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of S. In particular, the cardinality of the quotient of the isometry group of §
under the subgroup fixing a given systole equals 6g + 3.

To complete the proof of our proposition we have to investigate the
ideal surfaces S, associated to simple triangle surfaces S(p;k). The above
considerations are equally valid for these surfaces and show that S, has more
than 4g + 4 systoles if and only if p divides k(k — 1) + 1 and if the length
¢y of a lift of a side pairing orbit for S, is not bigger than 6 arccosh % An
explicit computation shows as before that this is the case if and only if So
1s associated to one of the surfaces S(7;3),5(13;4),5(21;5). []

5. PROOF OF THE THEOREM

Using the notation of Lemma 2.2, our goal is to show that the triangle
surfaces S(7;3),S8(13;4),S(21;5) and their associated ideal surfaces are max-
imal. Following Schmutz [S1], for this it is enough to show that for each of
these surfaces S the Teichmiiller space is parametrized in a neighborhood of
S by the lengths of those closed geodesics which are freely homotopic to a
systole on S.

Let for the moment p > 5 be an arbitrary odd number and let
k€{2,...,p—1} be such that k and k — 1 are prime to p. Write
g = (p—1)/2. As in the introduction let 7;; be the Teichmiiller space
of surfaces of genus g with 3 punctures. Let S = S(p;k) and let S., be the
ideal surface associated to S. The basic group I' of orientation preserving
isometries of S acts as a group of isometries on the surface S, .

It will be useful to give a geometric description of S.,. For this let A,
be an ideal triangle in H? and let T C A4 be the finite equilateral triangle
inscribed in A, which is invariant under all isometries of /... The vertices
of T determine a distinguished point on each side of A .

There is a unique way to glue 2p copies of A, to a disc A with one
puncture in its interior and 2p punctures on the boundary in such a way that
the glueing maps identify the distinguished points on the sides of A, . The
boundary of A then consists of 2p geodesic lines. Each of the triangles which
makes up A contains exactly one of these boundary geodesics. We number the
boundary geodesics in counter clockwise order and glue the 2i -+ 1-th geodesic
to the 2i+2k-th geodesic by an orientation reversing isometry which identifies
the distinguished points on these geodesics. The resulting surface is the ideal
surface S, associated to S. Notice that S., admits a canonical triangulation
into ideal triangles which corresponds to the canonical triangulation of S.
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Denote by 0,1,2 the cusps of S.,. There are p edges of the canonical
triangulation which connect the cusp O to the cusp 1. There is a natural
counter clockwise ordering of these edges which is induced by the ordering
of the ideal triangles around the cusp 0. We denote by a? the i-th edge with
respect to this ordering and orient it in such a way that it goes from 0 to 1.
Similarly we define o} to be the i-th edge of our triangulation with respect
to the counter-clockwise ordering around the cusp 1 which goes from the
cusp 1 to the cusp 2. Let also o? be the i-th edge ordered around the cusp
2 which goes from the cusp 2 to the cusp 0.

Each marked surface of genus g = (p — 1)/2 with three punctures can
be triangulated by 2p ideal triangles. If we cut the surface open along the
edges of this triangulation, then we obtain 2p ideal triangles. To get the
surface back we glue the triangles along their boundary geodesics in the fixed
combinatorial pattern as above. The different points in 7 3 then differ by the
way this glueing is arranged.

Namely, for each glueing we have one degree of freedom which corresponds
to a left earthquake path along one of the geodesic arcs o . Using the marking
given by the distinguished points on the boundary of an ideal triangle and
the induced boundary orientation, the glueings of an ordered pair (7}, 7>) of
(oriented) ideal triangles along a boundary geodesic can be parametrized by
a real (left) sliding parameter. The glueing which identifies the distinguished
points corresponds to the parameter 0. A glueing where the distinguished point
on the boundary geodesic of the triangle 7 is mapped to the right of the
distinguished point on the boundary geodesic of the triangle T, corresponds
to a positive sliding parameter.

Following Thurston [T], in order to obtain a complete hyperbolic surface
from the 3p glueings of 2p ideal triangles in the above combinatorial way, it
is necessary and sufficient that at each of the three punctures of the resulting
surface the sum of all the sliding parameters for all geodesics which go to this
puncture vanishes. Thus if we denote by V C R? the linear subspace of all
vectors which are orthogonal to the vector (1,...,1), then there is a natural
bijection of 7,3 onto V3 =V xV xV which maps a surface M € 7,3 to
its 3p-tuple of sliding parameters.

Let now 7P be the piecewise geodesic in So, which consists of the arc a?
with the orientation reversed and the arc o, . If we compactify the surface
Seo by adding a point at each puncture, then the compactification of 4 is a
simple closed curve on S = S(p;k) which is freely homotopic to the closed
geodesic ¥ on S obtained by projecting a geodesic in a fundamental 2p-gon
€2 which connects the midpoints of the edges 2i 4+ 1 and 2i + 2k. Similarly,
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let k(1),k(2) € {2,...,p — 1} be such that k(1)(k — 1) + 1 =0 mod p and
k(k(2) — 1)+ 1 = 0 mod p and denote for j = 1,2 by «+/ the piecewise
geodesic which consists of the geodesic ol with the reversed orientation and
the geodesic alﬂrk(].). Write also k(0) = k. o

An earthquake path through S,, induced by the curve 7/ deforms the
surface S, by a family of glueings with sliding parameter —¢ along o,
sliding parameter ¢ along a{ +xg (¢ € R) and sliding parameter O otherwise
and hence this earthquake path gives rise to a smooth (in fact real analytic)
curve in 7, 3. From this observation the following is immediate.

LEMMA 5.1.  For every surface M € 1,5 the tangents of the earthquake
paths along the curves - span the tangent space of Tq3 at M.

Proof. Let M € 1,3 and denote by fij the tangent at M of the earthquake
path along o . We observed above that there is a linear isomorphism of the
vector space V° onto the tangent space of 7,3 at M which maps the point
O1,...,0p,a1,...,ap,b1,...,b,) € V° to the tangent vector Zid.j,f,-j. Since
the tangent at M of the earthquake path induced by fy/ 1S just 5{%,(@ — ¢ the
lemma follows. []

There is a natural real analytic submersion P of 7,3 onto 7, which is
equivariant under the action of the basic group I'. This submersion simply
maps a surface of genus g with 3 punctures to the surface obtained by
compactifying each puncture with a single point. For every § € 7, the fibre
of P over § consists of all surfaces in 7,3 which we obtain from S by
removing an ordered triple of pairwise distinct points. In particular, the fibre
is a real analytic submanifold of 7,5 of dimension 6. We denote by W
the 6-dimensional subbundle of the tangent bundle of 743 which is the
kernel of the differential of P. This bundle has a natural direct decomposition
W =W, ® W, & W, into two-dimensional subbundles W;. Here the bundle
W; is the tangent bundle of the fibres of the fibration 743 — T4, which we
obtain by adding for every surface M < 7,5 a single point at the punture j
of M.

For M € 7,5 the compactifications of the curves P'y,j are homotopically
nontrivial simple closed curves on PM . There is a unique free homotopy class
on M which can be represented by a closed curve which does not intersect
v and whose projection to PM is freely homotopic to the compactification

of Pv/. We denote by wij the unique geodesic on M representing this class.
We have.
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LEMMA 5.2. Let §l : Q be the tangent of the earthquake path along wl , fyl .
Then there are functions al: 1,3 — R such that {{ —al&] € W; @ Wiy,.

Proof. Let M € T3 and for i € {1,...,p},j = 0,1,2 consider the
piecewise geodesic 7/ and the geodesic w, on M. Since the number of
intersections between 7, and w, is the minimum of the number of intersections
between 7/ and any curve which is freely homotopic to w the geodesics w,
and v/ on M do not intersect. If we cut the surface M open along the curves
v/ and w, then the interior of one of the connected surfaces with boundary
which -we obtain in this way, say the surface C, is homeomorphic to an open
annulus. One boundary component of C is the curve zp{ , the second boundary
component has two punctures and consists of the curve ~/.

By construction, the curve @Z,J i1s non-separating and therefore there is a
simple closed geodesic 17 on M which neither intersects fyij nor @Z{ and such
that after cutting M along 1 we obtain two bordered surfaces Si,S,. The
surface §; is a surface of genus 1 with one geodesic boundary circle and two
punctures in its interior and contains the annulus C bounded by the curves
v/ and ¢l. The earthquake paths along the piecewise geodesic «/ and the
geodesic @b’ leave the hyperbolic length of a closed geodesic o on M fixed
if and only if o does not have a transverse intersection with fyl,w,. Thus
these earthquake paths define deformations of the hyperbolic structure on S
leaving the length of the boundary fixed.

The Teichmuller space of marked hyperbolic structures on the bordered
torus §; with two punctures and a boundary geodesic of fixed length is
6-dimensional. Its tangent bundle contains a 5-dimensional subbundle V
which consists of all infinitesimal deformations preserving the modulus of
a maximal (twice punctured) ring domain with core curve homotopic to W

We claim that this 5-dimensional subbundle V' contains the tangents of the
earthquake paths along the geodesic @b, and along the piecewise’geodesic /.

To see this let ¢ be the unique simple geodesic arc in §; which meets the
boundary geodesic n perpendicularly and which neither intersects 1/)1 nor -y .
Let S; be the compactification of S; which we obtain by simply adding one
point at each puncture. If we cut S; open along (, then we obtain a standard
ring domain A normalized by the fixed choice of a height, say the height 1,
with core curve homotopic to zﬁ’ and whose modulus is maximal among all
ring domains with this property [St]. The boundary of A consists of two circles
which contain each a copy of the arc ¢ as well as a nontrivial component
of the boundary geodesic 7. We mark the arc on each boundary component
which corresponds to the arc (. The surface S; is obtained by glueing the
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two marked arcs on the two boundary components with the restriction of a
complex linear map of the complex plane.

The compactification of %j is a closed curve in the ring domain A .which
is freely homotopic to the core curve. If we cut A open along this: curve
then by uniformization we obtain two standard ring domains A i_, A, with
one common boundary circle. The earthquake path induced by v/ consists
in cutting A along the common boundary circle of A;,A; and glueing the
ring domains A;,A, back with a new boundary identification. This procedure
does not change the lengths of the arcs 7 or ¢ nor the modulus of the
annulus A. In other words, the tangent of this earthquake path is contained
in V. The same argument applies to the earthquake path induced by the
geodesic wl. We conclude that this earthquake path induces a nontrivial
infinitesimal deformation of the conformal structure on the compactification
of our bordered punctured torus which leaves the modulus of a maximal ring
domain with core curve homotopic to {bv,] fixed. In particular, the tangent of
this earthquake path is contained in V but not in the kernel of the differential
of the natural map which assigns to a twice punctured bordered torus its
compactification.

As a conclusion, the tangent at M of the earthquake path induced by %
can be written in the form a; 1€/ +77, where 51 is the tangent of the earthquake
path along zp, , al € R and 77,. is contained in the bundle W; ® W;; . This
shows the lemma. [

Let now k > 3 and consider again the ideal surface S, associated to
the simple triangle surface S = S(k(k — 1) 4+ 1;k). Using the above notation,
for m =jp+1i (€ {0,1,2},i < p) write Um = i. For M € 7,3 and
m e {1,...,3p} denote by Cy(m) the length of the closed geodesic 12;,,1 on
M. The functions M € 7,3 — £y (1)) are real analytic [K]. This means that
we obtain a real analytlc: map Yo, of 7,3 into R* by mapping a surface

M to Y o(M) = (ﬁM(wl), . EM(¢3P)) From Lemma 5.1 and Lemma 5.2 we
conclude.

COROLLARY 5.3. The map W, is of maximal rank differentiable at S

. Proof. Following Wolpert [W], the tangent of the earthquake path along
! is dual with respect to the Weil Petersen Kahler form to the differential
of the length function of zpl on 7, 3. Thus to show the corollary it is enough
to show that the tangent space of T g3 At Soo 1S spanned by the tangents &/
of the earthquake paths along the curves /.
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Let G be the group of isometries of S., which is generated by the basic
group I'" and the group X of order 3 contained in the normalizer of I". The
group G acts on the Teichmiiller space 7,3 as a group of automorphism
which fixes the surface S..

Let A be the linear isometry of R? defined in canonical coordinates by
Alxy, .oy %p) = (X2,...,%,x1); then A X A X A=Az is a linear isometry of
R . If J; is the canonical generator of the normal cyclic subgroup I' of G
then we have ¥ .(J/1M) = A3V (M).

Let 7 be the linear isometry of R* = RP x R? x R? which cyclicly
permutes the factors R? in the direct decomposition of R*. There is a
permutation o of {1,...,p} of order p — 1 with diagonal extension o3 to
R’ such that the canonical generator J, of the cyclic subgroup X acts by
Yool o(M) = 03 0 T(Woo M).

The eigenvalues of the linear isometry A are the p-th roots of unity.
The eigenspace for the eigenvalue 1 is spanned by (1,...,1) and the other
generalized eigenspaces are of dimension 2. The map o3 o 7 permutes the
generalized eigenspaces of the diagonal extension Az which correspond to
eigenvalues different from 1 and acts as a cyclic group of permutations on
the eigenspace Z of A’ with respect to the eigenvalue 1. The orthogonal
complement Z+ of Z in R¥ decomposes into ¢ irreducible invariant
subspaces of dimension 6 each.

The surface So, is a fixed point for the action of G. By Lemma 5.1, the
tangent space of 7,3 at S, as a G-space is isomorphic to Z*, where the
differential of J; acts as the map A; and the differential of J, as o3 o 7.
The 6-dimensional tangent space W at S, of the fibre of the fibration
P: 1,5 — 71, is invariant under the action of G and for reasons of dimension
necessarily irreducible.

Let as before §,~j , Cij be the tangent at S, of the earthquake path along
Wl .

Denote by L the linear map which maps C,-j to f{ . Then L is G-equivariant
and by Lemma 5.2 its kernel is contained in the G-invariant space W. Since
W is irreducible under G the kernel of L is either trivial or coincides with W.

We have to show that the latter does not hold. For this we have to find a
tangent vector X € W such that LX # 0.

Consider the unit disc D in the complex plane with boundary circle S!
and hyperbolié metric. Let Dy, be the disc with the point 0 deleted. It carries
a unique complete hyperbolic metric for which the puncture is a standard
cusp. This metric admits an isometric circle action which induces the standard
parametrization of the boundary circle S! = [0, 27).
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Let Qp, Q be the regular ideal hyperbolic 2p-gon in Do, D whose set P
of vertices consists of the points jm/p (j=1,...,2p). These 2p-gons admit
a cyclic group of order 2p of isometries, and Qo hence is isometric to the
once punctured polygon which we obtain by cutting S, along the geodesics
of the canonical triangulation Jommg the cusps 1 and 2. “

For an interior point x of Q consider the polygon Q. = =Q \ {x} with
one puncture at x. The punctured polygon €, carries a hyperbolic metric of
finite volume such that the boundary consists of 2p geodesic lines, and it is
naturally triangulated into 2p ideal triangles.

Let v be a hyperbolic geodesic in D through v(0) = 0. For every r € R
there is a unique hyperbolic isometry ¥, of D which fixes the endpoints of
~ and maps () to 0. The image under ¥, of the punctured polygon €2
is an ideal hyperbolic polygon with puncture at O and whose vertices on S!
are the points in W,P. The punctured polygon W¥,£2, can be obtained from
Qy by an earthquake deformation along the geodesics which joins O to the
vertices of €2y as follows.

Consider an ordered triple (a,b,c) of 3 pairwise distinct points on the
boundary circle S! of Do arranged in counter clockwise order. These points
determine an ideal quadrangle O which decomposes Q into 2 ideal hyperbolic
triangles embedded in D, which have one vertex at 0. Let 77 be the triangle
with vertices a, b, and let T, be the triangle with vertices b, c. If the euclidean
distance between a and b is smaller than the distance between b and ¢ then
the glueing map which gives the quadrangle Q back from the triangles T
and 7, maps the distinguished point of the boundary geodesic of 7 to the
right of the distinguished point on the boundary geodesic of 7, with respect
to the boundary orientation of 7. In other words, with our above notation
the glueing corresponds to a positive sliding parameter.

The derivative of the restriction of W, to S! has a maximum at its
repelling fix point z; and a minimum at its attracting fix point zp. It is
strictly monotonous on each of the two components of S! — {z1,22}. Let
(z1,22) be the component which corresponds to an open interval in [0, 27)
with left endpoint z;. The above analysis shows that the deformation of the
polygon g which defines ¥,£2,(; has a negative sliding parameter for every
geodesic which joins O to a point in P N (z1,z2). The sliding parameter is
positive for all geodesics which join 0 to a point in P N (z3,z71).

Choose now < in such a way that its forward endpoint equals km/2p
and that its backward endpoint equals k7w /2p + . Let p be the reflection of
Q along ~y. This reflection induces an orientation reversing isometry of D,
which commutes with the above deformation of Q, along ~. Denote by 3




96 : : U. HAMENSTADT

the geodesi\c which connects the center 0 to (k+i)7w/2p (1 <i < 2p) and let
v; be the tangent of the earthquake path along ;. By symmetry, the tangent
at t = 0 of our deformation of Qy along v can be written in the form > a;;
where a; <0 and a;_, = —a; for i=1,...,p—1.

~

Consider now the geodesic 9. It intersects y perpendicularly and has
2k—2 > 2 additional intersections with the geodesics ;. For i € {1,...,k—1}
denote by 6; the oriented angle of the intersection of @Z? with the geodesic
B, where we write ¢; = 7/2 if the geodesics ; and - do not intersect. By
invariance under p we have 0;,—; — /2 = —(6; — 7/2).

Following Kerckhoff (see [K]), the derivative at t = 0 of the length of
{bv(l) under our deformation of €2y equals up to a positive constant the sum
> a;cosé;. But 0 > cosé; = —c0S0yp—; for 1 <i < k—1 and cosé; =0
otherwise and therefore the derivative of the length of v;bv(l) under our above
deformation of €2y does not vanish. In other words, the map L does not

vanish on W. This completes the proof of the corollary. [

Let now again p > 5 be arbitrary and write ¢ = (p — 1)/2. Using the
above notation, for M € 7,3 let zb,' be the closed geodesic on the surface
PM which is freely homotopic to the compactification of the curve v . For
S e, let Eg(zp{ ) be the length of wl. We then obtain a real analytic map
¥ of T into R¥ by mapping § to W(S) = (s(¥)), ..., Ls(4))).

Theorem B from the introduction is an immediate consequence of the
following.

LEMMA 5.4. The map Y is of maximal rank differentiable and injective.

Proof. Let again fij be the tangent of the earthquake path along the closed
geodesic 1) . By the results of Wolpert [W] it suffices to show that the tangent
space of 7, at any point S is spanned by the vectors & .

An arbitrary choice of three points in the complement of the curves W
on § defines a surface M € 7, 3. The earthquake path in 7, induced by Wi
naturally lifts to a path in 7, 3. The consideration in the proof of Lemma 5.2
shows that this lift is (up to parametrization and up to possibly moving the
punctures) just the earthquake path in S, along QZ{ € M. This implies by
Lemma 5.2 and Lemma 5.1 that the tangent space of 7, at M is spanned
by the vectors §,~j and shows that ¥ i1s of maximal rank differentiable. Since
the earthquake paths along the curves fyl-j parametrize 7,3 the map W is
moreover injective. [
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The next corollary is an immediate consequence of Lemma 5.3, Lemma
5.4, Proposition 4.8 and the results of Schmutz in [S1].

COROLLARY 5.5. The surfaces S(7;3), S(13;4), S(21;5) and their asso-
ciated ideal surfaces are maximal. ‘

] We conclude the paper with some remarks about the relation between our
{ triangulation and the structure of the Thurston boundary of Teichmiiller space.

Consider for the moment an arbitrary closed surface S. A geodesic current
" for § is a locally finite Borel-measure on the space of unoriented geodesics 1n
the hyperbolic plane H* which is invariant under the action of the fundamental
- group mi(S) of S. The space C of geodesic currents for S only depends on
the topological type of S. There is a bilinear form i on C, the so called
intersection form, which is continuous with respect to the weak* -topology
on C. The subset £ of C of all geodesic currents p with vanishing self-
~ intersection i(y, i) = O is the space of measured geodesic laminations and 1s
 homeomorphic to R%~6 [B].

Let PC and PL be the projectivization of the space of nonzero geodesic
currents and laminations. There is a natural continuous embedding J of the
Teichmilller space 7, into PC by mapping M € 7, to the projectivization
 [My] of its Lebesgue-Liouville current )y . The closure of J(1y) in PC is
just J(7) UPL [BI.

Every simple closed geodesic ¢ on S can naturally be viewed as a
measured geodesic lamination and hence induces a linear functional on C via
p— i(p, ). If Ay is the Lebesgue-Liouville current of a point M € 7, in
Teichmiiller space then i(Ay, ) = fy(¢) is just the M-length of 1 [B]. In
particular, the map M € T, — i(A\y, ) is real analytic.

Recall that a collection )1, ..., of simple closed curves on S fills up
if every geodesic on S intersects one of the curves 1; transversely. This
is equivalent to saying that the complement of {v1,...,9;} in S consists
of a finite collection of connected simply connected regions. If 1,..., 9%
fills up then for every measured geodesic lamination p € L the vector
(i(1, 1), . . ., i(hx, 1)) € R does not vanish. Thus if we denote by PR* the
real projective space of all lines in R¥ and for 0 # x € R* by [x] € PR* the
line in R through x then the map A: M € T, — [£y (1), . .., lu(r)] € PR
extends continuously to the Thurston compactification PL of 7, by mapping
the projective class [u] of pu € £ to A([u]) = i@, w), ..., i, wl. A
family (¢1,...,¢) of simple closed curves on S is called parametrizing for
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PL if the-map [u] € PL — A((u]) = [i(1, ), - - -, (i, w)] € PR* is an
embedding.

It is also possible to define geodesic currents and measured geodesic
laminations for hyperbolic surfaces with cusps. By definition, a measured
geodesic lamination of such a surface M with cusps is a compact subset of
M which is foliated by geodesics and equipped with a transverse invariant
measure.

Let now p>5 and let k€ {2,...,p— 1} be such that k and k— 1 are
prime to p. Denote by S, the ideal surface associated to the triangle surface
S(k;p) and let %j the piecewise geodesics as in Lemma 5.1. If ¢ is any
closed geodesic in S, then 1 does not disappear in the cusps of S, and
hence 1 intersects each of the geodesics fy,-j transversely in a finite number
of points. We denote by i(zb,fyl-j ) the number of intersections of ¢ with 7{ :
Since measured laminations on S., have compact support, intersection of
closed geodesics with one of the curves fyij extends to a continuous CONvex-
linear functional i(%j ,-) on the space L., of measured geodesic laminations
on S -

We have :

LEMMA 5.6. The map p € Lo — A(p) =

GO, 1), - -y T80 1), KL 1), - By 10, 5V 5 ), -+ s 1))
is an embedding.

Proof. It suffices to show that every closed geodesic 7 is determined
by A(x)). For this consider again the edges ol of the canonical triangulation
of S.,. It follows immediately from our construction that A(z) determines
uniquely the tuple

C) = (@, ), . . ., i(ad, ¥), (e, ), - .., ilay, ), i(af, ), .+ , o, ¥)

(compare the proof of Lemma 5.1). Thus it is enough to show that we can
reconstruct ¢ from C(3)).

The arcs oz; define a triangulation of S., into 2p triangles with vertices
at the cusps and such that each arc is the side of exactly two triangles. Let 1
be any closed geodesic on S, and let T be a triangle from the triangulation
with sides [, 2, 83. Write j; = i(8;,%) and assume that j; > jo > j3. Since
T is contractible in the compactification of S, the total intersection number
j1 +ja +js of 1 with the boundary of T is even and hence j, +j3 —j1 18
even as well. Moreover we have j; < j, 4 j3. Draw %0’2 +j3 —j1) simple arcs
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connecting the sides [, and [33,j2 — %(}'2 +j3 — j1) simple arcs connecting the
sides 01 and [,j3 — %(]'2 + j3 — j1) simple arcs connecting the sides (; and
B; in such a way that all these arcs are disjoint. The configuration of these
arcs in T is determined up to isotopy by ji > j» > j3. But this means that ¢
is uniquely determined by C(¢)) (compare the discussion in [FLP]) and hence
the lemma follows. [

Recall that a closed curve v on S, is cusp-parallel if 1 is homotopic to
a multiple of a circle surrounding one of the cusps of Su,. This is equivalent
to saying that the infimum of the lengths of all curves in So, which are freely
homotopic to v is zero (notice that by abuse of notation we call a contractible
curve cusp-parallel as well). A closed curve 1 on So is freely homotopic to
a closed geodesic if and only if 7 is not cusp-parallel.

We define now an equivalence relation on the set of all closed curves on
Seo as follows: Let v,m: [0,1] — S. be parametrized closed curves. Call
Y, mn equivalent if there is a subdivision 0 < f; < --- <t <1 of [0,1] and
for each i there is a cusp-parallel loop ~; through (#;) such that 7 is freely
homotopic to o, Ut -+ Ui U1

This is easily seen to be an equivalence relation. The equivalence classes
of this relation are in 1 — 1—correspondence to the free homotopy classes
of closed curves on the surface S. We denote the class of v by [¢/]. For a
closed curve ¥ on S, and for i € {1,...,p}, j=0,1,2 define T, )
to be the infimum of the number of intersections with %_j of all curves 7
equivalent to .

Let ¢ be the closed geodesic on the surface S which is freely homotopic
to the compactification of fy,-j viewed as a curve on §S. For every closed
geodesic 7 on § which is different from a multiple of ¢{ the number of
intersection points between 1 and wij is the infimum i(n,zp,j ) of the number
of intersection points between all curves freely homotopic to 7, ¢ij :

We have:

LEMMA 5.7. j(C,fy,-j) = i([(],w,j) for every closed curve ( on So

Proof.  For every closed curve ¢ on S, there is an equivalent curve 7
such that J(¢,/) equals the number of intersection points of 7 with %j .
Now if we compactify S., by adding a point at each cusp, then we obtain a
surface M of genus g and 1 and ( are freely homotopic on M, v is freely
homotopic to the curve W But this means that 7((, ”ylj) > i([(], 1/1,
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On the other hand, if ¢ is any closed curve on S with a minimal number
of intersections with 1/}{ in its free homotopy class, then we can remove
from S three points which do not lie on ¢ and such that two of these
points lie on w,j . If we call the resulting surface S., then { defines a closed
curve (o On S, and (¢ ,wij ) equals the number of intersection points
between (o and fy,-j (where fy,] 1s given as before). This then shows that

T (Coor W) < G0 = i), ) O

As an immediate consequence of Lemma 5.6 and Lemma 5.7 we obtain

COROLLARY 5.8. The curves 7,b,-j on S are parametrizing for PL. In
particular, for every g > 2 there is a family of 6g+ 3 free homotopy classes
on a closed surface of genus g which is parametrizing for PL.

REMARK. From [FLP] one immediately obtains a family of 9¢g —9 closed
curves on a closed surface of genus g which is parametrizing for PL. To my
knowledge, the minimal number of simple closed curves with this property is
not known.
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