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74 . . U. HAMENSTADT

3. GEOMETRIC PROPERTIES OF SYSTOLES
OF SIMPLE TRIANGLE SURFACES

This section is devoted to a description of some geometric properties of
the systoles on a simple triangle surface S = S(p;k) and its associated ideal
surface So,. We continue to use the notations from Section 2.

The canonical triangulation of the surface S is invariant under the group
I' of isometries of §, and its vertices 0,A,B are fixed points for the action
of I'. The quotient S/I" is a topological 2-sphere with a singular hyperbolic
metric which is isometric to two equilateral hyperbolic triangles with angles
m/p glued at their boundaries. Every closed geodesic on S which does not
pass through any of the vertices A, B,0 projects to a closed geodesic on S/T.
We first observe that this is the case for the projection to S/T" of a systole
on S.

LEMMA 3.1. A systole of S does not pass through a vertex of the canonical
triangulation. ‘

Proof. Let v be a geodesic in S which passes through one of the vertices
of the canonical triangulation, say through the vertex 0. Assume that we obtain
S from side pairing transformations of a fundamental 2p-gon Q in such a
way that the center of  projects to the point 0.

The lift of « to the polygon € has to intersect the boundary 0Q of Q
and hence its length is not smaller than twice the distance between the center
of € and 0Q. In particular, if « is any geodesic arc in Q of minimal length
which connects the edge 1 to an edge r # p+1, then « is necessarily shorter
than -y.

Let k < p be such that the side pairings for Q which define S. identify
the edge 1 with the edge 2k. If 2k # p + 1 then the above shews that the
closed geodesic on S which is the projection of the arc of minimal length in
Q connecting the edges 1 and 2k is shorter than ~y.

On the other hand, if 2k = p 4+ 1, then we obtain from Lemma 2.2 that
the side pairings which define Q with center at the point A identify the edge
1 with an edge 2m for some m # (p+ 1)/2. Again we conclude that the arc
v is longer than a systole on §. [

‘Let Q be a fundamental 2p-gon and let v be the geodesic arc through
the center 0 of €2 which connects the vertex 2p to the vertex p. Let ¥ be
the reflection in H? along ~. Then W leaves Q invariant and maps a pair
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of edges of the form {2i+ 1,2i+ 2k} to the pair {2p —2i,2p —2i —2k+ 1}
of the same form. In other words, ¥ descends to an orientation reversing
isometry of S. The group I" of isometries of S generated by W and the basic
group T" has order p + 1 and contains the group I' as a normal subgroup of
index 2. The orientation reversing isometry ¥ of S descends to an orientation
reversing isometry ¥ of order 2 of S /T which exchanges the two triangles.

Let /A be an equilateral hyperbolic triangle with angle 7/p. The triangle
/A will be viewed as a billiard table. A billiard orbit consists of geodesic
arcs inside /A which are joined at points of the boundary 0/ according to
the rule that the angle of incidence equals the angle of reflection. We view a
billiard orbit as unparametrized and unoriented.

A closed geodesic on S/T" not passing through one of the singular points

0,A, B corresponds to a periodic billiard orbit in A of one of the following
three types:

a) A periodic billiard orbit with an odd number of collisions with the boundary
of /A, none of them perpendicular.

In the sequel we call such a billiard orbit an A-orbit. An A-orbit v admits
a lift to a closed geodesic ¥ on S/I', unique up to reparametrization, which
is freely homotopic as a curve on the thrice punctured sphere S/I"\ {6, A, B}
to its image under the isometry V. Its trace is invariant under . The lift of
every collision point of the billiard orbit with A is a transverse intersection
of v with the common boundary of the two triangles forming S/T". The length
of 7 is twice the length of ~.

b) A periodic billiard orbit whose trace consists of one piecewise geodesic
arc which meets the boundary 9/ orthogonally at its endpoints.

We call such an orbit a B-orbit in the sequel. A B-orbit 7 admits a lift to
S / I', unique up to reparametrlzatlon which is freely homotopic to the image
‘P(y ) under ¥ of its inverse ~~'. Its trace is invariant under ¥ and its
length is twice the length of ~.

c) A periodic billiard orbit with an even number of collisions with the
boundary of A, none of them perpendicular.

We call such an orbit a C-orbit. A C-orbit 7 admits two different lifts
Y1,%2 to closed geodesics on S/T" whose traces intersect transversely and
whose lengths coincide with the length of the billiard orbit. The geodesic 7,
is the image of 7~ 7] under the isometry N of § /T". Neither the geodesic 7;
nor its inverse 7, is freely homotopic to lI’('yl)
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Call a periodic billiard orbit 4 on /A as above liftable to S if there is a
closed geodesic v on S whose projection to S/T" is a lift ¥ of ¥ to S/I".
We then call v a lift of 7 to S.

The group I" also acts as a group of isometries on the ideal surface S
associated to S. The quotient of S., unter the basic group I' is the thrice
punctured sphere S.,/I" with the complete hyperbolic metric of finite volume.
The orientation reversing involution ¥ acts on Seo /T as the natural reflection
which leaves each of the punctures fixed. Every closed geodesic on Su,
projects to a closed geodesic on S /T .

Let /\o, be an ideal triangle. Once again we can view A, as a billiard
table. The above definition for billiard orbits in /A can also be made for
billiard orbits in A . We call a billiard orbit 7 in A, liftable to the ideal
surface S.. if there is a closed geodesic v on S., which projects to . In the
remainder of this section the ideal triangle, its billiard orbits and their lifts to
the ideal surface S., are always included in our considerations without further
comments. More precisely, even though for simplicity we formulate all our
statements only for billiard orbits in /A and the surface S it is immediately clear
from the proofs that they are equally valid for A, and the ideal surface S .

A first example of a liftable billiard orbit is given in the next lemma.

LEMMA 3.2. There is a unique A-orbit 7, in /\ with 3 collisions with
the boundary, and this orbit is liftable. The length of a lift of 1 to S is not
bigger than 6 arccosh %

Y1

Proof. Let S = S(p;k) and let Q be a fundamental 2p-gon. Connect the
midpoint of the edge 1 in Q with the midpoint of the edge 3 by a simple arc,
and connect the midpoint of the edge 2k with the midpoint of the edge 2k+2
by a simple arc. These two arcs together project to a simple closed curve on
S which is freely homotopic to a closed geodesic v on §. The geodesic vy
is necessarily a lift of an A-orbit 7; in A of period 3. Notice that there are
exactly p lifts of 71, and every such lift intersects exactly 6 other lifts, with
each of these intersections consisting of a single point. The length £; of a
lift of 7; to S is twice the length of 7.
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To give a sharp upper bound for ¢; notice that £;/2 is just the
smallest circumference of a hyperbolic triangle with vertices on the sides
of A and hence ¢;/2 is not larger than the smallest circumference of a
hyperbolic triangle T., with vertices on the boundary of an ideal triangle.
This circumference is the limit as k — oo of the circumferences of hyperbolic
triangles T, whose vertices are the midpoints of the sides of an equilateral
triangle /\; with angle = /k.

To give a formula for the circumference of Ty let Ay be the length of the

sides of /\r, and let /; be the length of the sides of 7.
cos  /2k

Hyperbolic trigonometry (see [I]) gives cosh i\zﬁ = S/ and
Mo M 7w (1—cosm/k)(cosT/2k)* T
— Zky2 2 = cos — .
cosh ¢, = (cosh 2) (sinh 2) cos P (sin 7 /K7 + T

This shows that as k& — oo we have cosh/;, — % and 6/, — 6arccosh% ~

5.775. This completes the proof of our lemma. [

As an immediate consequence of Lemma 3.2, the length of the systole
of a simple triangle surface and its associated ideal surface does not exceed
6 arccosh % < 5.8. In particular, for large genus such triangle surfaces are
never globally maximal [BS].

LEMMA 3.3. A lift to S of an A-orbit v which is different from v, is
not a systole.

Proof. By Lemma 3.2 it suffices to show that the length of every A-orbit
v in A is not smaller than the length of the A-orbit 7; from Lemma 3.1,
with equality if and only if v = 7.

For this recall from the definition that an A-orbit v is a closed curve
in A with an odd number of collisions with the boundary, none of them
perpendicular. This implies that for every pair of sides of the boundary of A
there is a geodesic arc of 7 with endpoints on these sides.

Thus we can find three points E1, E,, E; which lie on the three different
sides of the boundary of A and are contained in 7 in this order with respect
to the choice of some fixed orientation and some fixed initial point. Since
7 is closed, its length is not smaller than the circumference of the triangle
T inscribed in A with vertices Ei,E,,E; with equality if and only if &
coincides with the boundary of 7'. However the length of the orbit 7; from 3'
Lemma 3.2 is the smallest circumference of any triangle with vertices on the |
three different sides of A . From this the lemma is immediate. [
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B-orbits and C-orbits in /A are more difficult to control. For their
investigation let S, be a thrice punctured sphere. We equip S. with the
(noncomplete) hyperbolic metric which we obtain by glueing two equilateral
hyperbolic triangles T7,T, with angle 7/p along their boundaries. Thus S,
with this metric is just the space S/T" — {0,A,B}. The sides of Tj,T, are
geodesics a,b,c in S, which connect a pair of punctures of S.. We call
a,b,c the edges of S,. Define a curve « in S, to be admissible if o 1s a
closed curve with the additional property that every connected component of
an intersection of o with one of the triangles 7; consists of a single geodesic
arc in T;. We call these components the segments of «. Thus « is composed
of a finite number of geodesic arcs with endpoints on the edges of S, and
no two consecutive such segments are contained in the same triangle 7;. In
the sequel we identify two such curves if they coincide up to an orientation
preserving reparametrization.

An admissible homotopy of an admissible curve « is a free homotopy of
o through admissible curves. We call the admissible curve o on S, essential
if o can not be homotoped into one of the punctures. An admissible subcurve
of o is a connected subarc 8 of « such that there exists an admissible
homotopy of « which deforms (3 into a closed admissible curve. For every
admissible subcurve 8 of o we can write o = 3 for an admissible subcurve
v. We say that « is irreducible if for every essential admissible subcurve [
of o the curve v = a — (3 is not essential. A curve which is not irreducible
is called reducible. An irreducible essential curve « is called minimal if o
does not contain any nontrivial essential closed subcurve.

There are two obvious types of minimal closed curves which can be
described as follows. The first type consists of curves which are freely
homotopic to a lift of the A-orbit 7; from Lemma 3.2. We call such a
curve a minimal curve of type A. The second type consists of curves which
are freely homotopic to a curve of the form «f where o and 3 are simple
closed curves in S, which generate the fundamental group of S,. Up to
orientation there are three different free homotopy classes of such minimal
curves which correspond to a choice of two of the three punctures.

LEMMA 3.4. Every minimal admissible closed curve is either a minimal
curve of type A or a minimal curve of type B.

Proof. Let o be a minimal admissible closed curve. If « contains two
consecutive geodesic segments with endpoints on the same pair of edges of
S. then « contains a nontrivial non-essential admissible subcurve (3 and
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necessarily oo = (B where « is non-essential. Since « is essential, S and
~ are homotopic to different punctures. The same argument can be applied
to any subarc of v which consists of two consecutive geodesic segments and
shows that « has exactly two segments. This means that o is of type B.

On the other hand, if there are no two consecutive segments of « hitting
the same edges of S, then « is necessarily homotopic to a multiple of the
lift of the A-orbit 7; from Lemma 3.2. By minimality, « is of type A. This
shows the lemma. [

Let now « be any irreducible closed curve. A simplification of « is an
admissible essential subcurve 3 of « such that o can be written in the form
« = (3 where -y is non-essential. A minimal model is a minimal closed curve
which can be obtained from « by finitely many simplifications. Clearly every
irreducible closed curve has a minimal model which is not necessarily unique.

Recall that S, admits a natural orientation reversing isometry ¥ which
fixes pointwise the edges of S, . This isometry acts on the space of admissible
curves. We have

LEMMA 3.5. Let « be an irreducible admissible curve which admits a
minimal model of type B. Then « is freely homotopic to W(a™1).

Proof. Let a be an irreducible admissible closed curve. Assume that o
admits a minimal model  of type B. We have to show that ‘i’(ofl) is freely
homotopic to «.

By definition of a minimal model, with respect to a suitable numbering of
the edges of S, the curve [ can be written in the form 3 = (3;5,333:s where
B connects the edge a to the edge b, [, connects the edge b to the edge
a, (3 connects a to ¢ and (4 connects ¢ to a. Notice that 3 has exactly
4 intersection points with the edges of S,.

Since [ is a minimal model for «, the curve « can be represented in
the form o = fBiaGrarB30304s04 where o; is an admissible closed curve.
By assumption « is irreducible and therefore the curves a; are non-essential.

We distinguish three cases.

1) The curve (o3, is essential.

Then o consists of an even number of geodesic arcs which connect the
edges b and c. Moreover the subcurve oyB303034014 has to be non-essential

and therefore o= Bra1B2(B384)" for some m > 1. In particular, « is freely
homotopic to W(a™1).
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2) The curve (3304 is essential.

As above we conclude that then o = (613,)"F3030, and « is freely
homotopic to P(a~1).

3) BraifBr = (B162)™ and BzasBs = (B334)™ for some my,my > 1.

Since the curves o, and a4 are non-essential and have their endpoints
on the side a this implies that « can be represented in the form o =
(B152)! (384)% for some ¢1,¢, > 1. Once again we conclude that o is
homotopic to P(a~!). [

REMARK. The proof of Lemma 3.5 also shows the following: Let o be
an irreducible admissible essential closed curve on S, which admits a minimal
model of type B. Then with respect to a suitable labeling of the edges of S,
a is freely homotopic to a curve of the form (513,)*3:¢™Bs where k > 1,
m >0 and (3; is an arc joining the edge a to the edge b, (3, connects b to
a, B3 joins b to ¢, ( is nonessential and (3, connects ¢ to a.

LEMMA 3.6. The projection to S/T" — {6, A, I§} of a systole on a simple
triangle surface S = S(p;k) is irreducible.

Proof. By Lemma 3.2 it suffices to show that the length of every admissible
reducible closed curve o in S, is bigger than twice the length of the A -orbit
71 - For this let o be reducible and write « = aja, where the curves aq, a;
are essential.

Let § be an irreducible admissible essential subcurve of «;. If 3 has a
minimal model of type A, then we can cut from [ finitely many non-essential
closed curves to obtain a shorter curve which is homotopic to two copies of
the A-orbit y; from Lemma 3.2. Since the lift 7; of 7; to S/T" has minimal
length in its free homotopy class and since « is homotopic to .3~y for some
closed curve -y, the length of « is bigger than the length of the lift 7, of
71 to S.. Thus by Lemma 3.2 « can not lift to a systole on S.

‘We are left with the case that all minimal models of irreducible subcurves
a1, ay of a are of type B. Then we can cut away finitely many closed curves
from « which shortens the length of o to end up with a closed curve (3
of the form B = [1yB:6 where (3,3, are minimal curves of type B and
77,0 are possibly trivial arcs connecting the edges containing the endpoints of
B1,02. If 7,6 are not trivial then we can replace 5,6 by a minimal curve
7626 of type B where 3, is an admissible subcurve of (2. In other words,
we may as well assume that 8 = (;0,.
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Now we distinguish two cases.

1) The curves [y, 3, are homotopic.

Then there are simple closed generators 7, of the fundamental group
of S, such that 3 is freely homotopic to n{n¢. In particular there is a closed
geodesic p on S, which is freely homotopic to 3, whose length is not bigger
than the length of # and which is not a prime geodesic. This geodesic is the
double of a minimal curve v of type B. The length of p equals twice the
length of . However, since the length ¢; of the A-orbit 7; from Lemma 3.2
is the minimal length of any closed curve in the triangle /A which intersects
the three sides of A, the length of 7, is strictly smaller than the length
of «v. Thus p is longer than a lift of 7; and « can not lift to a systole
on S.

2) The curves (3,3, are not homotopic.

Let ¢ be the B-orbit in A whose lift to S/T —{A,B,0} = S, is freely
homotopic to (;0,. The length of Z 1s not bigger than half the length of
G106, and 5 consists of four arcs 51, Zz, 63, &. The arc Zl meets one of the
sides, say the side a, perpendicularly, and 54 meets a different side, say the
side b, perpendicularly.

We denote by Ej, E,, E5 the endpoints of Zz and E3 ; they lie on the three
different sides of A.

Once again we distinguish two cases:

a) The arcs ¢, and (4 intersect.

E;

Then the length of C is bigger than the length of the triangle inscribed in
A with vertices Ej, E,, E3. In particular, the length of C is bigger than the
length of the A-orbit 7; from Lemma 3.2.
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b) The arcs (; and (4 do not intersect.

Ey4

E3

In this case either the arc Cl intersects the arc Cg or the arc C4 intersects
the arc §2 Assume that the second case holds.

Let again E;, E, be the endpoints of Cz where E; lies on the edge b
and let E4 be the endpoint of the arc QN“4 on the edge b. Since C4 meets b
orthogonally at E; and has its second endpoint E3 on the side a, the angle
at E4 of the triangle with vertices Ej, E4, E, is strictly bigger than 5 . This
means that the distance between E, and Ej is smaller than the length of the
arc 52 and therefore the length of Z 1s bigger than the circumference of the
triangle with vertices E,E3,E4. In particular, this length is bigger than the
length of the A-orbit 7;.

This completes the proof of our lemma. [

As an immediate corollary of Lemma 3.6 and Lemma 3.5 we obtain

COROLLARY 3.7. A C-orbit in A\ does not lift to a systole on S.

4. LENGTH ESTIMATES FOR SYSTOLES

In this section we complete the geometric description of the systoles of a
simple triangle surface and its associated ideal surface. As a consequence we
obtain that a simple triangle surface which is different from one of the three
surfaces listed in the introduction is not maximal.

We resume the assumptions and notations from Section 3. Our goal is
to describe all B-orbits in the equilateral triangle A with angle 7/p or in
an ideal triangle A, which lift to a systole on a simple triangle surface S
or its associated ideal surface S,. For this it is convenient to consider any
piecewise geodesic o in A with the following properties :
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