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3. Geometric properties of systoles
OF SIMPLE TRIANGLE SURFACES

This section is devoted to a description of some geometric properties of
the systoles on a simple triangle surface S S(p;k) and its associated ideal
surface Soo. We continue to use the notations from Section 2.

The canonical triangulation of the surface S is invariant under the group
r of isometries of S, and its vertices 0are fixed points for the action
of r. The quotient S/T is a topological 2-sphere with a singular hyperbolic
metric which is isometric to two equilateral hyperbolic triangles with angles
7r/p glued at their boundaries. Every closed geodesic on S which does not
pass through any of the vertices A, 0 projects to a closed geodesic on S/T.
We first observe that this is the case for the projection to S/T of a systole
on S.

LEMMA 3.1. A systole of S does not pass through a vertex of the canonical
triangulation.

Proof Let y be a geodesic in S which passes through one of the vertices
of the canonical triangulation, say through the vertex 0. Assume that we obtain
S from side pairing transformations of a fundamental 2/?-gon Q in such a

way that the center of G projects to the point 0.

The lift of 7 to the polygon Q has to intersect the boundary dQ of Q
and hence its length is not smaller than twice the distance between the center
of Q and <9Q. In particular, if a is any geodesic arc in Q of minimal length
which connects the edge 1 to an edge r 7^ p +1, then a is necessarily shorter
than 7.

Let k < p be such that the side pairings for £2 which define S, identify
the edge 1 with the edge 2k. If 2k p + 1 then the above shows that the
closed geodesic on S which is the projection of the arc of minimal length in
£2 connecting the edges 1 and 2k is shorter than 7.

On the other hand, if 2k p + 1, then we obtain from Lemma 2.2 that
the side pairings which define Q with center at the point A identify the edge
1 with an edge 2m for some m ^ (p+ l)/2. Again we conclude that the arc

7 is longer than a systole on S.

Let Q be a fundamental 2/?-gon and let 7 be the geodesic arc through
the center 0 of Q which connects the vertex 2p to the vertex p. Let be

the reflection in H2 along 7. Then leaves O invariant and maps a pair
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of edges of the form {2i +1,2/ + 2k} to the pair {2p — 2/, 2p — 2/ — 2k + 1}

of the same form. In other words, descends to an orientation reversing

isometry of S. The group T of isometries of S generated by and the basic

group r has order p + 1 and contains the group T as a normal subgroup of
index 2. The orientation reversing isometry *¥ of S descends to an orientation

reversing isometry ¥ of order 2 of S/T which exchanges the two triangles.

Let A be an equilateral hyperbolic triangle with angle ir/p. The triangle

A will be viewed as a billiard table. A billiard orbit consists of geodesic

arcs inside A which are joined at points of the boundary dA according to

the rule that the angle of incidence equals the angle of reflection. We view a

billiard orbit as unparametrized and unoriented.

A closed geodesic on S/T not passing through one of the singular points
0,A,Z? corresponds to a periodic billiard orbit in A of one of the following
three types :

a) A periodic billiard orbit with an odd number of collisions with the boundary
of A, none of them perpendicular.

In the sequel we call such a billiard orbit an A-orbit. An A-orbit 7 admits

a lift to a closed geodesic 7 on S/T, unique up to reparametrization, which
is freely homotopic as a curve on the thrice punctured sphere S/T\ {0,A,Z?}
to its image under the isometry VF. Its trace is invariant under VF. The lift of
every collision point of the billiard orbit with dA is a transverse intersection
of 7 with the common boundary of the two triangles forming S/T. The length
of 7 is twice the length of 7.

b) A periodic billiard orbit whose trace consists of one piecewise geodesic
arc which meets the boundary dA orthogonally at its endpoints.

We call such an orbit a B-orbit in the sequel. A B -orbit 7 admits a lift to
S/T, unique up to reparametrization, which is freely homotopic to the image

under of its inverse Its trace is invariant under + and its
length is twice the length of 7.

c) A periodic billiard orbit with an even number of collisions with the

boundary of A, none of them perpendicular.

We call such an orbit a C-orbit. A C-orbit 7 admits two different lifts
71,72 to closed geodesies on S/T whose traces intersect transversely and
whose lengths coincide with the length of the billiard orbit. The geodesic 72
is the image of 71 under the isometry $ of S/T. Neither the geodesic %
nor its inverse 7+1 is freely homotopic to
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Call a periodic billiard orbit 7 on A as above liftable to S if there is a

closed geodesic 7 on S whose projection to S/T is a lift 7 of 7 to S/T.
We then call 7 a lift of 7 to S.

The group T also acts as a group of isometries on the ideal surface SA

associated to S. The quotient of SA unter the basic group T is the thrice

punctured sphere SA/T with the complete hyperbolic metric of finite volume.

The orientation reversing involution acts on Soo/T as the natural reflection

which leaves each of the punctures fixed. Every closed geodesic on So0

projects to a closed geodesic on Soo/T.
Let Aoo be an ideal triangle. Once again we can view Aoo as a billiard

table. The above definition for billiard orbits in A can also be made for

billiard orbits in A^. We call a billiard orbit 7 in A^ liftable to the ideal

surface Soo if there is a closed geodesic 7 on S00 which projects to 7. In the

remainder of this section the ideal triangle, its billiard orbits and their lifts to

the ideal surface S^ are always included in our considerations without further

comments. More precisely, even though for simplicity we formulate all our

statements only for billiard orbits in A and the surface S it is immediately clear

from the proofs that they are equally valid for A^ and the ideal surface SA •

A first example of a liftable billiard orbit is given in the next lemma.

LEMMA 3.2. There is a unique A-orbit 71 in A with 3 collisions with

the boundary, and this orbit is liftable. The length of a lift of 71 to S is not

bigger than 6 arccosh A

Proof. Let S S(p\k) and let Q be a fundamental 2p-gon. Connect the

midpoint of the edge 1 in Tl with the midpoint of the edge 3 by a simple arc,

and connect the midpoint of the edge 2k with the midpoint of the edge 2k + 2

by a simple arc. These two arcs together project to a simple closed curve on

S which is freely homotopic to a closed geodesic 7 on S. The geodesic 7
is necessarily a lift of an A-orbit 71 in A of period 3. Notice that there are

exactly p lifts of 71, and every such lift intersects exactly 6 other lifts, with

each of these intersections consisting of a single point. The length i\ of a

lift of 71 to S is twice the length of 71.

7l
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To give a sharp upper bound for 4 notice that 4/2 is just the

smallest circumference of a hyperbolic triangle with vertices on the sides

of A and hence 4/2 is not larger than the smallest circumference of a

hyperbolic triangle T^ with vertices on the boundary of an ideal triangle.

This circumference is the limit as k —> oo of the circumferences of hyperbolic

triangles A whose vertices are the midpoints of the sides of an equilateral

triangle with angle ir/k.
To give a formula for the circumference of Tk let A* be the length of the

sides of Ak and let 4 be the length of the sides of Tk.

Hyperbolic trigonometry (see [I]) gives cosh ^ °^JJk and

\k ~ At o 7T (1 — cos7r/&)(cos7r/24)2
cosh 4 « (cosh -f-f - (sinh -Af cos - /

'—- + cos -v
2 2 k (sin 7T /k)2 k

This shows that as k —> oo we have cosh 4 — \ and 64 — 6 arccosh | ~
5.775. This completes the proof of our lemma.

As an immediate consequence of Lemma 3.2, the length of the systole
of a simple triangle surface and its associated ideal surface does not exceed

6 arccosh | < 5.8. In particular, for large genus such triangle surfaces are

never globally maximal [BS].

LEMMA 3.3. A lift to S of an A-orbit 7 which is different from 71 is

not a systole.

Proof By Lemma 3.2 it suffices to show that the length of every A-orbit
7 in A is not smaller than the length of the A-orbit 71 from Lemma 3.1,
with equality if and only if 7 7^

For this recall from the definition that an A-orbit 7 is a closed curve
in A with an odd number of collisions with the boundary, none of them
perpendicular. This implies that for every pair of sides of the boundary of A
there is a geodesic arc of 7 with endpoints on these sides.

Thus we can find three points EX,E2,E2 which lie on the three different
sides of the boundary of A and are contained in 7 in this order with respect
to the choice of some fixed orientation and some fixed initial point. Since

7 is closed, its length is not smaller than the circumference of the triangle
T inscribed in A with vertices E\,E2,E3 with equality if and only if 7
coincides with the boundary of T. However the length of the orbit 71 from
Lemma 3.2 is the smallest circumference of any triangle with vertices on the
three different sides of A. From this the lemma is immediate.
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B -orbits and C-orbits in A are more difficult to control. For their

investigation let S* be a thrice punctured sphere. We equip with the

(noncomplete) hyperbolic metric which we obtain by glueing two equilateral

hyperbolic triangles T\,T2 with angle ir/p along their boundaries. Thus S*

with this metric is just the space S/T — {0,A,£}. The sides of T\,T2 are

geodesies a, b, c in S* which connect a pair of punctures of S*. We call

a, b, c the edges of S*. Define a curve a in S* to be admissible if a is a

closed curve with the additional property that every connected component of
an intersection of a with one of the triangles Tt consists of a single geodesic

arc in Tt. We call these components the segments of a. Thus a is composed

of a finite number of geodesic arcs with endpoints on the edges of S*, and

no two consecutive such segments are contained in the same triangle Tt. In
the sequel we identify two such curves if they coincide up to an orientation

preserving reparametrization.

An admissible homotopy of an admissible curve a is a free homotopy of

a through admissible curves. We call the admissible curve a on S* essential

if a can not be homotoped into one of the punctures. An admissible subcurve

of a is a connected subarc ß of a such that there exists an admissible

homotopy of a which deforms ß into a closed admissible curve. For every
admissible subcurve ß of a we can write a ßj for an admissible subcurve

7. We say that a is irreducible if for every essential admissible subcurve ß

of a the curve 7 a — ß is not essential. A curve which is not irreducible

is called reducible. An irreducible essential curve a is called minimal if a
does not contain any nontrivial essential closed subcurve.

There are two obvious types of minimal closed curves which can be

described as follows. The first type consists of curves which are freely

homotopic to a lift of the A-orbit 71 from Lemma 3.2. We call such a

curve a minimal curve of type A. The second type consists of curves which

are freely homotopic to a curve of the form aß where a and ß are simple

closed curves in S* which generate the fundamental group of 5*. Up to

orientation there are three different free homotopy classes of such minimal

curves which correspond to a choice of two of the three punctures.

LEMMA 3.4. Every minimal admissible closed curve is either a minimal

curve of type A or a minimal curve of type B.

Proof Let a be a minimal admissible closed curve. If a contains two

consecutive geodesic segments with endpoints on the same pair of edges of
5* then a contains a nontrivial non-essential admissible subcurve ß and
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necessarily a ßy where 7 is non-essential. Since a is essential, ß and

7 are homotopic to different punctures. The same argument can be applied

to any subarc of 7 which consists of two consecutive geodesic segments and

shows that 7 has exactly two segments. This means that a is of type B.

On the other hand, if there are no two consecutive segments of a hitting
the same edges of S* then a is necessarily homotopic to a multiple of the

lift of the A-orbit 71 from Lemma 3.2. By minimality, a is of type A. This

shows the lemma.

Let now a be any irreducible closed curve. A simplification of a is an

admissible essential subcurve ß of a such that a can be written in the form

a ßy where 7 is non-essential. A minimal model is a minimal closed curve
which can be obtained from a by finitely many simplifications. Clearly every
irreducible closed curve has a minimal model which is not necessarily unique.

Recall that S* admits a natural orientation reversing isometry which
fixes pointwise the edges of S*. This isometry acts on the space of admissible

curves. We have

LEMMA 3.5. Let a be an irreducible admissible curve which admits a
minimal model of type B. Then a is freely homotopic to TfiA-1).

Proof Let a be an irreducible admissible closed curve. Assume that a
admits a minimal model ß of type B. We have to show that TfiA-1) is freely
homotopic to a.

By definition of a minimal model, with respect to a suitable numbering of
the edges of S* the curve ß can be written in the form ß ß\ß2ßsß4 where
ß\ connects the edge a to the edge b, /?2 connects the edge b to the edge

a, /?3 connects a to c and /?4 connects c to a. Notice that ß has exactly
4 intersection points with the edges of S*.

Since ß is a minimal model for a, the curve a can be represented in
the form a — ß\ot\ß2where on is an admissible closed curve.
By assumption a is irreducible and therefore the curves at are non-essential.

We distinguish three cases.

1) The curve ß\a.\ß2 is essential

Then a\ consists of an even number of geodesic arcs which connect the
edges b and c. Moreover the subcurve a2/%a3ß4a4 has to be non-essential
and therefore a ßialß2(ß3ß4)m for some m > 1. In particular, a is freely
homotopic to
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2) The curve ß2a2ß4 is essential

As above we conclude that then a (ß\ß2)mß2oi2ß4 and a is freely
homotopic to

3) ß\aiß2 (ßiß2)mi and ß2a2ß4 — (ß^ßff12 for some m\,m2 > 1.

Since the curves ol2 and 014 are non-essential and have their endpoints
on the side a this implies that a can be represented in the form a

for some t\,i2 > 1. Once again we conclude that a is

homotopic to TfiA-1).

Remark. The proof of Lemma 3.5 also shows the following: Let a be

an irreducible admissible essential closed curve on S* which admits a minimal
model of type B. Then with respect to a suitable labeling of the edges of S*,
a is freely homotopic to a curve of the form {ß\ß2)kß2(,mß4 where k > 1,
m > 0 and ß\ is an arc joining the edge a to the edge b, ß2 connects b to

a, /?3 joins b to c, is nonessential and ß^ connects c to a.

LEMMA 3.6. 77ze projection to S/T — {0,A,£} o/a systole on a simple
triangle surface S S(p;k) is irreducible.

Proof By Lemma 3.2 it suffices to show that the length of every admissible
reducible closed curve a in S* is bigger than twice the length of the A-orbit
71. For this let a be reducible and write a 0407 where the curves ol\,ol2
are essential.

Let ß be an irreducible admissible essential subcurve of ol\ If ß has a

minimal model of type A, then we can cut from ß finitely many non-essential
closed curves to obtain a shorter curve which is homotopic to two copies of
the A-orbit 71 from Lemma 3.2. Since the lift 71 of 71 to S/T has minimal
length in its free homotopy class and since a is homotopic to .^7 for some
closed curve 7, the length of a is bigger than the length of the lift 71 of
71 to 5*. Thus by Lemma 3.2 a can not lift to a systole on S.

We are left with the case that all minimal models of irreducible subcurves

ai, a2 of a are of type B. Then we can cut away finitely many closed curves
from a which shortens the length of a to end up with a closed curve ß
of the form ß — ß\^ß2ö where ß\,ß2 are minimal curves of type B and

7,6 are possibly trivial arcs connecting the edges containing the endpoints of
ß\1ß2. If 7, S are not trivial then we can replace yß2ö by a minimal curve
yß2ö of type B where ß2 is an admissible subcurve of ß2. In other words,
we may as well assume that ß ß\ß2.
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Now we distinguish two cases.

1) The curves ß\, ß2 are homotopic.

Then there are simple closed generators rjX of the fundamental group
of S* such that ß is freely homotopic to rjCrjÇ. In particular there is a closed

geodesic p on S* which is freely homotopic to ß, whose length is not bigger
than the length of ß and which is not a prime geodesic. This geodesic is the
double of a minimal curve 7 of type B. The length of p equals twice the

length of 7. However, since the length i\ of the A-orbit 71 from Lemma 3.2
is the minimal length of any closed curve in the triangle A which intersects
the three sides of A, the length of 71 is strictly smaller than the length
of 7. Thus p is longer than a lift of 71 and a can not lift to a systole
on S.

2) The curves ß\, ß2 are not homotopic.

Let be the ZLorbit in A whose lift to S/T — {A,B, 0} A is freely
homotopic Jo ß\ß2. The length of is not bigger than half the length of
ßiß2 and C consists of four arcs CiXiX^Xa- The arc Ci meets one of the
sides, say the side a, perpendicularly, and £4 meets a different side, say the
side b, perpendicularly.

We denote by EUE2,E3 the endpoints of and £3 ; they lie on the three
different sides of A.

Once again we distinguish two cases:

a) The arcs and £4 intersect.

Then the length of £ is bigger than the length of the Jriangle inscribed in
A with vertices E\, E2, E2. In particular, the length of £ is bigger than the
length of the A-orbit A from Lemma 3.2.
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b) The arcs (j

e3

In this case either the arc £1 intersects the arc £3 or the arc £4 intersects
the arc £2. Assume that the second case holds.

Let again E\, E2 be the endpoints of £2 where E\ lies on the edge h
and let £4 be the endpoint of the arc £4 on the edge b. Since (4 meets b

orthogonally at £4 and has its second endpoint £3 on the side a, the angle
at £4 of the triangle with vertices £i,£4,£2 is strictly bigger than §. This
means that the distance between £2 and £4 is smaller than the length of the
arc and therefore the length of is bigger than the circumference of the
triangle with vertices £2,£3,£4. In particular, this length is bigger than the
length of the A-orbit 71.

This completes the proof of our lemma.

As an immediate corollary of Lemma 3.6 and Lemma 3.5 we obtain

COROLLARY 3.7. A C-orbit in A does not lift to a systole on S.

4. Length estimates for systoles

In this section we complete the geometric description of the systoles of a

simple triangle surface and its associated ideal surface. As a consequence we
obtain that a simple triangle surface which is different from one of the three
surfaces listed in the introduction is not maximal.

We resume the assumptions and notations from Section 3. Our goal is
to describe all £-orbits in the equilateral triangle A with angle w/p or in
an ideal triangle Aoo which lift to a systole on a simple triangle surface S

or its associated ideal surface For this it is convenient to consider any
piecewise geodesic g in A with the following properties :

U. HAMENSTÄDT

and ("4 do not intersect.
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