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82 U. HAMENSTADT

b) The arcs (; and (4 do not intersect.

Ey4

E3

In this case either the arc Cl intersects the arc Cg or the arc C4 intersects
the arc §2 Assume that the second case holds.

Let again E;, E, be the endpoints of Cz where E; lies on the edge b
and let E4 be the endpoint of the arc QN“4 on the edge b. Since C4 meets b
orthogonally at E; and has its second endpoint E3 on the side a, the angle
at E4 of the triangle with vertices Ej, E4, E, is strictly bigger than 5 . This
means that the distance between E, and Ej is smaller than the length of the
arc 52 and therefore the length of Z 1s bigger than the circumference of the
triangle with vertices E,E3,E4. In particular, this length is bigger than the
length of the A-orbit 7;.

This completes the proof of our lemma. [

As an immediate corollary of Lemma 3.6 and Lemma 3.5 we obtain

COROLLARY 3.7. A C-orbit in A\ does not lift to a systole on S.

4. LENGTH ESTIMATES FOR SYSTOLES

In this section we complete the geometric description of the systoles of a
simple triangle surface and its associated ideal surface. As a consequence we
obtain that a simple triangle surface which is different from one of the three
surfaces listed in the introduction is not maximal.

We resume the assumptions and notations from Section 3. Our goal is
to describe all B-orbits in the equilateral triangle A with angle 7/p or in
an ideal triangle A, which lift to a systole on a simple triangle surface S
or its associated ideal surface S,. For this it is convenient to consider any
piecewise geodesic o in A with the following properties :
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a) There is a pair ey, e, of sides of A which is connected by at most one
subarc of «.

b) If ez is the third side of /A then the subcurves «p, s of o which contain
all arcs of « joining ey,e; to e; are connected and either o = ajan or
a1 orp 1S not connected.

We call such a curve irreducible. A B-orbit 7 which is irreducible in this
sense and with the additional property that there is a pair of sides of /A which
is not connected by any geodesic segment of 5 will be called a By-orbit.
An irreducible B-orbit which is not a Bg-orbit will be called a B;-orbit.
In the same way we define irreducible Bj-orbits and Bj-orbits in the ideal
triangle A .

A lift to §/T" of an irreducible curve o« in A is an admissible closed
piecewise geodesic in S/T'\{A, B,0} whose trace is invariant under the natural
isometry ¥ of order 2 of S /T exchanging the two triangles and which projects
to «. Call two irreducible curves «, 3 in /A homotopic if there are lifts of
B and a to S/T which are freely homotopic in S/T" — {A, B,0}.

The remark after Lemma 3.5 shows that a B-orbit in A is irreducible in
the above sense if and only if its lift to S/I"— {0,A, B} is irreducible in the
sense of Section 3. Thus we obtain from the results in Section 3.

COROLLARY 4.1. A B-orbit in A\ or Ay which lifts to a systole on S
or Soo 1s irreducible.

For the description of all B-orbits in /A which lift to a systole of a simple
triangle surface we use a length comparison argument. N amely, observe that we
can talk about homotopic irreducible arcs in nonisometric hyperbolic triangles
in an obvious way. We have.

LEMMA 4.2. Let q>p>5 and let /\,/\' be equilateral triangles with
angles m/p,m/q respectively. Let ~,7' be two homotopic B-orbits in JAVWANS
Then the length of vy is smaller than the length of v'.

Proof. For t < m/3 denote by T; the equilateral hyperbolic triangle with
angle f. Since a B-orbit is the shortest curve in its homotopy class it suffices
to show the following: If r <ty < m/3 and if ~v C T;, is any B-orbit, then
every admissible curve in 7, which is homotopic to 7 is longer than -.

But this follows simply from the fact that for 7 < fo the triangle T
can be isometrically embedded into the triangle 7, (see [I]). More precisely,
the center of the triangle 7T, is the unique point in 7; which has the same
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distance to each of the vertices of 7;. There is an (essentially unique) isometric
embedding of T, into 7, which maps the center of T, to the center of T;
and such that each geodesic in T, which connects the center to one of the
vertices passes through a vertex of 7. Map T, onto 7; by a diffeomorphism
which maps each geodesic + through the center to itself and scales the
parametrization by the proportionality factor length (y N 7;)/length (y N T},).
This map strictly increases the length of nontrivial curves in T}, . From this
the lemma is immediate. [

Let again Q be a fundamental 2p-gon, let k € [2,(p + 1)/2] and let
S = S(p;k) be a simple triangle surface. The side pairings for Q which
induce the surface S define a collection of p simple closed geodesics on S
which are invariant under the action of the basic group I'. Each of these
geodesics is freely homotopic to the projection to S of a geodesic arc in Q
connecting the midpoint of the side 2i+ 1 to the midpoint of the side 2i+ 2k.
Their projection to S/T" is the lift of an irreducible By-orbit 7, Wthh can
be described as follows.

o~

a) 7o has one endpoint on the edge opposite to a vertex 0 which is the
only collision point with this edge.

b) There are k collisions with the edge Jommg 0 to a second vertex A
and k— 1 collisions with the edge joining 0 to the third vertex B for
some k € [2,p/2].

We call a By-orbit 7 with properties a) and b) for an arbitrary k < p/2
a side pairing orbit. With this notation, every minimal By-orbit is a side
pairing orbit. Moreover a side pairing orbit is determined up to isometries
of A by the number of its geodesic segments, or, equivalently, by the
number of its collision points with the boundary of A. For a simple triangle
surface S there are at most three different liftable side pairing orblts (compare
Section 2).

Using Lemma 4.2 and a comparison argument we can now estimate the
length of a large family of irreducible B-orbits.

LEMMA 4.3. Let 1 be an irreducible B-orbit. Assume that either
1. 1 is a By-orbit with at least 5 collisions with the boundary or

2. n is a By-orbit which is not a side pairing orbit and has at least 6
collisions with the boundary.

Then a lift of 7 to S/T — {A,B,0} is longer than a systole on S.
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Proof. By definition, a B;-orbit contains at least 3 geodesic arcs. Up to
isometries of /A there is a unique B;-orbit 7y consisting of exactly 4 arcs.

/

This orbit admits a subarc which is homotopic to a side pairing orbit
with 3 segments. In particular, if S = S(p;k) admits a liftable side pairing
orbit which consists of at most three segments, then this side pairing orbit is
homotopic to a proper subarc of ¥ and therefore a lift of 5 to S/I" is longer
than a systole on S.

Lemma 2.2 shows that for p < 9 every simple triangle surface of genus
p%‘ is 1sometric to a surface S(p;m) for m =2 or m = 3 and hence admits

a liftable side pairing orbit which consists of at most 3 segments.

On the other hand, an explicit computation (using Maple or Mathematica)
shows that for p = 11 the length of 7 is bigger than 3 arccosh % Thus by
Lemma 3.2, Lemma 4.2 and the above, a lift of 5 to S/T"— {A,B,0} is
longer than a systole on S(p;k).

Since every Bj-orbit 7 with at least 5 collisions with the boundary admits
a subarc which is homotopic to 7, our statement for Bj-orbits follows.

Let 17 be a By-orbit which is not a side pairing orbit and has at least 6
collisions with the boundary. Denote by C the vertex of /\ whose adjacent
sides are not connected by any subarc of 7. Then 7 contains a subarc which
consists of two segments and connects the sides adjacent to C. If we replace
this arc by a single geodesic segment, then we obtain a shorter curve which
contains a subcurve homotopic to the Bj-orbit 7 above. Thus the statement
for By-orbits follows once again from the length estimate for ~v. O

COROLLARY 4.4. Every systole on a simple triangle surface is either a
lift of the A-orbit vy in A\ or a lift of a side pairing orbit on /\.

Proof. By Lemma 4.3, a B-orbit 77 which is not a side pairing orbit can
only lift to a systole if either
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1) 77 is a Bg-orbit with exactly 5 collisions with the boundary

or

2) 7 is a Bj-orbit with exactly 4 collisions with the boundary.

\

Consider first an orbit 77 as in 1) above. Assume that 7 lifts to a closed
geodesic on the surface S(p;k). The lifts of 77 then define piecewise geodesics
in the fundamental 2p-gon €.

Choose such a piecewise geodesic 7 with the property that the center of
Q corresponds to a vertex of /A whose adjacent sides are connected by an arc
of 77. Then 7 consists of two components 7;, 7. After a suitable numbering
of the edges of © we may assume that 7; connects the edge 1 to the edge
6 and that 7, connects the edge 6 —2k + 1 to the edge 6 — 2k +2 where
k > 2 is such that S = S(p;k). )

Since n projects to a closed geodesic on S(p;k) we have 6 —4k+3 =1
mod 2p and therefore 4 —2k =0 mod p. Since p is odd and k <p—1 this
is only possible if k = 2. But then there is a liftable side pairing orbit of
S(p; k) which consists of 2 segments and is shorter than 7.

A similar purely combinatorial argument shows that an orbit 7 as in
2) above is not liftable to any simple triangle surface. This shows the
lemma. [

Now we are ready to show
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PROPOSITION 4.5.

1) For 3 < k < 5 the surface Stk(k — 1) + 1;k) and its associated
ideal surface has 3k(k — 1) + 3 systoles. These systoles are the images of
a single simple closed geodesic under the action of the isometry group of
Stk(k — 1) + 1; k).

2) A simple triangle surface S which is not isometric to one of the
surfaces S(tk(k — 1) + 1;k)(3 < k < 5) is not maximal, neither is the ideal
surface associated to S.

Proof. Let p = 2g + 1 for an arbitrary g > 2 and let S be a simple
triangle surface of genus g.

Recall that there are numbers k(0),k(A),k(B) > 2 such that the side-
pairings of the 2p-gon Q defining S with base-point 0, A, B identify the edge
1 with the edge 2k(0), 2k(A), 2k(B).

Let ko = min{k(0), k(A), k(B)} and assume (via renaming) that ky = k(0).
The projection to S of the geodesic arc 7y in € which connects the edge
I to the edge 2kg and is orthogonal to both edges is then a simple closed
geodesic vy in S whose length we denote by 4.

Corollary 4.4 shows that there are only two possibilities for a systole ~
on §.

1) ~ is a lift v of length ¢; of the A-orbit ¥, on A of period 3.
2) v is the image under an isometry of S of the geodesic 7y of length 4.

Consider a surface § = S(p;k) as in Lemma 2.2 which admits a cyclic
group X of order 3 of isometries normalizing the basic group I'. If ¢, is
smaller than ¢; then S admits 3p = 6g + 3 systoles which are just the lifts
of the unique liftable side pairing orbit for S. We claim that this is the case
if and only if § = 5(7;3) or S =5(13;4) or S = S(21;5).

To see this, recall from Lemma 2.2 that each such surface with these
additional symmetries is of the form S = S(p;k) for some k > 3 and a
divisor p > k of k(k — 1) 4+ 1. The unique liftable side pairing orbit for
S(p; k) consists of min{k,p—k+1} segments. However, explicit computation
shows that a side pairing orbit with 6 segments in an equilateral triangle with
angle 7 /15 is longer than the upper bound 3 arccosh % for ¢;. Together with
Lemma 4.2 this shows that if S(p;k) is such that lo < ¢y then either p < 13
or min{k,p—k+ 1} <5.

The surfaces S(7;3) and S(13;4) are such surfaces S(p; k) with p < 13.
Any further example corresponds to a pair of numbers (p,k) such that
k < p < 13 and that moreover p is a proper divisor of k(k — 1) + 1.
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However the only pairs of this kind are (13,10) and (7,5) and we find once
again our surfaces S(13;10) = S(13;4) and S(7;5) = S(7;3).

Next we look for surfaces S(p;k) as above with min{k,p —k+ 1} <5
and such that p > min{k, 14} is a divisor of k(k — 1)+ 1. Write m=p — k
and assume that m < 4 and that p = k+ m divides k(k — 1) +1 =
(p—m(p—m—1D+1=p(p—-2m—1)+mm+ 1)+ 1. Then p also
divides m(m + 1) + 1, and since we assumed that p > 15 we just obtain the
surface S(21;17) = S(21;5) as a solution.

In other words, if ¢y < ¢; and if S(p;k) admits a cyclic group of order
3 of isometries normalizing the basic group I' then S is one of the surfaces
S(7;3), S(13;4) and S(21;5). Explicit computation now shows that for these
surfaces we indeed have £y < /.

Schmutz observed in [S1] that a closed hyperbolic surface S of genus g
can only be maximal if S has at least 6g —5 systoles. Using this fundamental
fact, the proof of our proposition can now be reduced to the above discussion
by distinguishing the following 4 cases.

1) 41 < ly.

Then only lifts of the A-orbit 7; can be systoles of S. If g is the genus
of S then there are p = 2g + 1 systoles, and S is not maximal.

ii) S = S(p;2) for some p > 5.

The surface S(p;2) admits a liftable side pairing orbit 7y which consists of
2 segments and hence is shorter than the orbit 7, from Lemma 3.2. Moreover
it admits a cyclic group X of order 2 of isometries which commutes with
the basic group I'. The action of X on the sphere S/I" does not leave the
trace of a lift of the side pairing orbit 7, invariant. Thus S(p;2) has exactly
2p = 4g + 2 systoles and can only be maximal if either g =2 or g = 3.
However an explicit analysis of the surfaces S(5;2) and S(7;2) shows that
these surfaces are not maximal (this fact was already established by Schmutz
[S1)). ’

i) S ¢ {Sk(k — 1)+ L;k) | k>2} U{S(p;2) | p>5} and £y < 1.

Then if ky = k(0) we have k(A) > ko, k(B) > ko and therefore there are
at most p = 2g + 1 systoles which are lifts of a side pairing orbit in A. If
lo < ¢ then these are the only systoles. In the case £; = £y (which does not
occur if the genus g of S is 2 or 3) there are 4g + 2 systoles. The surface
S is not maximal.

iv) k€ {3,4,5} and S = S(k(k — 1) + 1;k).

Then the length £y of o is smaller than ¢; and there are 3p = 6g + 3

systoles which are the images of the geodesic 7o under the isometry group
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of S. In particular, the cardinality of the quotient of the isometry group of §
under the subgroup fixing a given systole equals 6g + 3.

To complete the proof of our proposition we have to investigate the
ideal surfaces S, associated to simple triangle surfaces S(p;k). The above
considerations are equally valid for these surfaces and show that S, has more
than 4g + 4 systoles if and only if p divides k(k — 1) + 1 and if the length
¢y of a lift of a side pairing orbit for S, is not bigger than 6 arccosh % An
explicit computation shows as before that this is the case if and only if So
1s associated to one of the surfaces S(7;3),5(13;4),5(21;5). []

5. PROOF OF THE THEOREM

Using the notation of Lemma 2.2, our goal is to show that the triangle
surfaces S(7;3),S8(13;4),S(21;5) and their associated ideal surfaces are max-
imal. Following Schmutz [S1], for this it is enough to show that for each of
these surfaces S the Teichmiiller space is parametrized in a neighborhood of
S by the lengths of those closed geodesics which are freely homotopic to a
systole on S.

Let for the moment p > 5 be an arbitrary odd number and let
k€{2,...,p—1} be such that k and k — 1 are prime to p. Write
g = (p—1)/2. As in the introduction let 7;; be the Teichmiiller space
of surfaces of genus g with 3 punctures. Let S = S(p;k) and let S., be the
ideal surface associated to S. The basic group I' of orientation preserving
isometries of S acts as a group of isometries on the surface S, .

It will be useful to give a geometric description of S.,. For this let A,
be an ideal triangle in H? and let T C A4 be the finite equilateral triangle
inscribed in A, which is invariant under all isometries of /... The vertices
of T determine a distinguished point on each side of A .

There is a unique way to glue 2p copies of A, to a disc A with one
puncture in its interior and 2p punctures on the boundary in such a way that
the glueing maps identify the distinguished points on the sides of A, . The
boundary of A then consists of 2p geodesic lines. Each of the triangles which
makes up A contains exactly one of these boundary geodesics. We number the
boundary geodesics in counter clockwise order and glue the 2i -+ 1-th geodesic
to the 2i+2k-th geodesic by an orientation reversing isometry which identifies
the distinguished points on these geodesics. The resulting surface is the ideal
surface S, associated to S. Notice that S., admits a canonical triangulation
into ideal triangles which corresponds to the canonical triangulation of S.
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