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5. Concluding comments

In order to solve the local equivalence problem (i.e. when two metrics

gi, g2 on a differentiable manifold Mn differ (locally) by a diffeo-
morphism), Riemann tried to compute n0-^- Diff(Mn)-equivariant functions
(i.e. K(g2)(p) K(gi)(f(p)) for all / G Diff(M"), p G Mn, g2 =/*gi). The
Gaussian curvature K is such a function when n — 2. To do this, Riemann

expanded the metric in normal coordinates and defined a map Q from Mn,
the space of Riemannian metrics on Mn, to C°°(G2(MW)), where G2(Mn)
is the two-Grassmannian bundle over Mn. In other words, Q(g)(7Tp) is the

sectional curvature of the 2-plane ttp at p G Mn with respect to the metric g.
Then he said that "... if the curvature is given in surface directions at

every point, then the metric relations of the manifold may be determined..."
[Sp2, p. 144]. More precisely, Riemann took nindependent sections tr#
of the bundle G2(Mn) and he defined the nfunctions by composing with

Q (i.e. a map from Mn to {Cco(Mn)}n~21 Perhaps the expression of Q

in coordinates, the two-dimensional flat case and the counting argument led
Riemann to the wrong conclusion that Q can be recovered from evaluation in

independent 2-planes. It is hard to believe that he did not observe that
this map is not actually a Diff(Mn)-equivariant morphism, as follows from the

fact that a generic diffeomorphism does not preserve the 7r# (i.e. /*7T/y ^ 7r^)
when n > 2.

Remark 5.1. A way of defining nü~y- Diff(Mrt)-equivariant functions
from Mn to C°°(M") such that:

(i) if n 2 then the function is the Gauss curvature K ;

(ii) if the functions vanish identically then the metric g is flat;
is as follows. Regarding the curvature tensor R as a symmetric endomorphism
of the second exterior product bundle f\2(Mn) one can take the characteristic

polynomial xrQO °f Then the coefficients of Xr(X) are the required n1^
functions.
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