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62 A. J. DI SCALA
5. CONCLUDING COMMENTS

In order to solve the local equivalence problem (i.e. when two met-
rics g1, g2 on a differentiable manifold M”" differ (locally) by a diffeo-
morphism), Riemann tried to compute n% Diff(M™)-equivariant functions
(ie. K(g2)(p) = K(g)(f(p)) for all f € Diff(M"), p € M", g2 =f*g1). The
Gaussian curvature K is such a function when n = 2. To do this, Riemann
expanded the metric in normal coordinates and defined a map Q from M,,
the space of Riemannian metrics on M", to C(G,(M™)), where Go(M")
is the two-Grassmannian bundle over M". In other words, Q(g)(m,) is the
sectional curvature of the 2-plane 7, at p € M" with respect to the metric g.
Then he said that “... if the curvature is given in n";l surface directions at
every point, then the metric relations of the manifold may be determined...”
[Sp2, p-144]. More precisely, Riemann took nngl independent sections 7
of the bundle G,(M") and he defined the n% functions by composing with

Q (i.e. a map from M, to {COO(M”)}”%). Perhaps the expression of Q
in coordinates, the two-dimensional flat case and the counting argument led
Riemann to the wrong conclusion that Q can be recovered from evaluation in
n”gl independent 2-planes. It is hard to believe that he did not observe that
this map 1s not actually a Diff(M")-equivariant morphism, as follows from the
fact that a generic diffeomorphism does not preserve the m; (i.e. f*m; # ;)

when n > 2.

REMARK 5.1. A way of defining n”gl Diff(M"™)-equivariant functions
from M, to C*°(M"™) such that:

(i) if n = 2 then the function is the Gauss curvature K ;

(11) if the n”;l functions vanish identically then the metric g is flat;

is as follows. Regarding the curvature tensor R as a symmetric endomorphism
of the second exterior product bundle /\2(M”) one can take the characteristic
polynomial xz(X) of R. Then the coefficients of xg(X) are the required nngl
functions.
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