group
ring of Cy, over the Gaussian integers Z[i], i = (v/—1), and then apply to
the calculations of Xy, X; the automorphism o of the ring Z[i][z]/ ¥ —1)
induced by o(z) = (v/—1)z. The substitution of (v/—1)z for z is compatible
with 2% =1 and o(X;) = Y;, o(T) = U and o(z??) = —z??. The result is
indeed formula (9) above.

Using T+U =2 Zf;lo 7%, and plugging these expressions into the formula
for H()H(z™') = C+ Co 1601, we get

p—1
C=@-DT+U+)+4=4p+2p—-1> ¥
v=1

and
p—1 $
Con = Eo—(T+(1+2NE@ +27) = (p— 1)<Z1 27 +p— 1@ +27).
Finally, H(z)H(z™!) = 4p + (p — DR(z), where

p—1 2p
(10) R(z) = 222:4” + {Zzz”“l + 22 + z3p} E0E] .
v=I1

v=1
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Equivalently, this “remainder” R(z) can be written

p—1

2 p
(A1) R@=2) " +z*)+ {Z&zv—l + @)+ 4+ z—P} €0 €l -
v=1 v=1

The (periodic) correlations of H(z) in degrees = 2 mod 4 are strictly zero.
This includes in particular the correlation of degree 2p. Hence, the modular
Hadamard matrix associated with the sequence (polynomial) of the Theorem
is indeed of type 1 as asserted. The correlations in degrees = 0 mod 4 are
2(p—1). Note that the correlation in degree p 18 2(p—1)egpe; because 2 +z77
also appears in the sum 30 _ (z*~! +z7® D) for v = £HL.

REMARK. It seems probable, from computer-assisted experimentation, that
p—1 may be the maximum modulus for a modular circulant Hadamard matrix
of type 1 and size 4p. However, the power of 2 dividing p — 1 is certainly
not always maximal as the power of 2 dividing the modulus of a modular
CHM of type 1 and size 4p. There are many values of p (where p is prime
and satisfies p =9 mod 16) for which a variant of the formula for H(z) in
the above Theorem yields a 16-modular CHM. The first few such values of
p are p="73, 89, 233, .... On the other hand, it seems for example that
indeed no 16-modular, type 1 CHM of size 4p exists for p = 41.

We hope to come back on the general question of 16-modular circulant
Hadamard matrices of type 1 in a future publication.

3. CIRCULANT MODULAR HADAMARD MATRICES OF TYPE 2

In this section we produce circulant modular Hadamard matrices of type 2
and size n = 2(g+1), where g is an arbitrary odd prime power. The existence
of such objects is a corollary of a theorem from the 1971 paper [DGS].

We are grateful to Roland Bacher for valuable discussions about some
unpublished work of his which helped in obtaining the following result.

THEOREM 2. For every n = 2(q + 1), where q is an odd prime power,
there exists a binary sequence X = (xo,...,x,—1) with x; = £1 for all i
(0 <i<n-1), such that w(X) =0 for all k # 0,%. In other words, circ(X)
is a circulant modular Hadamard matrix of type 2 and size n.
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Proof. Set xs =xp =1 and x14; = —X; forall i=1,2,...,5 — 1. The
sequence X = (x1,X,...,%,—1) is therefore determined by its subsequence
Y= (xl,XQ, cee ,x'_zl_l).

We have (X)) =n, 72(X) = 4 —n, and
Y(X) = 2(op(Y) — oz —(Y))

for all k=1,2,...,5 — 1 as easily checked, where oy is the kth aperiodic
correlation coefficient. Of course, v, x(X) = %(X) forall k=1,2,...,5—1.

In order to prove the theorem, it therefore suffices to exhibit a binary
sequence Y = (x1,xz,...,x2_1) of length 5 — 1 = g, satisfying the equation
a(Y) — az_(Y) =0 for every k=1,2,..., 5 — L.

For this purpose, we recall the notion of a negacyclic matrix, introduced
by Delsarte, Goethals and Seidel in their paper [DGS].

By definition it is simply a matrix of the form

/ Ugp U I/tr\

—Uy Uy U1 . 5 Uy

—Ur—1 —Ur U R Ur—2

K —U —Uy ... —Uy Up )

which we will denote by NC(ug, uy,...,u,).

Explicitly, the entries ¢;; of the matrix NC(ug, uy,...,u,) are
Ui if 0<i<j<r,
= { i if O<j<i<r.
It 1s very easy to see that the binary sequence Y = (X1, %2, ..., X21)
satisfies o (Y) — az_(Y) =0 forevery k=1,2,...,5 —1 if and only if the
negacyclic matrix C = NC(0,xy,...,xz_1) is a conference matrix, that is if

C-C'=(—DI.

Now, Delsarte, Goethals and Seidel have explicitly constructed negacyclic
conference matrices of every size of the form g+ 1, where ¢ = p/ with p an
odd prime and f a positive integer, in Section 7 of [DGS]. These negacyclic
conference matrices are equivalent to the usual Paley conference matrices
based on the quadratic character x: F; — {1} of the finite field F,. [J

NOTE. After having submitted the present paper for publication, we came
across the These d’Habilitation of Philippe Langevin (Toulon). There, a concept
which is closely related to our type 2 sequences is studied. P. Langevin uses

the terminology “almost perfect sequences” and his treatment also relies on
[DGS].
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Thus, we now find it preferable to drop the type 1 / type 2 terminology
and rather call enhanced modular the modular matrices of type 1. We intend
to use this new designation in future publications on the subject.
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