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of 5. In particular, the cardinality of the quotient of the isometry group of 5

under the subgroup fixing a given systole equals 6g + 3.

To complete the proof of our proposition we have to investigate the

ideal surfaces 5oo associated to simple triangle surfaces S(p\k). The above

considerations are equally valid for these surfaces and show that 5^ has more
than 4g + 4 systoles if and only if p divides k(k — 1) + 1 and if the length
lo of a lift of a side pairing orbit for 5^ is not bigger than 6 arccosh |. An
explicit computation shows as before that this is the case if and only if 5^
is associated to one of the surfaces 5(7; 3), 5(13;4), 5(21; 5).

5. Proof of the theorem

Using the notation of Lemma 2.2, our goal is to show that the triangle
surfaces 5(7; 3), 5(13; 4), 5(21; 5) and their associated ideal surfaces are maximal.

Following Schmutz [SI], for this it is enough to show that for each of
these surfaces 5 the Teichmüller space is parametrized in a neighborhood of
5 by the lengths of those closed geodesies which are freely homotopic to a

systole on 5.

Let for the moment p > 5 be an arbitrary odd number and let
k G {2,1} be such that k and k— 1 are prime to p. Write
g (p - l)/2. As in the introduction let T9}3 be the Teichmüller space
of surfaces of genus g with 3 punctures. Let 5 S{p\k) and let 5^ be the
ideal surface associated to 5. The basic group T of orientation preserving
isometries of 5 acts as a group of isometries on the surface 5^.

It will be useful to give a geometric description of 5^. For this let
be an ideal triangle in H2 and let T C be the finite equilateral triangle
inscribed in A^ which is invariant under all isometries of Aoo. The vertices
of T determine a distinguished point on each side of A^.

There is a unique way to glue 2p copies of A^ to a disc A with one
puncture in its interior and 2p punctures on the boundary in such a way that
the glueing maps identify the distinguished points on the sides of A^. The
boundary of A then consists of 2p geodesic lines. Each of the triangles which
makes up A contains exactly one of these boundary geodesies. We number the
boundary geodesies in counter clockwise order and glue the 2/+1-th geodesic
to the 2i+2k-th geodesic by an orientation reversing isometry which identifies
the distinguished points on these geodesies. The resulting surface is the ideal
surface Sqq associated to 5. Notice that Sqq admits a canonical triangulation
into ideal triangles which corresponds to the canonical triangulation of 5.
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Denote by 0,1,2 the cusps of S^. There are p edges of the canonical
triangulation which connect the cusp 0 to the cusp 1. There is a natural
counter clockwise ordering of these edges which is induced by the ordering
of the ideal triangles around the cusp 0. We denote by a9 the z'-th edge with
respect to this ordering and orient it in such a way that it goes from 0 to 1.

Similarly we define a] to be the z-th edge of our triangulation with respect
to the counter-clockwise ordering around the cusp 1 which goes from the

cusp 1 to the cusp 2. Let also of be the z-th edge ordered around the cusp
2 which goes from the cusp 2 to the cusp 0.

Each marked surface of genus g (p — l)/2 with three punctures can
be triangulated by 2p ideal triangles. If we cut the surface open along the
edges of this triangulation, then we obtain 2p ideal triangles. To get the
surface back we glue the triangles along their boundary geodesies in the fixed
combinatorial pattern as above. The different points in Tgj3 then differ by the

way this glueing is arranged.

Namely, for each glueing we have one degree of freedom which corresponds
to a left earthquake path along one of the geodesic arcs aj. Using the marking
given by the distinguished points on the boundary of an ideal triangle and
the induced boundary orientation, the glueings of an ordered pair (Tx, T2) of
(oriented) ideal triangles along a boundary geodesic can be parametrized by
a real (left) sliding parameter. The glueing which identifies the distinguished
points corresponds to the parameter 0. A glueing where the distinguished point
on the boundary geodesic of the triangle Tx is mapped to the right of the

distinguished point on the boundary geodesic of the triangle T2 corresponds
to a positive sliding parameter.

Following Thurston [T], in order to obtain a complete hyperbolic surface
from the 3p glueings of 2p ideal triangles in the above combinatorial way, it
is necessary and sufficient that at each of the three punctures of the resulting
surface the sum of all the sliding parameters for all geodesies which go to this

puncture vanishes. Thus if we denote by V cW the linear subspace of all
vectors which are orthogonal to the vector (1,..., 1), then there is a natural
bijection of Tg>3 onto V3 V x V x V which maps a surface M e T9t3 to
its 3p-tuple of sliding parameters.

Let now 7P be the piecewise geodesic in ^ which consists of the arc a®

with the orientation reversed and the arc oPi+k. If we compactify the surface
^oo by adding a point at each puncture, then the compactification of 7i° is a

simple closed curve on S S(p\k) which is freely homotopic to the closed
geodesic ipf on S obtained by projecting a geodesic in a fundamental 2/?-gon
Q which connects the midpoints of the edges 2z + 1 and 2z + 2k. Similarly,
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let k(l),k(2) G {2,... ,p — 1} be such that k(l)(k - 1) + 1 0 mod p and

k{k{2) — 1) + 1 0 mod p and denote for j 1,2 by 7/ the piecewise
geodesic which consists of the geodesic a{ with the reversed orientation and
the geodesic aji+k{jy Write also k(0) k.

An earthquake path through Soo induced by the curve 7/ deforms the
surface ^ by a family of glueings with sliding parameter —t along a{,
sliding parameter t along (t G R) and sliding parameter 0 otherwise
and hence this earthquake path gives rise to a smooth (in fact real analytic)
curve in Tgß. From this observation the following is immediate.

LEMMA 5.1. For every surface M G Tgß the tangents of the earthquake
paths along the curves 7/ span the tangent space of Tgß at M.

Proof Let M G Tgß and denote by £/ the tangent at M of the earthquake
path along a{. We observed above that there is a linear isomorphism of the
vector space V3 onto the tangent space of Tgß at M which maps the point
(Oi,..., Op, a\,..., ap, b\,..., bp) G F3 to the tangent vector • Since
the tangent at M of the earthquake path induced by 7/ is just - £/ the
lemma follows.

There is a natural real analytic submersion P of Tgß onto Tg which is
equivariant under the action of the basic group T. This submersion simply
maps a surface of genus g with 3 punctures to the surface obtained by
compactifying each puncture with a single point. For every S G Tg the fibre
of P over S consists of all surfaces in Tgß which we obtain from S by
removing an ordered triple of pairwise distinct points. In particular, the fibre
is a real analytic submanifold of Tgß of dimension 6. We denote by W
the 6-dimensional subbundle of the tangent bundle of Tgß which is the
kernel of the differential of P. This bundle has a natural direct decomposition
W W0 0 W\ © W2 into two-dimensional subbundles Wj. Flere the bundle
Wj is the tangent bundle of the fibres of the fibration Tgß -> Tgß which we
obtain by adding for every surface M G Tgß a single point at the punture jof M.

For M G Tgß the compactifications of the curves Py{ are homotopically
nontrivial simple closed curves on PM. There is a unique free homotopy class
on M which can be represented by a closed curve which does not intersect
7/ and whose projection to PM is freely homotopic to the compactification
of Py{. We denote by the unique geodesic on M representing this class.
We have.
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LEMMA 5.2. Let £/, 0/ £/ze tangent of the earthquake path along 00, 7/.
TTzezz £/zere are functions a{ : Tgß -* R such that 0/ — a{0/ G W/ 0 W/+i.

Proof Let M G 7^j3 and for z G (l,...,/?},j 0,1,2 consider the

piecewise geodesic 7/ and the geodesic 00 on M. Since the number of
intersections between 7/ and 00 is the minimum of the number of intersections
between 7/ and any curve which is freely homotopic to 00, the geodesies 00
and 7/ on M do not intersect. If we cut the surface M open along the curves
7/ and 00 then the interior of one of the connected surfaces with boundary
which we obtain in this way, say the surface C, is homeomorphic to an open
annulus. One boundary component of C is the curve 00, the second boundary
component has two punctures and consists of the curve 7/.

By construction, the curve 00 is non-separating and therefore there is a

simple closed geodesic 7 on M which neither intersects 7/ nor 00 and such

that after cutting M along 77 we obtain two bordered surfaces Si,£2- The
surface Si is a surface of genus 1 with one geodesic boundary circle and two
punctures in its interior and contains the annulus C bounded by the curves

7/ and 00. The earthquake paths along the piecewise geodesic 7/ and the

geodesic 00 leave the hyperbolic length of a closed geodesic cr on M fixed

if and only if a does not have a transverse intersection with 7/, 00. Thus
these earthquake paths define deformations of the hyperbolic structure on Si

leaving the length of the boundary fixed.

The Teichmüller space of marked hyperbolic structures on the bordered

torus Si with two punctures and a boundary geodesic of fixed length is

6-dimensional. Its tangent bundle contains a 5-dimensional subbundle V
which consists of all infinitesimal deformations preserving the modulus of
a maximal (twice punctured) ring domain with core curve homotopic to 00.

We claim that this 5 -dimensional subbundle V contains the tangents of the

earthquake paths along the geodesic 00 and along the piecewise'geodesic 7/.
To see this let 0 be the unique simple geodesic arc in Si which meets the

boundary geodesic 77 perpendicularly and which neither intersects 00 nor 7/.
Let Si be the compactification of Si which we obtain by simply adding one

point at each puncture. If we cut Si open along 0, then we obtain a standard

ring domain A normalized by the fixed choice of a height, say the height 1,

with core curve homotopic to 00 and whose modulus is maximal among all

ring domains with this property [St]. The boundary of A consists of two circles

which contain each a copy of the arc 0 as well as a nontrivial component
of the boundary geodesic rj. We mark the arc on each boundary component
which corresponds to the arc 0. The surface Si is obtained by glueing the



NEW EXAMPLES OF MAXIMAL SURFACES 93

two marked arcs on the two boundary components with the restriction of a

complex linear map of the complex plane.

The compactification of 7/ is a closed curve in the ring domain A which

is freely homotopic to the core curve. If we cut A open along this? curve

then by uniformization we obtain two standard ring domains A\,A% with

one common boundary circle. The earthquake path induced by 7/ consists

in cutting A along the common boundary circle of At,A2 and glueing the

ring domains Ai,A2 back with a new boundary identification. This procedure

does not change the lengths of the arcs 7 or £ nor the modulus of the

annulus A. In other words, the tangent of this earthquake path is contained

in V. The same argument applies to the earthquake path induced by the

geodesic fj. We conclude that this earthquake path induces a nontrivial

infinitesimal deformation of the conformai structure on the compactification
of our bordered punctured torus which leaves the modulus of a maximal ring
domain with core curve homotopic to fixed. In particular, the tangent of
this earthquake path is contained in V but not in the kernel of the differential

of the natural map which assigns to a twice punctured bordered torus its

compactification.
As a conclusion, the tangent at M of the earthquake path induced by 7/

can be written in the form a{£/ -f 7/ where £/ is the tangent of the earthquake

path along fi, a{ G R and 77/ is contained in the bundle Wj ® Wj+ This
shows the lemma.

Let now k > 3 and consider again the ideal surface associated to
the simple triangle surface S S(k(k — 1) + 1 ;k). Using the above notation,
for m jp + i (j G {0,1,2}, i < p) write ijjj. For M G Tgj and

m G {1,... ,3p} denote by the length of the closed geodesic ipm on
M. The functions M G Tg^ are real analytic [K]. This means that

we obtain a real analytic map of Tg}3 into R3p by mapping a surface

M to (fWC0i), • • • 1 !mO03/?))- From Lemma 5.1 and Lemma 5.2 we
conclude.

COROLLARY 5.3. The map is of maximal rank differentiable at S^.

Proof Following Wolpert [W], the tangent of the earthquake path along
is dual with respect teethe Weil Petersen Kähler form to the differential

of the length function of on Tgj3. Thus to show the corollary it is enough
to show that the tangent space of Tgat is spanned by the tangents £/
of the earthquake paths along the curves f>{.
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Let G be the group of isometries of which is generated by the basic

group T and the group X of order 3 contained in the normalizer of F. The

group G acts on the Teichmüller space Tg>3 as a group of automorphism
which fixes the surface

Let A be the linear isometry of Rp defined in canonical coordinates by
A(xi,,,. 7xp) — fa, • • • ,xp,xi) ; then A x A x A A3 is a linear isometry of
R3p. If Jx is the canonical generator of the normal cyclic subgroup T of G
then we have A3T/00(M).

Let t be the linear isometry of R3p Rp x RP x Rp which cyclicly
permutes the factors Rp in the direct decomposition of R3p. There is a

permutation a of {1of order p — 1 with diagonal extension a3 to
R3p such that the canonical generator of the cyclic subgroup X acts by

VooW^^orCPooM).
The eigenvalues of the linear isometry A are the p-th roots of unity.

The eigenspace for the eigenvalue 1 is spanned by (1,..., 1) and the other

generalized eigenspaces are of dimension 2. The map a3 o r permutes the

generalized eigenspaces of the diagonal extension A3 which correspond to
eigenvalues different from 1 and acts as a cyclic group of permutations on
the eigenspace Z of A3 with respect to the eigenvalue 1. The orthogonal
complement Z1- of Z in R3p decomposes into g irreducible invariant
subspaces of dimension 6 each.

The surface is a fixed point for the action of G. By Lemma 5.1, the

tangent space of Tg^ at S00 as a G-space is isomorphic to Z3-, where the

differential of J\ acts as the map A3 and the differential of J2 as <73 or.
The 6-dimensional tangent space W at of the fibre of the fibration
P : Tgß —» Tg is invariant under the action of G and for reasons of dimension
necessarily irreducible.

Let as before £/,£/ be the tangent at Soo of the earthquake path along

Denote by L the linear map which maps (/ to £/ Then L is G-equivariant
and by Lemma 5.2 its kernel is contained in the G-invariant space W. Since
W is irreducible under G the kernel of L is either trivial or coincides with W.

We have to show that the latter does not hold. For this we have to find a

tangent vector X G W such that LX ^ 0.
Consider the unit disc D in the complex plane with boundary circle Sl

and hyperbolic metric. Let Doo be the disc with the point 0 deleted. It carries

a unique complete hyperbolic metric for which the puncture is a standard

cusp. This metric admits an isometric circle action which induces the standard

parametrization of the boundary circle Sl [0, 2tt)
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Let be the regular ideal hyperbolic 2p-gon in £>oo,D whose set V
of vertices consists of the points jn/p (j 1,... ,2p). These 2p-gons admit

a cyclic group of order 2p of isometries, and Qo hence is isometric to the

once punctured polygon which we obtain by cutting Sao along the geodesies

of the canonical triangulation joining the cusps 1 and 2.

For an interior point x of Q consider the polygon Q \ {x} with

one puncture at x. The punctured polygon Q,x carries a hyperbolic metric of
finite volume such that the boundary consists of 2p geodesic lines, and it is

naturally triangulated into 2p ideal triangles.

Let 7 be a hyperbolic geodesic in D through 7(0) 0. For every t G R
there is a unique hyperbolic isometry *¥t of D which fixes the endpoints of

7 and maps 7(0 to 0. The image under of the punctured polygon Q7(#

is an ideal hyperbolic polygon with puncture at 0 and whose vertices on Sl

are the points in The punctured polygon vF?Q7(r) can be obtained from
Qo by an earthquake deformation along the geodesies which joins 0 to the

vertices of £3o as follows.
Consider an ordered triple (a,b,c) of 3 pairwise distinct points on the

boundary circle Sl of Doq arranged in counter clockwise order. These points
determine an ideal quadrangle Q which decomposes Q into 2 ideal hyperbolic
triangles embedded in Doo which have one vertex at 0. Let T\ be the triangle
with vertices a, b, and let T2 be the triangle with vertices Z?, c. If the euclidean
distance between a and b is smaller than the distance between b and c then
the glueing map which gives the quadrangle Q back from the triangles 7j
and T2 maps the distinguished point of the boundary geodesic of T\ to the

right of the distinguished point on the boundary geodesic of T2 with respect
to the boundary orientation of T2. In other words, with our above notation
the glueing corresponds to a positive sliding parameter.

The derivative of the restriction of mt to Sl has a maximum at its
repelling fix point z\ and a minimum at its attracting fix point z2. It is

strictly monotonous on each of the two components of Sl — {zi,z2}- Let
(zi,z2) be the component which corresponds to an open interval in [0, 2tt)
with left endpoint z 1 • The above analysis shows that the deformation of the

polygon £2o which defines vFrQ7(?) has a negative sliding parameter for every
geodesic which joins 0 to a point in V D (zi, Z2) - The sliding parameter is

positive for all geodesies which join 0 to a point in V H (z2,zi).
Choose now 7 in such a way that its forward endpoint equals kir/lp

and that its backward endpoint equals kir/lp + ir. Let p be the reflection of
£1 along 7. This reflection induces an orientation reversing isometry of
which commutes with the above deformation of Q0 along 7. Denote by ß{
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the geodesic which connects the center 0 to (k+i)7r/2p (1 < i < 2p) and let
Vi be the tangent of the earthquake path along ßt. By symmetry, the tangent
at t 0 of our deformation of £2o along 7 can be written in the form Y ag/,
where a, < 0 and at-p — —a, for i 1,... yp — 1.

Consider now the geodesic It intersects 7 perpendicularly and has

2k—2>2 additional intersections with the geodesies ßt. For z G {1,... 1}
denote by 6t the oriented angle of the intersection of 0° with the geodesic

ßi, where we write <5/ ir/2 if the geodesies ßt and 7 do not intersect. By
invariance under p we have 62,7-1 — 7r/2 —(<5/ — 7r/2).

Following Kerckhoff (see [K]), the derivative at t 0 of the length of
under our deformation of Qo equals up to a positive constant the sum

Y cos <5/. But 0 > cos 6, — cos 62p-i for 1 < i < k — 1 and cos ^ 0

otherwise and therefore the derivative of the length of under our above

deformation of £2o does not vanish. In other words, the map L does not
vanish on W. This completes the proof of the corollary.

Let now again p > 5 be arbitrary and write g (p — l)/2. Using the

above notation, for M G Tgß let ipj be the closed geodesic on the surface

PM which is freely homotopic to the compactification of the curve 7/. For
S G Tg let £s(tpJi) be the length of ß{. We then obtain a real analytic map

of Tg into R3p by mapping S to *¥(S) (4C0?), • • •

Theorem B from the introduction is an immediate consequence of the

following.

LEMMA 5.4. The map T* is of maximal rank differentiable and injective.

Proof Let again £/ be the tangent of the earthquake path along the closed

geodesic ip{. By the results of Wolpert [W] it suffices to show that the tangent

space of Tg at any point S is spanned by the vectors £/.

An arbitrary choice of three points in the complement of the curves f>{

on S defines a surface M G Tg>3. The earthquake path in Tg induced by -0/

naturally lifts to a path in Tgp. The consideration in the proof of Lemma 5.2

shows that this lift is (up to parametrization and up to possibly moving the

punctures) just the earthquake path in Soo along G M. This implies by
Lemma 5.2 and Lemma 5.1 that the tangent space of Tg at M is spanned

by the vectors £/ and shows that T1 is of maximal rank differentiable. Since

the earthquake paths along the curves 7/ parametrize Tg?3 the map T* is

moreover injective.



NEW EXAMPLES OF MAXIMAL SURFACES 97

The next corollary is an immediate consequence of Lemma 5.3, Lemma

5.4, Proposition 4.8 and the results of Schmutz in [SI].

COROLLARY 5.5. The surfaces 5(7; 3), 5(13; 4), 5(21; 5) and their

associated ideal surfaces are maximal

I We conclude the paper with some remarks about the relation between our

•\ triangulation and the structure of the Thurston boundary of Teichmüller space,

j Consider for the moment an arbitrary closed surface 5. A geodesic current
1 for 5 is a locally finite Borel-measure on the space of unoriented geodesies in

j the hyperbolic plane H2 which is invariant under the action of the fundamental
I

group 7Ti (5) of 5. The space C of geodesic currents for 5 only depends on

i the topological type of 5. There is a bilinear form i on C, the so called

intersection form, which is continuous with respect to the weak -topology

on C. The subset C of C of all geodesic currents p with vanishing self-

j intersection i(p, p) 0 is the space of measured geodesic laminations and is

I homeomorphic to R6^-6 [B].

Let VC and VC be the projectivization of the space of nonzero geodesic

currents and laminations. There is a natural continuous embedding J of the

Teichmüller space Tg into VC by mapping M G Tg to the projectivization
I [Am] of its Lebesgue-Liouville current XM. The closure of J(Tg) in VC is

just J(Tg) U VC [B].

Every simple closed geodesic f on 5 can naturally be viewed as a

measured geodesic lamination and hence induces a linear functional on C via
I p iirft,/x). If Am is the Lebesgue-Liouville current of a point M e Tg in

Teichmüller space then /(Am,^) -4?WO is just the M-length of [B]. In

particular, the map M E Tg —» /(^AbVO is real analytic,
j Recall that a collection ipk of simple closed curves on 5 fills up

if every geodesic on 5 intersects one of the curves tpj transversely. This

|| is equivalent to saying that the complement of {^i,...,t/y} in 5 consists

of a finite collection of connected simply connected regions. If
I fills up then for every measured geodesic lamination p e C the vector

(i'O0i,/x),.... i(ibk, AO) E does not vanish. Thus if we denote by PRk the
j real projective space of all lines in R^ and for 0 / x G R^ by [x] G PRk the

line in R^ through x then the map A: M e Tg —» [^rO/hX • • • >4fC0fc)] E PRk

extends continuously to the Thurston compactification VC of Tg by mapping
I the projective class [p] of p ê C to A([p]) [/('0i,/i),... rf(îrf,p)\. A

family (f>\,.. »
5 irf) of simple closed curves on 5 is called parametrizing for
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VC if the map [p] G VC —» A([p]) — p)^-** fK^k.p)] £ FR*" is an

embedding.

It is also possible to define geodesic currents and measured geodesic

laminations for hyperbolic surfaces with cusps. By definition, a measured

geodesic lamination of such a surface M with cusps is a compact subset of

M which is foliated by geodesies and equipped with a transverse invariant

measure.

Let now p > 5 and let k G {2,... ,p — 1} be such that k and k - 1 are

prime to p. Denote by Soo the ideal surface associated to the triangle surface

S(k;p) and let 7/ the piecewise geodesies as in Lemma 5.1. If ip is any

closed geodesic in then does not disappear in the cusps of and

hence ip intersects each of the geodesies 7/ transversely in a finite number

of points. We denote by Kf>,1Ji) the number of intersections of f with 7/.
Since measured laminations on have compact support, intersection of
closed geodesies with one of the curves 7/ extends to a continuous convex-

linear functional Kit •>
•) on the space C^ of measured geodesic laminations

on Soq.

We have:

Lemma 5.6. The map p G £00 —> Mp) —

(z(7i aOj • • • > Kip 1 Kii 5 aOj • • • 5 Kip 1 Kiq >
aO? • • • *"(7/? m))

LS ßft embedding.

Proof. It suffices to show that every closed geodesic ijj is determined

by A(V9. For this consider again the edges aj of the canonical triangulation

of Soo. It follows immediately from our construction that A(f) determines

uniquely the tuple

C(ip)(i(a?, </>), • • •, i(0ip, VO, i(a\,</>),••,'(<7 V), '(<7 VO, • •••, V))

(compare the proof of Lemma 5.1). Thus it is enough to show that we can

reconstruct tpfromC(ip).
The arcs aj define a triangulation of into 2 triangles with vertices

at the cusps and such that each arc is the side of exactly two triangles. Let

be any closed geodesic on SrXj and let T be a triangle from the triangulation

with sides Write j, i(ßi,ip) and assume that /, >j2 >h - Since

T is contractible in the compactification of the total intersection number

7i+h +h °f 'lP with the boundary of T is even and hence j2 + 73 ~ h is

even as well. Moreover we have j\ <72+73 • Draw 0*2+73 _7i) simple arcs
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connecting the sides ß2 and ß2j2 — +73 —j\) simple arcs connecting the

sides ßx and ß2J3 - \iji +h ~7i) simple arcs connecting the sides ßx and

ßy in such a way that all these arcs are disjoint. The configuration of these

arcs in T is determined up to isotopy by j\ > j2 > 73 • But this means that ip

is uniquely determined by C(ip) (compare the discussion in [FLP]) and hence

the lemma follows.

Recall that a closed curve ip on Soo is cusp-parallel if ip is homotopic to

a multiple of a circle surrounding one of the cusps of Soo. This is equivalent

to saying that the infimum of the lengths of all curves in Soo which are freely

homotopic to ip is zero (notice that by abuse of notation we call a contractible

curve cusp-parallel as well). A closed curve ip on Soo is freely homotopic to

a closed geodesic if and only if ip is not cusp-parallel.

We define now an equivalence relation on the set of all closed curves on

Soo as follows: Let ß,rj: [0,1] —Soo be parametrized closed curves. Call

ß>,r] equivalent if there is a subdivision 0 < t\ < • • • < % < 1 of [0,1] and

for each i there is a cusp-parallel loop 7; through %p{tß such that 77 is freely

homotopic to îp\[oA] U 71 • • • U 7^ U ip\[tkli] •

This is easily seen to be an equivalence relation. The equivalence classes

of this relation are in 1 — 1 — correspondence to the free homotopy classes

of closed curves on the surface S. We denote the class of ip by \ip]. For a

closed curve xp on Soo and for i G {1,, j 0,1,2 define J(tp,ji)
to be the infimum of the number of intersections with 7/ of all curves 77

equivalent to ip.

Let ip{ be the closed geodesic on the surface S which is freely homotopic
to the compactification of 7/ viewed as a curve on S. For every closed

geodesic 77 on S which is different from a multiple of ip{ the number of
intersection points between 77 and %pi is the infimum i(ipip{) of the number
of intersection points between all curves freely homotopic to 77, -0/.

We have:

LEMMA 5.7. JiC.li) KiO^i) for every closed curve £ on Soo-

Proof For every closed curve £ on there is an equivalent curve 77

such that ^(£,7/) equals the number of intersection points of 77 with 7/.
Now if we compactify Soo by adding a point at each cusp, then we obtain a
surface M of genus g and 77 and £ are freely homotopic on Af, 7/ is freely
homotopic to the curve ipj. But this means that £/"(£, 7/) > i(K],7).
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On the other hand, if £ is any closed curve on S with a minimal number
of intersections with in its free homotopy class, then we can remove
from S three points which do not lie on £ and such that two of these

points lie on iß{. If we call the resulting surface Soo then £ defines a closed
curve Coo on S^, and equals the number of intersection points
between Coo and 7/ (where 7/ is given as before). This then shows that
^(Coo, 7/) < KCt W> KKoolM)

As an immediate consequence of Lemma 5.6 and Lemma 5.7 we obtain

COROLLARY 5.8. The curves ijjj on S are parametrizing for VC. In
particular, for every g > 2 there is a family of 6g + 3 free homotopy classes

on a closed surface of genus g which is parametrizing for VC.

Remark. From [FLP] one immediately obtains a family of 9g — 9 closed

curves on a closed surface of genus g which is parametrizing for VC. To my
knowledge, the minimal number of simple closed curves with this property is
not known.
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