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NEW EXAMPLES OF MAXIMAL SURFACES

by Ursula HAMENSTADT ")

ABSTRACT. We describe all closed hyperbolic triangle surfaces of a particularly
simple type which are maximal, i.e. for which the length of the systole is a local
maximum in Teichmiiller space. We show that this class of triangle surfaces contains
exactly three maximal surfaces. One of these surfaces is the well known Klein surface,
the other two examples are new.

1. INTRODUCTION

A Riemann surface of finite type is a closed Riemann surface from which
a finite number m > 0 of points, the so-called punctures, have been deleted.
Closed Riemann surfaces (with no punctures) are topologically determined by
their genus. In this note we only consider surfaces of genus g > 2 with m > 0
punctures. Such a surface admits a family of complete hyperbolic metrics of
finite volume. Each of these metrics corresponds to precisely one complex
structure of finite type.

The easiest way to describe all such hyperbolic metrics is to look at the
Teichmiiller space 1, ,, of marked hyperbolic metrics of finite volume on a
surface Sy of genus g with m punctures. This Teichmuller space is the set
of all pairs (f,h) where & is a hyperbolic metric on a surface S and f is the
homotopy class of a homeomorphism F: So — § of Sp onto S. The mapping
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66 . . U. HAMENSTADT

class group Map(g, m) is the group of all isotopy classes of homeomorphisms
of Sy onto itself. It acts on Tym via W(f,h) = (f o W~! h) and identifies
those points in 7, , which correspond to isometric surfaces. With respect to
a natural topology, the Teichmiiller space 7, is homeomorphic to a cell
of dimension 6g — 6 + 2m, and the mapping class group Map(g,m) acts
properly discontinuously, but not fixed-point free. The quotient of 74 m under
Map(g,m) is the moduli space of hyperbolic metrics on our surface of genus
g with m punctures.

A systole of an oriented hyperbolic surface S of finite volume is a simple
closed geodesic on S of minimal length. The length of the systole depends
on the choice of the hyperbolic metric and defines a Map(g, m)-invariant
continuous function on 7 ,,. This function is bounded from above on 7,
by a constant depending on g and m [Bu] (which however tends to infinity
as ¢ tends to infinity [BS]), but it is not bounded from below on Tgm. We
refer to [S3] for other interesting properties of this function.

Following Schmutz [S1] we call a point in Ty m a maximal surface if the
length of the systole has a local maximum at that point. Maximal surfaces
always exist, and Schmutz found in [S1] explicit examples.

The goal of this paper is to look for maximal surfaces among all hyperbolic
surfaces which admit a particularly simple combinatorial description. For this
recall that every closed hyperbolic surface S is given by a discrete torsion
free subgroup G of the isometry group PSL(2,R) of the hyperbolic plane H?
which acts cocompactly on H?. The surface S then simply equals H2/G. The
Dirichlet fundamental polygon for G based at a point y € H? is the set D
of all points z € H?> with the property that dist(z,y) < dist(z, Wy) for every
WV € G, where dist is the distance function of the hyperbolic metric. This set
1S a convex hyperbolic polygon.

For a number p > 5 define a fundamental 2p-gon to be a regular 2p-gon
Q in the hyperbolic plane H? with angles 27 /p and sides of ‘equal length.
Such a 2p-gon admits a cyclic group I' of order p of isometries whose
elements rotate €2 about a fixed point, with a multiple of 27/p as rotation
angle. We call the fixed point of the elements of T the center of Q. If we
draw 2p geodesic segments from the center O to the vertices of the boundary
0Q of Q, then these segments decompose Q into 2p equilateral triangles
with angle 7 /p.

We call a closed surface S = H?/G a simple triangle surface if G admits
a fundamental 2p-gon Q as the Dirichlet fundamental polygon based at the
center of € and if moreover G is normalized by the cyclic group I". The
action of T on H? then descends to an isometric action on § = H2 /G. We
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call this group of isometries the basic group of isometries of S. The GauB-
Bonnet formula shows that the genus g of § equals %( p — 1). In particular,
the number p is odd.

We number the vertices of 0Q in counter-clockwise order. These vertices
are contained in exactly two vertex cycles under the action of I'. One of these
vertex cycles contains the even vertices, the other contains the odd vertices.
The triangulation of Q into 2p equilateral triangles with vertices at 0 and on
the boundary 0Q of € descends to a triangulation of the quotient surface §
with 3 vertices. We call this triangulation the canonical triangulation of S. If
we delete the vertices of the canonical triangulation from the surface S then
we obtain a surface of genus g with 3 punctures together with a complex
structure of finite type which is invariant under the natural action of the basic
group of 1sometries of S. The unique hyperbolic metric of finite volume which
defines this complex structure is again invariant under this group of isometries.
In other words, to every simple triangle surface S of genus g corresponds
a point So, in the Teichmuller space 7,3 of surfaces of genus g with 3
punctures which we call the ideal surface S, associated to S.

The main purpose of this note is to show.

THEOREM A.

1) Among the simple triangle surfaces there are exactly 3 which are
maximal. They are of genus 3, 6 and 10.

2) The ideal surface associated to a simple triangle surface S is maximal
if and only if S is maximal.

The maximal surface of genus 3 listed in the above theorem is the well
known Klein’s surface of genus 3 and appears already in the list of maximal
surfaces given by Schmutz in [S1] (compare also the proceedings volume [L]
about Klein’s surface). The examples of genus 6 and genus 10 are new. We
remark that by construction our simple triangle surfaces are indeed triangle
surfaces in the usual sense, i.e. their isometry group is a nontrivial finite
quotient of a triangle group.

From the proof of Theorem A we obtain additional informations on some
of the Teichmuller spaces 7. To explain this let [y] be a nontrivial free
homotopy class on the closed base surface Sy of genus g. For every point
(fsh) € 1y, the class f[y] can be represented by a unique closed geodesic
with respect to the hyperbolic metric 4. The length of this geodesic defines

a continuous function on 7;o. We call this function the length function of
[v]. We show
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THEOREM B. For every k > 2 and g = ’z‘(k + 1) the Teichmiiller space
140 can be parametrized by the length functions of 69+ 3 free homotopy
classes contained in the orbit of a fixed class under a maximal finite subgroup
G of Map(g,0). The group G is a semidirect product of a cyclic group of
order 29+ 1 and a cyclic group of order 3.

We refer to [S2] for a discussion of other interesting parametrizations
of 7;’0.

The structure of this note is as follows. In Section 2 we look at
simple triangle surfaces with additional symmetries. In Section 3 we give
a combinatorial description of a family of curves which contains the systoles
of every simple triangle surface. Length estimates in Section 4 lead to a
complete description of the systoles of a simple triangle surface. This is used
in Section 5 to show our theorems.

As a notational convention, we number the vertices of a fundamental
2p-gon € counter-clockwise in consecutive order and we number and orient
the edges of € in such a way that the edge i as an oriented arc joins the
vertex i—1 to the vertex i. Moreover we write simply 7, for the Teichmiiller
space of marked hyperbolic structures on a closed surface of genus g¢.

2. BASIC PROPERTIES OF SIMPLE TRIANGLE SURFACES

Let g > 2 and let p =2g + 1. There is up to isometry a unique 2p-gon
Q in the hyperbolic plane H? with geodesic sides of equal length and with
angles 27 /p. In the introduction we called Q a fundamental 2p-gon. The
center of € is the unique point z € £ which has the same distance to each
of the vertices. A fundamental 2p-gon admits a cyclic group I" of isometries
whose elements rotate €2 about the center with a rotation angie which is a
multiple of 27/p. We view T" as a cyclic group- of isometries of the whole
hyperbolic plane HZ.

We call a closed hyperbolic surface S of genus ¢ a simple triangle surface
if S =H?/G where G is a discrete torsion free group G C PSL(2,R) of
isometries of H? which is normalized by the group I' and which admits Q
as a fundamental polygon (see [M] for basic informations on fundamental
polygons). The group G then acts as a group of side pairing transformations
for the polygon €2. This means that for each side a of Q there is an isometry
Y € G which maps a to a second side W(a) # a of Q in such a way that
Y(Q)NQ="Ya.
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Our first observation is that simple triangle surfaces exist for every
genus g > 2.

LEMMA 2.1. For every g > 2 there is a simple triangle surface of genus g.

Proof. Let p > 5 be an odd number and let €2 be a fundamental 2p-gon
with center 0 € H?>. We have to show that there is a discrete subgroup G of
PSL(2,R) which is normalized by I' and which admits £ as a fundamental
polygon.

Choose a number k € {2,...,p — 1} and define a family {¥i,...,%¥,}
of isometries of H? by requiring that ¥; maps the (oriented) edge with odd
number 2j+ 1 orientation reversing onto the (oriented) edge 2j+ 2k in such
a way that W;() N Q is just the edge 2j 4 2k. Then necessarily the vertex
2j is mapped to the vertex 2j+ 2k, and the vertex 2j+ 1 is mapped to the
vertex 2j + 2k — 1. We claim that these isometries {¥;,...,¥,} generate a
discrete subgroup of PSL(2,R) with fundamental domain € if and only if k
and k — 1 are prime to p.

To see this let G be the subgroup of PSL(2,R) generated by Py, ... 'y
and assume that G is discrete and torsion free, with fundamental polygon Q.
By the choice of ¥,...,¥,, the G-orbit of an even (or odd) vertex of Q
intersects €2 only in the set of even (or odd) vertices. Different such vertex
cycles project to different points on the surface S = H?/G. If m > 2 is the
number of points in the vertex cycle of the vertex a, then a neighborhood
of the projection @ of a to S consists of 2m equilateral hyperbolic triangles
with angle 7/p which contain @ as one of their vertices. Since S is a smooth
hyperbolic surface, the angles at @ of these triangles must add up to 2.
This means that there are precisely 2 vertex cycles for the action of G, each
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containing only even or only odd vertices. By the definition of G this is the
case if and only if the number & € {2,...,p—1} is prime to p and k—1 is
prime to p as well. Such a group G is then normalized by the group I of
rotations of Q with rotation angle a multiple of 2.

The same argument also shows that for k € {2,...,p—1} which is prime
to p and such that k— 1 is prime to p as well the group G induces a simple
triangle surface of genus g. Since p =2g + 1 is odd we can always choose
k = 2 to obtain an example. []

In the above proof we observed that we obtain a simple triangle surface
from a fundamental 2p-gon Q by identifying the edge 1 with the edge 2k
for some k € {2,...,p— 1} if and only if kK and k — 1 are prime to p.
We denote by S(p;k) the surface obtained in this way. For fixed p > 5
this defines a finite non-empty collection of simple triangle surfaces of genus
%p — 1 indexed by the set of all numbers k € {2,...,p—1} which are prime
to p and such that k—1 is prime to p as well. However these surfaces are not
necessarily distinct as hyperbolic surfaces. For example, via exchanging the
roles of the even and odd vertices of our fundamental 2p-gon Q we observe
that the surface S(p;k) is isometric to the surface S(p;p —k + 1). Thus we
may restrict our attention to the case that k < %(P + 1). In the sequel we
sometimes identify the surfaces S(p;k) and S(p;p — k + 1) without further
comment.

Let again T be the group of rotations of Q which descends to a group of
isometries on a simple triangle surface S of genus g. The natural I'-invariant
triangulation of Q into 2p equilateral triangles with angle 7 /p projects to the
[-invariant canonical triangulation whose 3 vertices 0,A, B are just the fixed
points for the action of I'. The quotient S /T of S under I' is a topological
2-sphere. The hyperbohc metrlc on S projects to a hyperbolic metric on S/I"
with 3 singular points A B, 0 which are the projections of the vertices A, B, 0
of the canonical triangulation of . With this metric, S/I" is isometric to two
equilateral hyperbolic triangles with angle 7 /p glued at their boundaries. This
observation is used in the proof of the following.

LEMMA 2.2.

1) Let p > 5 be an odd number and let k,m & {2,...,p—1} be numbers
which are prime to p and such that k—1,m —1 are prime to p as well. If
either (k—1m+1=0 mod p or (mn—1k+1=0 mod p then the surfaces
S(p;k) and S(p;m) are isometric.
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2) A simple triangle surface S with basic group T of isometries admits a
nontrivial group X ¢ T" of orientation preserving isometries which normalizes
I' if and only if one of the following holds.

1) §S=3S8(p;k) for some k> 2 and a divisor p > k+1 of k(k— 1)+ 1.

The group X is then cyclic of order 3.

i) §$=S8(p;2) and the group T is cyclic of order 2 and generated by a

hyperelliptic involution.

Proof. Let p>35 and let k <p—1 be such that k— 1 and k are prime
to p. Let Q be a fundamental 2p-gon and let 0,A, B be the vertices of the
canonical triangulation of S. We assume that 0 is the projection of the center
of € and A is the projection of the odd vertices of the boundary of Q.

As in the introduction we number the 2p edges of Q in counterclockwise
order in such a way that the edge i is adjacent to the vertices i — 1 and i. Let
T; C S be the projection of the triangle in Q with one vertex at the center of
Q and with the edge i of Q as the opposite side. The triangles 77, ..., T,
are arranged in counterclockwise order around the vertex 0.

There is a different representation of S as a quotient of Q under a group
of side pairing transformations in such a way that the center of projects
to the vertex A of the canonical triangulation. Namely, if we cut S open
along the geodesic arcs connecting the vertices 0 and B, then the result is
a fundamental 2p-gon which consists again of the triangles 71, ... , o, . The
arrangement of these triangles around the vertex A is given by a permutation o
of {1,...,2p} with o(1) = 1, i.e. the counterclockwise order of the triangles
around the vertex A is Ty, .. ., T5py. The parity of o(i) coincides with the
parity of i. Moreover for every i € {1,...,p} we have o(2i) = 0(2i + 1) + 1
mod 2p.

The side pairings of Q which define S in such a way that the center
of Q projects to 0 glue the edge 2k to the edge 1 and therefore we have
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0(2) = 2k and o(3) = 2k—1. The basic group I" of isometries of S permutes
the triangles 7; and fixes the vertex A. This implies that o normalizes the
group of permutations of {1,...,2p} generated by the permutation 7(i) = i+2
mod 2p and hence necessarily o(2i) = 2i(k — 1) + 2.

To obtain our surface S we have to identify the edge 2i — 1 with the
edge 2im for some m € {2,...,p— 1} with an orientation reversing isometry.
The number m is uniquely determined if we require in addition that the
triangles adjacent to odd edges of Q project once again to the triangles 75;_;
(i=1,...,p) of the canonical triangulation.

Comparing the arrangement of triangles around 0 and A we conclude that
o(2m) = 2p. Together with the above this shows that 2m(k — 1) +2 = 0
mod 2p or, equivalently, m(k—1)+1 =0 mod p. In other words, if m,k > 2
are such that m(k—1)+1 =0 mod p then the surfaces S(p;k) and S(p;m)
are isometric. This shows the first part of the lemma.

To show the second part of our lemma let S be a simple triangle surface
which admits a non-trivial group X of orientation preserving isometries
normalizing the basic group I'. Then the action of ¥ on § descends to
an isometric action on the sphere S/I". The sphere S/I" consists of two
equilateral triangles with angle 7/p glued at their boundaries. One of these
triangles is the projection of the odd triangles of the canonical triangulation
of S, the other one is the projection of the even triangles.

Every isometry of S/I" has to preserve the singular set {A,B, 6} c S/T
of ramification points which consists of the vertices of the two triangles
forming S/T". The only nontrivial isometry of S/I" which fixes each of
the ramification points 6, X,E is the orientation reversing reflection which
exchanges the two triangles forming S/I". By assumption the elements of X
preserve the orientation of S and hence of S/I', and therefore there are two
possibilities :

1) X contains an element W which permutes cyclicly the singular points

A\, §,6 of S/I" and preserves each of the two, triangles which form S/T".

2) X fixes one singular point of S/I', permutes the two other ones and
exchanges the two triangles which form S/T.

Assume that S = S(p;k) admits an isometry ¥ as in 1) above. Then
Y permutes the triangles of the canonical triangulation, but preserves their
parity. If we cut § = S(p;k) open along those edges of the triangles of the
canonical triangulation which connect the vertices A and B, then the result
is the fundamental 2p-gon €2 and we obtain our surface from € by a side
pairing which identifies the edges 1 and 2k. Since W is an isometry of §

|
|
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which preserves the canonical triangulation, if we cut S open along the edges
connecting the vertices W(A) and W(B) then the result is again the polygon
2, and once again we obtain S from Q by identifying the edges 1 and 2k.
This together with the above consideration shows that k(k—1)+1 =0 mod p
and therefore p divides k(k— 1)+ 1. ’

Assume now that S admits an isometry ¥ as in 2) above. Then W
permutes the triangles of the canonical triangulation and changes their parity
with respect to a given counter clockwise numbering around a given vertex.
Let m < p—1 be such that k(m—1)+1 =0 mod p. The above considerations
imply that necessarily k = p —m + 1 and hence (m — 1)2 = 1 mod p or
equivalently m(m —2) =0 mod p. Since m > 1 is prime to p we conclude
that either m = 2 or that p divides m —2. But m < p — 1 and therefore only
the case m =2 is possible.

We are left with showing that the isometry ¥ is a hyperelliptic involution.
For this notice that every fixed point of ¥ projects to a fixed point for the
induced isometry ¥ of S/T". The map ¥ has precisely two fixed points: A
singular point 0 of S /T and the midpoint y of the geodesic arc connecting
the two other singular points.

There are exactly p = 2g + 1 preimages of y in S. Since W2 = Jd and
since ¥ normalizes I, either every preimage or no preimage is fixed by W.
The Riemann Hurwitz-formula [F] shows that the second case is impossible.

Thus ¥ has exactly p 4+ 1 = 29 + 2 fixed points and is a hyperelliptic
involution. [

COROLLARY 2.3.  For every g > 2 there is a hyperelliptic surface of genus
g whose full automorphism group is the direct product of a cyclic group of

order 2g + 1 and a cyclic group of order 2 generated by a hyperelliptic
involution.

Proof. We showed in Lemma 2.1 that for each g > 2 there is a simple
triangle surface S(2¢ + 1;2). By Lemma 2.2 and its proof, this surface is
hyperelliptic and its isometry group is a stated in the corollary.  []

REMARK.  There are surfaces S(p; k) for p ¢ {6 —1)+1 | £ > 2} which
admit a cyclic group X of isometries of order 3 contained in the normalizer

_‘ of the basic group T'. The simplest surface of this kind is the surface §(19;8)
§ of genus g=09.
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3. GEOMETRIC PROPERTIES OF SYSTOLES
OF SIMPLE TRIANGLE SURFACES

This section is devoted to a description of some geometric properties of
the systoles on a simple triangle surface S = S(p;k) and its associated ideal
surface So,. We continue to use the notations from Section 2.

The canonical triangulation of the surface S is invariant under the group
I' of isometries of §, and its vertices 0,A,B are fixed points for the action
of I'. The quotient S/I" is a topological 2-sphere with a singular hyperbolic
metric which is isometric to two equilateral hyperbolic triangles with angles
m/p glued at their boundaries. Every closed geodesic on S which does not
pass through any of the vertices A, B,0 projects to a closed geodesic on S/T.
We first observe that this is the case for the projection to S/T" of a systole
on S.

LEMMA 3.1. A systole of S does not pass through a vertex of the canonical
triangulation. ‘

Proof. Let v be a geodesic in S which passes through one of the vertices
of the canonical triangulation, say through the vertex 0. Assume that we obtain
S from side pairing transformations of a fundamental 2p-gon Q in such a
way that the center of  projects to the point 0.

The lift of « to the polygon € has to intersect the boundary 0Q of Q
and hence its length is not smaller than twice the distance between the center
of € and 0Q. In particular, if « is any geodesic arc in Q of minimal length
which connects the edge 1 to an edge r # p+1, then « is necessarily shorter
than -y.

Let k < p be such that the side pairings for Q which define S. identify
the edge 1 with the edge 2k. If 2k # p + 1 then the above shews that the
closed geodesic on S which is the projection of the arc of minimal length in
Q connecting the edges 1 and 2k is shorter than ~y.

On the other hand, if 2k = p 4+ 1, then we obtain from Lemma 2.2 that
the side pairings which define Q with center at the point A identify the edge
1 with an edge 2m for some m # (p+ 1)/2. Again we conclude that the arc
v is longer than a systole on §. [

‘Let Q be a fundamental 2p-gon and let v be the geodesic arc through
the center 0 of €2 which connects the vertex 2p to the vertex p. Let ¥ be
the reflection in H? along ~. Then W leaves Q invariant and maps a pair
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of edges of the form {2i+ 1,2i+ 2k} to the pair {2p —2i,2p —2i —2k+ 1}
of the same form. In other words, ¥ descends to an orientation reversing
isometry of S. The group I" of isometries of S generated by W and the basic
group T" has order p + 1 and contains the group I' as a normal subgroup of
index 2. The orientation reversing isometry ¥ of S descends to an orientation
reversing isometry ¥ of order 2 of S /T which exchanges the two triangles.

Let /A be an equilateral hyperbolic triangle with angle 7/p. The triangle
/A will be viewed as a billiard table. A billiard orbit consists of geodesic
arcs inside /A which are joined at points of the boundary 0/ according to
the rule that the angle of incidence equals the angle of reflection. We view a
billiard orbit as unparametrized and unoriented.

A closed geodesic on S/T" not passing through one of the singular points

0,A, B corresponds to a periodic billiard orbit in A of one of the following
three types:

a) A periodic billiard orbit with an odd number of collisions with the boundary
of /A, none of them perpendicular.

In the sequel we call such a billiard orbit an A-orbit. An A-orbit v admits
a lift to a closed geodesic ¥ on S/I', unique up to reparametrization, which
is freely homotopic as a curve on the thrice punctured sphere S/I"\ {6, A, B}
to its image under the isometry V. Its trace is invariant under . The lift of
every collision point of the billiard orbit with A is a transverse intersection
of v with the common boundary of the two triangles forming S/T". The length
of 7 is twice the length of ~.

b) A periodic billiard orbit whose trace consists of one piecewise geodesic
arc which meets the boundary 9/ orthogonally at its endpoints.

We call such an orbit a B-orbit in the sequel. A B-orbit 7 admits a lift to
S / I', unique up to reparametrlzatlon which is freely homotopic to the image
‘P(y ) under ¥ of its inverse ~~'. Its trace is invariant under ¥ and its
length is twice the length of ~.

c) A periodic billiard orbit with an even number of collisions with the
boundary of A, none of them perpendicular.

We call such an orbit a C-orbit. A C-orbit 7 admits two different lifts
Y1,%2 to closed geodesics on S/T" whose traces intersect transversely and
whose lengths coincide with the length of the billiard orbit. The geodesic 7,
is the image of 7~ 7] under the isometry N of § /T". Neither the geodesic 7;
nor its inverse 7, is freely homotopic to lI’('yl)
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Call a periodic billiard orbit 4 on /A as above liftable to S if there is a
closed geodesic v on S whose projection to S/T" is a lift ¥ of ¥ to S/I".
We then call v a lift of 7 to S.

The group I" also acts as a group of isometries on the ideal surface S
associated to S. The quotient of S., unter the basic group I' is the thrice
punctured sphere S.,/I" with the complete hyperbolic metric of finite volume.
The orientation reversing involution ¥ acts on Seo /T as the natural reflection
which leaves each of the punctures fixed. Every closed geodesic on Su,
projects to a closed geodesic on S /T .

Let /\o, be an ideal triangle. Once again we can view A, as a billiard
table. The above definition for billiard orbits in /A can also be made for
billiard orbits in A . We call a billiard orbit 7 in A, liftable to the ideal
surface S.. if there is a closed geodesic v on S., which projects to . In the
remainder of this section the ideal triangle, its billiard orbits and their lifts to
the ideal surface S., are always included in our considerations without further
comments. More precisely, even though for simplicity we formulate all our
statements only for billiard orbits in /A and the surface S it is immediately clear
from the proofs that they are equally valid for A, and the ideal surface S .

A first example of a liftable billiard orbit is given in the next lemma.

LEMMA 3.2. There is a unique A-orbit 7, in /\ with 3 collisions with
the boundary, and this orbit is liftable. The length of a lift of 1 to S is not
bigger than 6 arccosh %

Y1

Proof. Let S = S(p;k) and let Q be a fundamental 2p-gon. Connect the
midpoint of the edge 1 in Q with the midpoint of the edge 3 by a simple arc,
and connect the midpoint of the edge 2k with the midpoint of the edge 2k+2
by a simple arc. These two arcs together project to a simple closed curve on
S which is freely homotopic to a closed geodesic v on §. The geodesic vy
is necessarily a lift of an A-orbit 7; in A of period 3. Notice that there are
exactly p lifts of 71, and every such lift intersects exactly 6 other lifts, with
each of these intersections consisting of a single point. The length £; of a
lift of 7; to S is twice the length of 7.
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To give a sharp upper bound for ¢; notice that £;/2 is just the
smallest circumference of a hyperbolic triangle with vertices on the sides
of A and hence ¢;/2 is not larger than the smallest circumference of a
hyperbolic triangle T., with vertices on the boundary of an ideal triangle.
This circumference is the limit as k — oo of the circumferences of hyperbolic
triangles T, whose vertices are the midpoints of the sides of an equilateral
triangle /\; with angle = /k.

To give a formula for the circumference of Ty let Ay be the length of the

sides of /\r, and let /; be the length of the sides of 7.
cos  /2k

Hyperbolic trigonometry (see [I]) gives cosh i\zﬁ = S/ and
Mo M 7w (1—cosm/k)(cosT/2k)* T
— Zky2 2 = cos — .
cosh ¢, = (cosh 2) (sinh 2) cos P (sin 7 /K7 + T

This shows that as k& — oo we have cosh/;, — % and 6/, — 6arccosh% ~

5.775. This completes the proof of our lemma. [

As an immediate consequence of Lemma 3.2, the length of the systole
of a simple triangle surface and its associated ideal surface does not exceed
6 arccosh % < 5.8. In particular, for large genus such triangle surfaces are
never globally maximal [BS].

LEMMA 3.3. A lift to S of an A-orbit v which is different from v, is
not a systole.

Proof. By Lemma 3.2 it suffices to show that the length of every A-orbit
v in A is not smaller than the length of the A-orbit 7; from Lemma 3.1,
with equality if and only if v = 7.

For this recall from the definition that an A-orbit v is a closed curve
in A with an odd number of collisions with the boundary, none of them
perpendicular. This implies that for every pair of sides of the boundary of A
there is a geodesic arc of 7 with endpoints on these sides.

Thus we can find three points E1, E,, E; which lie on the three different
sides of the boundary of A and are contained in 7 in this order with respect
to the choice of some fixed orientation and some fixed initial point. Since
7 is closed, its length is not smaller than the circumference of the triangle
T inscribed in A with vertices Ei,E,,E; with equality if and only if &
coincides with the boundary of 7'. However the length of the orbit 7; from 3'
Lemma 3.2 is the smallest circumference of any triangle with vertices on the |
three different sides of A . From this the lemma is immediate. [
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B-orbits and C-orbits in /A are more difficult to control. For their
investigation let S, be a thrice punctured sphere. We equip S. with the
(noncomplete) hyperbolic metric which we obtain by glueing two equilateral
hyperbolic triangles T7,T, with angle 7/p along their boundaries. Thus S,
with this metric is just the space S/T" — {0,A,B}. The sides of Tj,T, are
geodesics a,b,c in S, which connect a pair of punctures of S.. We call
a,b,c the edges of S,. Define a curve « in S, to be admissible if o 1s a
closed curve with the additional property that every connected component of
an intersection of o with one of the triangles 7; consists of a single geodesic
arc in T;. We call these components the segments of «. Thus « is composed
of a finite number of geodesic arcs with endpoints on the edges of S, and
no two consecutive such segments are contained in the same triangle 7;. In
the sequel we identify two such curves if they coincide up to an orientation
preserving reparametrization.

An admissible homotopy of an admissible curve « is a free homotopy of
o through admissible curves. We call the admissible curve o on S, essential
if o can not be homotoped into one of the punctures. An admissible subcurve
of o is a connected subarc 8 of « such that there exists an admissible
homotopy of « which deforms (3 into a closed admissible curve. For every
admissible subcurve 8 of o we can write o = 3 for an admissible subcurve
v. We say that « is irreducible if for every essential admissible subcurve [
of o the curve v = a — (3 is not essential. A curve which is not irreducible
is called reducible. An irreducible essential curve « is called minimal if o
does not contain any nontrivial essential closed subcurve.

There are two obvious types of minimal closed curves which can be
described as follows. The first type consists of curves which are freely
homotopic to a lift of the A-orbit 7; from Lemma 3.2. We call such a
curve a minimal curve of type A. The second type consists of curves which
are freely homotopic to a curve of the form «f where o and 3 are simple
closed curves in S, which generate the fundamental group of S,. Up to
orientation there are three different free homotopy classes of such minimal
curves which correspond to a choice of two of the three punctures.

LEMMA 3.4. Every minimal admissible closed curve is either a minimal
curve of type A or a minimal curve of type B.

Proof. Let o be a minimal admissible closed curve. If « contains two
consecutive geodesic segments with endpoints on the same pair of edges of
S. then « contains a nontrivial non-essential admissible subcurve (3 and
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necessarily oo = (B where « is non-essential. Since « is essential, S and
~ are homotopic to different punctures. The same argument can be applied
to any subarc of v which consists of two consecutive geodesic segments and
shows that « has exactly two segments. This means that o is of type B.

On the other hand, if there are no two consecutive segments of « hitting
the same edges of S, then « is necessarily homotopic to a multiple of the
lift of the A-orbit 7; from Lemma 3.2. By minimality, « is of type A. This
shows the lemma. [

Let now « be any irreducible closed curve. A simplification of « is an
admissible essential subcurve 3 of « such that o can be written in the form
« = (3 where -y is non-essential. A minimal model is a minimal closed curve
which can be obtained from « by finitely many simplifications. Clearly every
irreducible closed curve has a minimal model which is not necessarily unique.

Recall that S, admits a natural orientation reversing isometry ¥ which
fixes pointwise the edges of S, . This isometry acts on the space of admissible
curves. We have

LEMMA 3.5. Let « be an irreducible admissible curve which admits a
minimal model of type B. Then « is freely homotopic to W(a™1).

Proof. Let a be an irreducible admissible closed curve. Assume that o
admits a minimal model  of type B. We have to show that ‘i’(ofl) is freely
homotopic to «.

By definition of a minimal model, with respect to a suitable numbering of
the edges of S, the curve [ can be written in the form 3 = (3;5,333:s where
B connects the edge a to the edge b, [, connects the edge b to the edge
a, (3 connects a to ¢ and (4 connects ¢ to a. Notice that 3 has exactly
4 intersection points with the edges of S,.

Since [ is a minimal model for «, the curve « can be represented in
the form o = fBiaGrarB30304s04 where o; is an admissible closed curve.
By assumption « is irreducible and therefore the curves a; are non-essential.

We distinguish three cases.

1) The curve (o3, is essential.

Then o consists of an even number of geodesic arcs which connect the
edges b and c. Moreover the subcurve oyB303034014 has to be non-essential

and therefore o= Bra1B2(B384)" for some m > 1. In particular, « is freely
homotopic to W(a™1).
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2) The curve (3304 is essential.

As above we conclude that then o = (613,)"F3030, and « is freely
homotopic to P(a~1).

3) BraifBr = (B162)™ and BzasBs = (B334)™ for some my,my > 1.

Since the curves o, and a4 are non-essential and have their endpoints
on the side a this implies that « can be represented in the form o =
(B152)! (384)% for some ¢1,¢, > 1. Once again we conclude that o is
homotopic to P(a~!). [

REMARK. The proof of Lemma 3.5 also shows the following: Let o be
an irreducible admissible essential closed curve on S, which admits a minimal
model of type B. Then with respect to a suitable labeling of the edges of S,
a is freely homotopic to a curve of the form (513,)*3:¢™Bs where k > 1,
m >0 and (3; is an arc joining the edge a to the edge b, (3, connects b to
a, B3 joins b to ¢, ( is nonessential and (3, connects ¢ to a.

LEMMA 3.6. The projection to S/T" — {6, A, I§} of a systole on a simple
triangle surface S = S(p;k) is irreducible.

Proof. By Lemma 3.2 it suffices to show that the length of every admissible
reducible closed curve o in S, is bigger than twice the length of the A -orbit
71 - For this let o be reducible and write « = aja, where the curves aq, a;
are essential.

Let § be an irreducible admissible essential subcurve of «;. If 3 has a
minimal model of type A, then we can cut from [ finitely many non-essential
closed curves to obtain a shorter curve which is homotopic to two copies of
the A-orbit y; from Lemma 3.2. Since the lift 7; of 7; to S/T" has minimal
length in its free homotopy class and since « is homotopic to .3~y for some
closed curve -y, the length of « is bigger than the length of the lift 7, of
71 to S.. Thus by Lemma 3.2 « can not lift to a systole on S.

‘We are left with the case that all minimal models of irreducible subcurves
a1, ay of a are of type B. Then we can cut away finitely many closed curves
from « which shortens the length of o to end up with a closed curve (3
of the form B = [1yB:6 where (3,3, are minimal curves of type B and
77,0 are possibly trivial arcs connecting the edges containing the endpoints of
B1,02. If 7,6 are not trivial then we can replace 5,6 by a minimal curve
7626 of type B where 3, is an admissible subcurve of (2. In other words,
we may as well assume that 8 = (;0,.
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Now we distinguish two cases.

1) The curves [y, 3, are homotopic.

Then there are simple closed generators 7, of the fundamental group
of S, such that 3 is freely homotopic to n{n¢. In particular there is a closed
geodesic p on S, which is freely homotopic to 3, whose length is not bigger
than the length of # and which is not a prime geodesic. This geodesic is the
double of a minimal curve v of type B. The length of p equals twice the
length of . However, since the length ¢; of the A-orbit 7; from Lemma 3.2
is the minimal length of any closed curve in the triangle /A which intersects
the three sides of A, the length of 7, is strictly smaller than the length
of «v. Thus p is longer than a lift of 7; and « can not lift to a systole
on S.

2) The curves (3,3, are not homotopic.

Let ¢ be the B-orbit in A whose lift to S/T —{A,B,0} = S, is freely
homotopic to (;0,. The length of Z 1s not bigger than half the length of
G106, and 5 consists of four arcs 51, Zz, 63, &. The arc Zl meets one of the
sides, say the side a, perpendicularly, and 54 meets a different side, say the
side b, perpendicularly.

We denote by Ej, E,, E5 the endpoints of Zz and E3 ; they lie on the three
different sides of A.

Once again we distinguish two cases:

a) The arcs ¢, and (4 intersect.

E;

Then the length of C is bigger than the length of the triangle inscribed in
A with vertices Ej, E,, E3. In particular, the length of C is bigger than the
length of the A-orbit 7; from Lemma 3.2.
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b) The arcs (; and (4 do not intersect.

Ey4

E3

In this case either the arc Cl intersects the arc Cg or the arc C4 intersects
the arc §2 Assume that the second case holds.

Let again E;, E, be the endpoints of Cz where E; lies on the edge b
and let E4 be the endpoint of the arc QN“4 on the edge b. Since C4 meets b
orthogonally at E; and has its second endpoint E3 on the side a, the angle
at E4 of the triangle with vertices Ej, E4, E, is strictly bigger than 5 . This
means that the distance between E, and Ej is smaller than the length of the
arc 52 and therefore the length of Z 1s bigger than the circumference of the
triangle with vertices E,E3,E4. In particular, this length is bigger than the
length of the A-orbit 7;.

This completes the proof of our lemma. [

As an immediate corollary of Lemma 3.6 and Lemma 3.5 we obtain

COROLLARY 3.7. A C-orbit in A\ does not lift to a systole on S.

4. LENGTH ESTIMATES FOR SYSTOLES

In this section we complete the geometric description of the systoles of a
simple triangle surface and its associated ideal surface. As a consequence we
obtain that a simple triangle surface which is different from one of the three
surfaces listed in the introduction is not maximal.

We resume the assumptions and notations from Section 3. Our goal is
to describe all B-orbits in the equilateral triangle A with angle 7/p or in
an ideal triangle A, which lift to a systole on a simple triangle surface S
or its associated ideal surface S,. For this it is convenient to consider any
piecewise geodesic o in A with the following properties :
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a) There is a pair ey, e, of sides of A which is connected by at most one
subarc of «.

b) If ez is the third side of /A then the subcurves «p, s of o which contain
all arcs of « joining ey,e; to e; are connected and either o = ajan or
a1 orp 1S not connected.

We call such a curve irreducible. A B-orbit 7 which is irreducible in this
sense and with the additional property that there is a pair of sides of /A which
is not connected by any geodesic segment of 5 will be called a By-orbit.
An irreducible B-orbit which is not a Bg-orbit will be called a B;-orbit.
In the same way we define irreducible Bj-orbits and Bj-orbits in the ideal
triangle A .

A lift to §/T" of an irreducible curve o« in A is an admissible closed
piecewise geodesic in S/T'\{A, B,0} whose trace is invariant under the natural
isometry ¥ of order 2 of S /T exchanging the two triangles and which projects
to «. Call two irreducible curves «, 3 in /A homotopic if there are lifts of
B and a to S/T which are freely homotopic in S/T" — {A, B,0}.

The remark after Lemma 3.5 shows that a B-orbit in A is irreducible in
the above sense if and only if its lift to S/I"— {0,A, B} is irreducible in the
sense of Section 3. Thus we obtain from the results in Section 3.

COROLLARY 4.1. A B-orbit in A\ or Ay which lifts to a systole on S
or Soo 1s irreducible.

For the description of all B-orbits in /A which lift to a systole of a simple
triangle surface we use a length comparison argument. N amely, observe that we
can talk about homotopic irreducible arcs in nonisometric hyperbolic triangles
in an obvious way. We have.

LEMMA 4.2. Let q>p>5 and let /\,/\' be equilateral triangles with
angles m/p,m/q respectively. Let ~,7' be two homotopic B-orbits in JAVWANS
Then the length of vy is smaller than the length of v'.

Proof. For t < m/3 denote by T; the equilateral hyperbolic triangle with
angle f. Since a B-orbit is the shortest curve in its homotopy class it suffices
to show the following: If r <ty < m/3 and if ~v C T;, is any B-orbit, then
every admissible curve in 7, which is homotopic to 7 is longer than -.

But this follows simply from the fact that for 7 < fo the triangle T
can be isometrically embedded into the triangle 7, (see [I]). More precisely,
the center of the triangle 7T, is the unique point in 7; which has the same
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distance to each of the vertices of 7;. There is an (essentially unique) isometric
embedding of T, into 7, which maps the center of T, to the center of T;
and such that each geodesic in T, which connects the center to one of the
vertices passes through a vertex of 7. Map T, onto 7; by a diffeomorphism
which maps each geodesic + through the center to itself and scales the
parametrization by the proportionality factor length (y N 7;)/length (y N T},).
This map strictly increases the length of nontrivial curves in T}, . From this
the lemma is immediate. [

Let again Q be a fundamental 2p-gon, let k € [2,(p + 1)/2] and let
S = S(p;k) be a simple triangle surface. The side pairings for Q which
induce the surface S define a collection of p simple closed geodesics on S
which are invariant under the action of the basic group I'. Each of these
geodesics is freely homotopic to the projection to S of a geodesic arc in Q
connecting the midpoint of the side 2i+ 1 to the midpoint of the side 2i+ 2k.
Their projection to S/T" is the lift of an irreducible By-orbit 7, Wthh can
be described as follows.

o~

a) 7o has one endpoint on the edge opposite to a vertex 0 which is the
only collision point with this edge.

b) There are k collisions with the edge Jommg 0 to a second vertex A
and k— 1 collisions with the edge joining 0 to the third vertex B for
some k € [2,p/2].

We call a By-orbit 7 with properties a) and b) for an arbitrary k < p/2
a side pairing orbit. With this notation, every minimal By-orbit is a side
pairing orbit. Moreover a side pairing orbit is determined up to isometries
of A by the number of its geodesic segments, or, equivalently, by the
number of its collision points with the boundary of A. For a simple triangle
surface S there are at most three different liftable side pairing orblts (compare
Section 2).

Using Lemma 4.2 and a comparison argument we can now estimate the
length of a large family of irreducible B-orbits.

LEMMA 4.3. Let 1 be an irreducible B-orbit. Assume that either
1. 1 is a By-orbit with at least 5 collisions with the boundary or

2. n is a By-orbit which is not a side pairing orbit and has at least 6
collisions with the boundary.

Then a lift of 7 to S/T — {A,B,0} is longer than a systole on S.
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Proof. By definition, a B;-orbit contains at least 3 geodesic arcs. Up to
isometries of /A there is a unique B;-orbit 7y consisting of exactly 4 arcs.

/

This orbit admits a subarc which is homotopic to a side pairing orbit
with 3 segments. In particular, if S = S(p;k) admits a liftable side pairing
orbit which consists of at most three segments, then this side pairing orbit is
homotopic to a proper subarc of ¥ and therefore a lift of 5 to S/I" is longer
than a systole on S.

Lemma 2.2 shows that for p < 9 every simple triangle surface of genus
p%‘ is 1sometric to a surface S(p;m) for m =2 or m = 3 and hence admits

a liftable side pairing orbit which consists of at most 3 segments.

On the other hand, an explicit computation (using Maple or Mathematica)
shows that for p = 11 the length of 7 is bigger than 3 arccosh % Thus by
Lemma 3.2, Lemma 4.2 and the above, a lift of 5 to S/T"— {A,B,0} is
longer than a systole on S(p;k).

Since every Bj-orbit 7 with at least 5 collisions with the boundary admits
a subarc which is homotopic to 7, our statement for Bj-orbits follows.

Let 17 be a By-orbit which is not a side pairing orbit and has at least 6
collisions with the boundary. Denote by C the vertex of /\ whose adjacent
sides are not connected by any subarc of 7. Then 7 contains a subarc which
consists of two segments and connects the sides adjacent to C. If we replace
this arc by a single geodesic segment, then we obtain a shorter curve which
contains a subcurve homotopic to the Bj-orbit 7 above. Thus the statement
for By-orbits follows once again from the length estimate for ~v. O

COROLLARY 4.4. Every systole on a simple triangle surface is either a
lift of the A-orbit vy in A\ or a lift of a side pairing orbit on /\.

Proof. By Lemma 4.3, a B-orbit 77 which is not a side pairing orbit can
only lift to a systole if either
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1) 77 is a Bg-orbit with exactly 5 collisions with the boundary

or

2) 7 is a Bj-orbit with exactly 4 collisions with the boundary.

\

Consider first an orbit 77 as in 1) above. Assume that 7 lifts to a closed
geodesic on the surface S(p;k). The lifts of 77 then define piecewise geodesics
in the fundamental 2p-gon €.

Choose such a piecewise geodesic 7 with the property that the center of
Q corresponds to a vertex of /A whose adjacent sides are connected by an arc
of 77. Then 7 consists of two components 7;, 7. After a suitable numbering
of the edges of © we may assume that 7; connects the edge 1 to the edge
6 and that 7, connects the edge 6 —2k + 1 to the edge 6 — 2k +2 where
k > 2 is such that S = S(p;k). )

Since n projects to a closed geodesic on S(p;k) we have 6 —4k+3 =1
mod 2p and therefore 4 —2k =0 mod p. Since p is odd and k <p—1 this
is only possible if k = 2. But then there is a liftable side pairing orbit of
S(p; k) which consists of 2 segments and is shorter than 7.

A similar purely combinatorial argument shows that an orbit 7 as in
2) above is not liftable to any simple triangle surface. This shows the
lemma. [

Now we are ready to show
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PROPOSITION 4.5.

1) For 3 < k < 5 the surface Stk(k — 1) + 1;k) and its associated
ideal surface has 3k(k — 1) + 3 systoles. These systoles are the images of
a single simple closed geodesic under the action of the isometry group of
Stk(k — 1) + 1; k).

2) A simple triangle surface S which is not isometric to one of the
surfaces S(tk(k — 1) + 1;k)(3 < k < 5) is not maximal, neither is the ideal
surface associated to S.

Proof. Let p = 2g + 1 for an arbitrary g > 2 and let S be a simple
triangle surface of genus g.

Recall that there are numbers k(0),k(A),k(B) > 2 such that the side-
pairings of the 2p-gon Q defining S with base-point 0, A, B identify the edge
1 with the edge 2k(0), 2k(A), 2k(B).

Let ko = min{k(0), k(A), k(B)} and assume (via renaming) that ky = k(0).
The projection to S of the geodesic arc 7y in € which connects the edge
I to the edge 2kg and is orthogonal to both edges is then a simple closed
geodesic vy in S whose length we denote by 4.

Corollary 4.4 shows that there are only two possibilities for a systole ~
on §.

1) ~ is a lift v of length ¢; of the A-orbit ¥, on A of period 3.
2) v is the image under an isometry of S of the geodesic 7y of length 4.

Consider a surface § = S(p;k) as in Lemma 2.2 which admits a cyclic
group X of order 3 of isometries normalizing the basic group I'. If ¢, is
smaller than ¢; then S admits 3p = 6g + 3 systoles which are just the lifts
of the unique liftable side pairing orbit for S. We claim that this is the case
if and only if § = 5(7;3) or S =5(13;4) or S = S(21;5).

To see this, recall from Lemma 2.2 that each such surface with these
additional symmetries is of the form S = S(p;k) for some k > 3 and a
divisor p > k of k(k — 1) 4+ 1. The unique liftable side pairing orbit for
S(p; k) consists of min{k,p—k+1} segments. However, explicit computation
shows that a side pairing orbit with 6 segments in an equilateral triangle with
angle 7 /15 is longer than the upper bound 3 arccosh % for ¢;. Together with
Lemma 4.2 this shows that if S(p;k) is such that lo < ¢y then either p < 13
or min{k,p—k+ 1} <5.

The surfaces S(7;3) and S(13;4) are such surfaces S(p; k) with p < 13.
Any further example corresponds to a pair of numbers (p,k) such that
k < p < 13 and that moreover p is a proper divisor of k(k — 1) + 1.
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However the only pairs of this kind are (13,10) and (7,5) and we find once
again our surfaces S(13;10) = S(13;4) and S(7;5) = S(7;3).

Next we look for surfaces S(p;k) as above with min{k,p —k+ 1} <5
and such that p > min{k, 14} is a divisor of k(k — 1)+ 1. Write m=p — k
and assume that m < 4 and that p = k+ m divides k(k — 1) +1 =
(p—m(p—m—1D+1=p(p—-2m—1)+mm+ 1)+ 1. Then p also
divides m(m + 1) + 1, and since we assumed that p > 15 we just obtain the
surface S(21;17) = S(21;5) as a solution.

In other words, if ¢y < ¢; and if S(p;k) admits a cyclic group of order
3 of isometries normalizing the basic group I' then S is one of the surfaces
S(7;3), S(13;4) and S(21;5). Explicit computation now shows that for these
surfaces we indeed have £y < /.

Schmutz observed in [S1] that a closed hyperbolic surface S of genus g
can only be maximal if S has at least 6g —5 systoles. Using this fundamental
fact, the proof of our proposition can now be reduced to the above discussion
by distinguishing the following 4 cases.

1) 41 < ly.

Then only lifts of the A-orbit 7; can be systoles of S. If g is the genus
of S then there are p = 2g + 1 systoles, and S is not maximal.

ii) S = S(p;2) for some p > 5.

The surface S(p;2) admits a liftable side pairing orbit 7y which consists of
2 segments and hence is shorter than the orbit 7, from Lemma 3.2. Moreover
it admits a cyclic group X of order 2 of isometries which commutes with
the basic group I'. The action of X on the sphere S/I" does not leave the
trace of a lift of the side pairing orbit 7, invariant. Thus S(p;2) has exactly
2p = 4g + 2 systoles and can only be maximal if either g =2 or g = 3.
However an explicit analysis of the surfaces S(5;2) and S(7;2) shows that
these surfaces are not maximal (this fact was already established by Schmutz
[S1)). ’

i) S ¢ {Sk(k — 1)+ L;k) | k>2} U{S(p;2) | p>5} and £y < 1.

Then if ky = k(0) we have k(A) > ko, k(B) > ko and therefore there are
at most p = 2g + 1 systoles which are lifts of a side pairing orbit in A. If
lo < ¢ then these are the only systoles. In the case £; = £y (which does not
occur if the genus g of S is 2 or 3) there are 4g + 2 systoles. The surface
S is not maximal.

iv) k€ {3,4,5} and S = S(k(k — 1) + 1;k).

Then the length £y of o is smaller than ¢; and there are 3p = 6g + 3

systoles which are the images of the geodesic 7o under the isometry group
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of S. In particular, the cardinality of the quotient of the isometry group of §
under the subgroup fixing a given systole equals 6g + 3.

To complete the proof of our proposition we have to investigate the
ideal surfaces S, associated to simple triangle surfaces S(p;k). The above
considerations are equally valid for these surfaces and show that S, has more
than 4g + 4 systoles if and only if p divides k(k — 1) + 1 and if the length
¢y of a lift of a side pairing orbit for S, is not bigger than 6 arccosh % An
explicit computation shows as before that this is the case if and only if So
1s associated to one of the surfaces S(7;3),5(13;4),5(21;5). []

5. PROOF OF THE THEOREM

Using the notation of Lemma 2.2, our goal is to show that the triangle
surfaces S(7;3),S8(13;4),S(21;5) and their associated ideal surfaces are max-
imal. Following Schmutz [S1], for this it is enough to show that for each of
these surfaces S the Teichmiiller space is parametrized in a neighborhood of
S by the lengths of those closed geodesics which are freely homotopic to a
systole on S.

Let for the moment p > 5 be an arbitrary odd number and let
k€{2,...,p—1} be such that k and k — 1 are prime to p. Write
g = (p—1)/2. As in the introduction let 7;; be the Teichmiiller space
of surfaces of genus g with 3 punctures. Let S = S(p;k) and let S., be the
ideal surface associated to S. The basic group I' of orientation preserving
isometries of S acts as a group of isometries on the surface S, .

It will be useful to give a geometric description of S.,. For this let A,
be an ideal triangle in H? and let T C A4 be the finite equilateral triangle
inscribed in A, which is invariant under all isometries of /... The vertices
of T determine a distinguished point on each side of A .

There is a unique way to glue 2p copies of A, to a disc A with one
puncture in its interior and 2p punctures on the boundary in such a way that
the glueing maps identify the distinguished points on the sides of A, . The
boundary of A then consists of 2p geodesic lines. Each of the triangles which
makes up A contains exactly one of these boundary geodesics. We number the
boundary geodesics in counter clockwise order and glue the 2i -+ 1-th geodesic
to the 2i+2k-th geodesic by an orientation reversing isometry which identifies
the distinguished points on these geodesics. The resulting surface is the ideal
surface S, associated to S. Notice that S., admits a canonical triangulation
into ideal triangles which corresponds to the canonical triangulation of S.




90 U. HAMENSTADT

Denote by 0,1,2 the cusps of S.,. There are p edges of the canonical
triangulation which connect the cusp O to the cusp 1. There is a natural
counter clockwise ordering of these edges which is induced by the ordering
of the ideal triangles around the cusp 0. We denote by a? the i-th edge with
respect to this ordering and orient it in such a way that it goes from 0 to 1.
Similarly we define o} to be the i-th edge of our triangulation with respect
to the counter-clockwise ordering around the cusp 1 which goes from the
cusp 1 to the cusp 2. Let also o? be the i-th edge ordered around the cusp
2 which goes from the cusp 2 to the cusp 0.

Each marked surface of genus g = (p — 1)/2 with three punctures can
be triangulated by 2p ideal triangles. If we cut the surface open along the
edges of this triangulation, then we obtain 2p ideal triangles. To get the
surface back we glue the triangles along their boundary geodesics in the fixed
combinatorial pattern as above. The different points in 7 3 then differ by the
way this glueing is arranged.

Namely, for each glueing we have one degree of freedom which corresponds
to a left earthquake path along one of the geodesic arcs o . Using the marking
given by the distinguished points on the boundary of an ideal triangle and
the induced boundary orientation, the glueings of an ordered pair (7}, 7>) of
(oriented) ideal triangles along a boundary geodesic can be parametrized by
a real (left) sliding parameter. The glueing which identifies the distinguished
points corresponds to the parameter 0. A glueing where the distinguished point
on the boundary geodesic of the triangle 7 is mapped to the right of the
distinguished point on the boundary geodesic of the triangle T, corresponds
to a positive sliding parameter.

Following Thurston [T], in order to obtain a complete hyperbolic surface
from the 3p glueings of 2p ideal triangles in the above combinatorial way, it
is necessary and sufficient that at each of the three punctures of the resulting
surface the sum of all the sliding parameters for all geodesics which go to this
puncture vanishes. Thus if we denote by V C R? the linear subspace of all
vectors which are orthogonal to the vector (1,...,1), then there is a natural
bijection of 7,3 onto V3 =V xV xV which maps a surface M € 7,3 to
its 3p-tuple of sliding parameters.

Let now 7P be the piecewise geodesic in So, which consists of the arc a?
with the orientation reversed and the arc o, . If we compactify the surface
Seo by adding a point at each puncture, then the compactification of 4 is a
simple closed curve on S = S(p;k) which is freely homotopic to the closed
geodesic ¥ on S obtained by projecting a geodesic in a fundamental 2p-gon
€2 which connects the midpoints of the edges 2i 4+ 1 and 2i + 2k. Similarly,
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let k(1),k(2) € {2,...,p — 1} be such that k(1)(k — 1) + 1 =0 mod p and
k(k(2) — 1)+ 1 = 0 mod p and denote for j = 1,2 by «+/ the piecewise
geodesic which consists of the geodesic ol with the reversed orientation and
the geodesic alﬂrk(].). Write also k(0) = k. o

An earthquake path through S,, induced by the curve 7/ deforms the
surface S, by a family of glueings with sliding parameter —¢ along o,
sliding parameter ¢ along a{ +xg (¢ € R) and sliding parameter O otherwise
and hence this earthquake path gives rise to a smooth (in fact real analytic)
curve in 7, 3. From this observation the following is immediate.

LEMMA 5.1.  For every surface M € 1,5 the tangents of the earthquake
paths along the curves - span the tangent space of Tq3 at M.

Proof. Let M € 1,3 and denote by fij the tangent at M of the earthquake
path along o . We observed above that there is a linear isomorphism of the
vector space V° onto the tangent space of 7,3 at M which maps the point
O1,...,0p,a1,...,ap,b1,...,b,) € V° to the tangent vector Zid.j,f,-j. Since
the tangent at M of the earthquake path induced by fy/ 1S just 5{%,(@ — ¢ the
lemma follows. []

There is a natural real analytic submersion P of 7,3 onto 7, which is
equivariant under the action of the basic group I'. This submersion simply
maps a surface of genus g with 3 punctures to the surface obtained by
compactifying each puncture with a single point. For every § € 7, the fibre
of P over § consists of all surfaces in 7,3 which we obtain from S by
removing an ordered triple of pairwise distinct points. In particular, the fibre
is a real analytic submanifold of 7,5 of dimension 6. We denote by W
the 6-dimensional subbundle of the tangent bundle of 743 which is the
kernel of the differential of P. This bundle has a natural direct decomposition
W =W, ® W, & W, into two-dimensional subbundles W;. Here the bundle
W; is the tangent bundle of the fibres of the fibration 743 — T4, which we
obtain by adding for every surface M < 7,5 a single point at the punture j
of M.

For M € 7,5 the compactifications of the curves P'y,j are homotopically
nontrivial simple closed curves on PM . There is a unique free homotopy class
on M which can be represented by a closed curve which does not intersect
v and whose projection to PM is freely homotopic to the compactification

of Pv/. We denote by wij the unique geodesic on M representing this class.
We have.
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LEMMA 5.2. Let §l : Q be the tangent of the earthquake path along wl , fyl .
Then there are functions al: 1,3 — R such that {{ —al&] € W; @ Wiy,.

Proof. Let M € T3 and for i € {1,...,p},j = 0,1,2 consider the
piecewise geodesic 7/ and the geodesic w, on M. Since the number of
intersections between 7, and w, is the minimum of the number of intersections
between 7/ and any curve which is freely homotopic to w the geodesics w,
and v/ on M do not intersect. If we cut the surface M open along the curves
v/ and w, then the interior of one of the connected surfaces with boundary
which -we obtain in this way, say the surface C, is homeomorphic to an open
annulus. One boundary component of C is the curve zp{ , the second boundary
component has two punctures and consists of the curve ~/.

By construction, the curve @Z,J i1s non-separating and therefore there is a
simple closed geodesic 17 on M which neither intersects fyij nor @Z{ and such
that after cutting M along 1 we obtain two bordered surfaces Si,S,. The
surface §; is a surface of genus 1 with one geodesic boundary circle and two
punctures in its interior and contains the annulus C bounded by the curves
v/ and ¢l. The earthquake paths along the piecewise geodesic «/ and the
geodesic @b’ leave the hyperbolic length of a closed geodesic o on M fixed
if and only if o does not have a transverse intersection with fyl,w,. Thus
these earthquake paths define deformations of the hyperbolic structure on S
leaving the length of the boundary fixed.

The Teichmuller space of marked hyperbolic structures on the bordered
torus §; with two punctures and a boundary geodesic of fixed length is
6-dimensional. Its tangent bundle contains a 5-dimensional subbundle V
which consists of all infinitesimal deformations preserving the modulus of
a maximal (twice punctured) ring domain with core curve homotopic to W

We claim that this 5-dimensional subbundle V' contains the tangents of the
earthquake paths along the geodesic @b, and along the piecewise’geodesic /.

To see this let ¢ be the unique simple geodesic arc in §; which meets the
boundary geodesic n perpendicularly and which neither intersects 1/)1 nor -y .
Let S; be the compactification of S; which we obtain by simply adding one
point at each puncture. If we cut S; open along (, then we obtain a standard
ring domain A normalized by the fixed choice of a height, say the height 1,
with core curve homotopic to zﬁ’ and whose modulus is maximal among all
ring domains with this property [St]. The boundary of A consists of two circles
which contain each a copy of the arc ¢ as well as a nontrivial component
of the boundary geodesic 7. We mark the arc on each boundary component
which corresponds to the arc (. The surface S; is obtained by glueing the
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two marked arcs on the two boundary components with the restriction of a
complex linear map of the complex plane.

The compactification of %j is a closed curve in the ring domain A .which
is freely homotopic to the core curve. If we cut A open along this: curve
then by uniformization we obtain two standard ring domains A i_, A, with
one common boundary circle. The earthquake path induced by v/ consists
in cutting A along the common boundary circle of A;,A; and glueing the
ring domains A;,A, back with a new boundary identification. This procedure
does not change the lengths of the arcs 7 or ¢ nor the modulus of the
annulus A. In other words, the tangent of this earthquake path is contained
in V. The same argument applies to the earthquake path induced by the
geodesic wl. We conclude that this earthquake path induces a nontrivial
infinitesimal deformation of the conformal structure on the compactification
of our bordered punctured torus which leaves the modulus of a maximal ring
domain with core curve homotopic to {bv,] fixed. In particular, the tangent of
this earthquake path is contained in V but not in the kernel of the differential
of the natural map which assigns to a twice punctured bordered torus its
compactification.

As a conclusion, the tangent at M of the earthquake path induced by %
can be written in the form a; 1€/ +77, where 51 is the tangent of the earthquake
path along zp, , al € R and 77,. is contained in the bundle W; ® W;; . This
shows the lemma. [

Let now k > 3 and consider again the ideal surface S, associated to
the simple triangle surface S = S(k(k — 1) 4+ 1;k). Using the above notation,
for m =jp+1i (€ {0,1,2},i < p) write Um = i. For M € 7,3 and
m e {1,...,3p} denote by Cy(m) the length of the closed geodesic 12;,,1 on
M. The functions M € 7,3 — £y (1)) are real analytic [K]. This means that
we obtain a real analytlc: map Yo, of 7,3 into R* by mapping a surface

M to Y o(M) = (ﬁM(wl), . EM(¢3P)) From Lemma 5.1 and Lemma 5.2 we
conclude.

COROLLARY 5.3. The map W, is of maximal rank differentiable at S

. Proof. Following Wolpert [W], the tangent of the earthquake path along
! is dual with respect to the Weil Petersen Kahler form to the differential
of the length function of zpl on 7, 3. Thus to show the corollary it is enough
to show that the tangent space of T g3 At Soo 1S spanned by the tangents &/
of the earthquake paths along the curves /.
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Let G be the group of isometries of S., which is generated by the basic
group I'" and the group X of order 3 contained in the normalizer of I". The
group G acts on the Teichmiiller space 7,3 as a group of automorphism
which fixes the surface S..

Let A be the linear isometry of R? defined in canonical coordinates by
Alxy, .oy %p) = (X2,...,%,x1); then A X A X A=Az is a linear isometry of
R . If J; is the canonical generator of the normal cyclic subgroup I' of G
then we have ¥ .(J/1M) = A3V (M).

Let 7 be the linear isometry of R* = RP x R? x R? which cyclicly
permutes the factors R? in the direct decomposition of R*. There is a
permutation o of {1,...,p} of order p — 1 with diagonal extension o3 to
R’ such that the canonical generator J, of the cyclic subgroup X acts by
Yool o(M) = 03 0 T(Woo M).

The eigenvalues of the linear isometry A are the p-th roots of unity.
The eigenspace for the eigenvalue 1 is spanned by (1,...,1) and the other
generalized eigenspaces are of dimension 2. The map o3 o 7 permutes the
generalized eigenspaces of the diagonal extension Az which correspond to
eigenvalues different from 1 and acts as a cyclic group of permutations on
the eigenspace Z of A’ with respect to the eigenvalue 1. The orthogonal
complement Z+ of Z in R¥ decomposes into ¢ irreducible invariant
subspaces of dimension 6 each.

The surface So, is a fixed point for the action of G. By Lemma 5.1, the
tangent space of 7,3 at S, as a G-space is isomorphic to Z*, where the
differential of J; acts as the map A; and the differential of J, as o3 o 7.
The 6-dimensional tangent space W at S, of the fibre of the fibration
P: 1,5 — 71, is invariant under the action of G and for reasons of dimension
necessarily irreducible.

Let as before §,~j , Cij be the tangent at S, of the earthquake path along
Wl .

Denote by L the linear map which maps C,-j to f{ . Then L is G-equivariant
and by Lemma 5.2 its kernel is contained in the G-invariant space W. Since
W is irreducible under G the kernel of L is either trivial or coincides with W.

We have to show that the latter does not hold. For this we have to find a
tangent vector X € W such that LX # 0.

Consider the unit disc D in the complex plane with boundary circle S!
and hyperbolié metric. Let Dy, be the disc with the point 0 deleted. It carries
a unique complete hyperbolic metric for which the puncture is a standard
cusp. This metric admits an isometric circle action which induces the standard
parametrization of the boundary circle S! = [0, 27).
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Let Qp, Q be the regular ideal hyperbolic 2p-gon in Do, D whose set P
of vertices consists of the points jm/p (j=1,...,2p). These 2p-gons admit
a cyclic group of order 2p of isometries, and Qo hence is isometric to the
once punctured polygon which we obtain by cutting S, along the geodesics
of the canonical triangulation Jommg the cusps 1 and 2. “

For an interior point x of Q consider the polygon Q. = =Q \ {x} with
one puncture at x. The punctured polygon €, carries a hyperbolic metric of
finite volume such that the boundary consists of 2p geodesic lines, and it is
naturally triangulated into 2p ideal triangles.

Let v be a hyperbolic geodesic in D through v(0) = 0. For every r € R
there is a unique hyperbolic isometry ¥, of D which fixes the endpoints of
~ and maps () to 0. The image under ¥, of the punctured polygon €2
is an ideal hyperbolic polygon with puncture at O and whose vertices on S!
are the points in W,P. The punctured polygon W¥,£2, can be obtained from
Qy by an earthquake deformation along the geodesics which joins O to the
vertices of €2y as follows.

Consider an ordered triple (a,b,c) of 3 pairwise distinct points on the
boundary circle S! of Do arranged in counter clockwise order. These points
determine an ideal quadrangle O which decomposes Q into 2 ideal hyperbolic
triangles embedded in D, which have one vertex at 0. Let 77 be the triangle
with vertices a, b, and let T, be the triangle with vertices b, c. If the euclidean
distance between a and b is smaller than the distance between b and ¢ then
the glueing map which gives the quadrangle Q back from the triangles T
and 7, maps the distinguished point of the boundary geodesic of 7 to the
right of the distinguished point on the boundary geodesic of 7, with respect
to the boundary orientation of 7. In other words, with our above notation
the glueing corresponds to a positive sliding parameter.

The derivative of the restriction of W, to S! has a maximum at its
repelling fix point z; and a minimum at its attracting fix point zp. It is
strictly monotonous on each of the two components of S! — {z1,22}. Let
(z1,22) be the component which corresponds to an open interval in [0, 27)
with left endpoint z;. The above analysis shows that the deformation of the
polygon g which defines ¥,£2,(; has a negative sliding parameter for every
geodesic which joins O to a point in P N (z1,z2). The sliding parameter is
positive for all geodesics which join 0 to a point in P N (z3,z71).

Choose now < in such a way that its forward endpoint equals km/2p
and that its backward endpoint equals k7w /2p + . Let p be the reflection of
Q along ~y. This reflection induces an orientation reversing isometry of D,
which commutes with the above deformation of Q, along ~. Denote by 3
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the geodesi\c which connects the center 0 to (k+i)7w/2p (1 <i < 2p) and let
v; be the tangent of the earthquake path along ;. By symmetry, the tangent
at t = 0 of our deformation of Qy along v can be written in the form > a;;
where a; <0 and a;_, = —a; for i=1,...,p—1.

~

Consider now the geodesic 9. It intersects y perpendicularly and has
2k—2 > 2 additional intersections with the geodesics ;. For i € {1,...,k—1}
denote by 6; the oriented angle of the intersection of @Z? with the geodesic
B, where we write ¢; = 7/2 if the geodesics ; and - do not intersect. By
invariance under p we have 0;,—; — /2 = —(6; — 7/2).

Following Kerckhoff (see [K]), the derivative at t = 0 of the length of
{bv(l) under our deformation of €2y equals up to a positive constant the sum
> a;cosé;. But 0 > cosé; = —c0S0yp—; for 1 <i < k—1 and cosé; =0
otherwise and therefore the derivative of the length of v;bv(l) under our above
deformation of €2y does not vanish. In other words, the map L does not

vanish on W. This completes the proof of the corollary. [

Let now again p > 5 be arbitrary and write ¢ = (p — 1)/2. Using the
above notation, for M € 7,3 let zb,' be the closed geodesic on the surface
PM which is freely homotopic to the compactification of the curve v . For
S e, let Eg(zp{ ) be the length of wl. We then obtain a real analytic map
¥ of T into R¥ by mapping § to W(S) = (s(¥)), ..., Ls(4))).

Theorem B from the introduction is an immediate consequence of the
following.

LEMMA 5.4. The map Y is of maximal rank differentiable and injective.

Proof. Let again fij be the tangent of the earthquake path along the closed
geodesic 1) . By the results of Wolpert [W] it suffices to show that the tangent
space of 7, at any point S is spanned by the vectors & .

An arbitrary choice of three points in the complement of the curves W
on § defines a surface M € 7, 3. The earthquake path in 7, induced by Wi
naturally lifts to a path in 7, 3. The consideration in the proof of Lemma 5.2
shows that this lift is (up to parametrization and up to possibly moving the
punctures) just the earthquake path in S, along QZ{ € M. This implies by
Lemma 5.2 and Lemma 5.1 that the tangent space of 7, at M is spanned
by the vectors §,~j and shows that ¥ i1s of maximal rank differentiable. Since
the earthquake paths along the curves fyl-j parametrize 7,3 the map W is
moreover injective. [
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The next corollary is an immediate consequence of Lemma 5.3, Lemma
5.4, Proposition 4.8 and the results of Schmutz in [S1].

COROLLARY 5.5. The surfaces S(7;3), S(13;4), S(21;5) and their asso-
ciated ideal surfaces are maximal. ‘

] We conclude the paper with some remarks about the relation between our
{ triangulation and the structure of the Thurston boundary of Teichmiiller space.

Consider for the moment an arbitrary closed surface S. A geodesic current
" for § is a locally finite Borel-measure on the space of unoriented geodesics 1n
the hyperbolic plane H* which is invariant under the action of the fundamental
- group mi(S) of S. The space C of geodesic currents for S only depends on
the topological type of S. There is a bilinear form i on C, the so called
intersection form, which is continuous with respect to the weak* -topology
on C. The subset £ of C of all geodesic currents p with vanishing self-
~ intersection i(y, i) = O is the space of measured geodesic laminations and 1s
 homeomorphic to R%~6 [B].

Let PC and PL be the projectivization of the space of nonzero geodesic
currents and laminations. There is a natural continuous embedding J of the
Teichmilller space 7, into PC by mapping M € 7, to the projectivization
 [My] of its Lebesgue-Liouville current )y . The closure of J(1y) in PC is
just J(7) UPL [BI.

Every simple closed geodesic ¢ on S can naturally be viewed as a
measured geodesic lamination and hence induces a linear functional on C via
p— i(p, ). If Ay is the Lebesgue-Liouville current of a point M € 7, in
Teichmiiller space then i(Ay, ) = fy(¢) is just the M-length of 1 [B]. In
particular, the map M € T, — i(A\y, ) is real analytic.

Recall that a collection )1, ..., of simple closed curves on S fills up
if every geodesic on S intersects one of the curves 1; transversely. This
is equivalent to saying that the complement of {v1,...,9;} in S consists
of a finite collection of connected simply connected regions. If 1,..., 9%
fills up then for every measured geodesic lamination p € L the vector
(i(1, 1), . . ., i(hx, 1)) € R does not vanish. Thus if we denote by PR* the
real projective space of all lines in R¥ and for 0 # x € R* by [x] € PR* the
line in R through x then the map A: M € T, — [£y (1), . .., lu(r)] € PR
extends continuously to the Thurston compactification PL of 7, by mapping
the projective class [u] of pu € £ to A([u]) = i@, w), ..., i, wl. A
family (¢1,...,¢) of simple closed curves on S is called parametrizing for




08 U. HAMENSTADT

PL if the-map [u] € PL — A((u]) = [i(1, ), - - -, (i, w)] € PR* is an
embedding.

It is also possible to define geodesic currents and measured geodesic
laminations for hyperbolic surfaces with cusps. By definition, a measured
geodesic lamination of such a surface M with cusps is a compact subset of
M which is foliated by geodesics and equipped with a transverse invariant
measure.

Let now p>5 and let k€ {2,...,p— 1} be such that k and k— 1 are
prime to p. Denote by S, the ideal surface associated to the triangle surface
S(k;p) and let %j the piecewise geodesics as in Lemma 5.1. If ¢ is any
closed geodesic in S, then 1 does not disappear in the cusps of S, and
hence 1 intersects each of the geodesics fy,-j transversely in a finite number
of points. We denote by i(zb,fyl-j ) the number of intersections of ¢ with 7{ :
Since measured laminations on S., have compact support, intersection of
closed geodesics with one of the curves fyij extends to a continuous CONvex-
linear functional i(%j ,-) on the space L., of measured geodesic laminations
on S -

We have :

LEMMA 5.6. The map p € Lo — A(p) =

GO, 1), - -y T80 1), KL 1), - By 10, 5V 5 ), -+ s 1))
is an embedding.

Proof. It suffices to show that every closed geodesic 7 is determined
by A(x)). For this consider again the edges ol of the canonical triangulation
of S.,. It follows immediately from our construction that A(z) determines
uniquely the tuple

C) = (@, ), . . ., i(ad, ¥), (e, ), - .., ilay, ), i(af, ), .+ , o, ¥)

(compare the proof of Lemma 5.1). Thus it is enough to show that we can
reconstruct ¢ from C(3)).

The arcs oz; define a triangulation of S., into 2p triangles with vertices
at the cusps and such that each arc is the side of exactly two triangles. Let 1
be any closed geodesic on S, and let T be a triangle from the triangulation
with sides [, 2, 83. Write j; = i(8;,%) and assume that j; > jo > j3. Since
T is contractible in the compactification of S, the total intersection number
j1 +ja +js of 1 with the boundary of T is even and hence j, +j3 —j1 18
even as well. Moreover we have j; < j, 4 j3. Draw %0’2 +j3 —j1) simple arcs
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connecting the sides [, and [33,j2 — %(}'2 +j3 — j1) simple arcs connecting the
sides 01 and [,j3 — %(]'2 + j3 — j1) simple arcs connecting the sides (; and
B; in such a way that all these arcs are disjoint. The configuration of these
arcs in T is determined up to isotopy by ji > j» > j3. But this means that ¢
is uniquely determined by C(¢)) (compare the discussion in [FLP]) and hence
the lemma follows. [

Recall that a closed curve v on S, is cusp-parallel if 1 is homotopic to
a multiple of a circle surrounding one of the cusps of Su,. This is equivalent
to saying that the infimum of the lengths of all curves in So, which are freely
homotopic to v is zero (notice that by abuse of notation we call a contractible
curve cusp-parallel as well). A closed curve 1 on So is freely homotopic to
a closed geodesic if and only if 7 is not cusp-parallel.

We define now an equivalence relation on the set of all closed curves on
Seo as follows: Let v,m: [0,1] — S. be parametrized closed curves. Call
Y, mn equivalent if there is a subdivision 0 < f; < --- <t <1 of [0,1] and
for each i there is a cusp-parallel loop ~; through (#;) such that 7 is freely
homotopic to o, Ut -+ Ui U1

This is easily seen to be an equivalence relation. The equivalence classes
of this relation are in 1 — 1—correspondence to the free homotopy classes
of closed curves on the surface S. We denote the class of v by [¢/]. For a
closed curve ¥ on S, and for i € {1,...,p}, j=0,1,2 define T, )
to be the infimum of the number of intersections with %_j of all curves 7
equivalent to .

Let ¢ be the closed geodesic on the surface S which is freely homotopic
to the compactification of fy,-j viewed as a curve on §S. For every closed
geodesic 7 on § which is different from a multiple of ¢{ the number of
intersection points between 1 and wij is the infimum i(n,zp,j ) of the number
of intersection points between all curves freely homotopic to 7, ¢ij :

We have:

LEMMA 5.7. j(C,fy,-j) = i([(],w,j) for every closed curve ( on So

Proof.  For every closed curve ¢ on S, there is an equivalent curve 7
such that J(¢,/) equals the number of intersection points of 7 with %j .
Now if we compactify S., by adding a point at each cusp, then we obtain a
surface M of genus g and 1 and ( are freely homotopic on M, v is freely
homotopic to the curve W But this means that 7((, ”ylj) > i([(], 1/1,
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On the other hand, if ¢ is any closed curve on S with a minimal number
of intersections with 1/}{ in its free homotopy class, then we can remove
from S three points which do not lie on ¢ and such that two of these
points lie on w,j . If we call the resulting surface S., then { defines a closed
curve (o On S, and (¢ ,wij ) equals the number of intersection points
between (o and fy,-j (where fy,] 1s given as before). This then shows that

T (Coor W) < G0 = i), ) O

As an immediate consequence of Lemma 5.6 and Lemma 5.7 we obtain

COROLLARY 5.8. The curves 7,b,-j on S are parametrizing for PL. In
particular, for every g > 2 there is a family of 6g+ 3 free homotopy classes
on a closed surface of genus g which is parametrizing for PL.

REMARK. From [FLP] one immediately obtains a family of 9¢g —9 closed
curves on a closed surface of genus g which is parametrizing for PL. To my
knowledge, the minimal number of simple closed curves with this property is
not known.
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