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60 A. J. DI SCALA

More generally let n > 3 and let {ei,..., en} be an orthonormal basis for V.

If we impose the condition that Qx(ei A ef) 0 with i < j, then we have

imposed w(n~0 conditions. Since the dimension of the space of algebraic

curvature tensors is n (n12-1) > a simple counting argument then shows

there are non-trivial algebraic curvatures with Qxißi A ef) 0 for i < j ; thus

Assertion 1.1 fails in the algebraic setting.

3. Curvature zero 2-planes in Sa x Ha x Tb

In this section we discuss two examples showing Assertion 1.1 is false.

Let Ha, Sa, and Tb be spaces of constant sectional curvature —1, +1, and 0

where a > 2. We begin by studying orthonormal frame fields.

PROPOSITION 3.1. Let M{a,b) := Sa x Ha x Tb with the product metric,
where a > 2. 77zer£ exfsts a /6>ca/ orthonormal frame {ei} for the tangent
bundle of M(a, b) such that Q{et A ef) — 0 for 1 < i < j < 2a + b.

Proof Let {u{\ and {vt} be local orthonormal frames for the tangent
bundles of Sa and Ha for 1 < i < a. Let {wj} be a local orthonormal frame

for the tangent bundle of Tb for 1 < j < b. Define

«2i-i := for 1 < <

e2i for 1 < < a,

e2a+j-=Wj for 1 <j<b.
The {et} for 1 < k < 2a + b form a local orthonormal frame for the

tangent space of M(a,b) := Sa x Ha x Tb. We have (R(ui^Wj)wj^Ui) 0,

(.R(vi,Wj)wj,Vi) 0, and (R(vi,Wj)wj,Vi) 0. Thus Q{et A ef) 0 if
either i > 2a or j > 2a. We also have (R(uiv ui2) ui%) ut^ +1 and

(R(viiyVi2)vinVi2) -1 for h < h. We can show that Q{et A ej) 0

for i < 2a and j < 2a by computing:

(R(eue2)e:i,ef) =0,
(R(eue3)e3,ei) \{(R(uuu2) u2,ui) + (R(vuv2)v2jvi)} 0,

ef) £4, |{(/?(mi,m2)m2, Wi) + (-1)2(^1, ^2)^2,^1)} 0, etc.

Proposition 3.1 deals with orthonormal frames. We now turn to coordinate

frames. If (xi,... ,xn) is a system of local coordinates, set df := ^.
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Proposition 3.2. Let M(2, b) S2 x H2 x Tb. There exist local
coordinates {u^..., oh M(2,b) such that Q(d-1 A <9-0 0 for
1 < i < j < 4 -f Z?.

Let cj be the volume form. Before beginning the proof of Proposition 3.2,

we recall the following technical result and refer to [K, p. 6] for details :

LEMMA 3.3. Let Mn be an orientable Riemannian manifold: Then
around each point there exists a coordinate system {jti,... ,jc„} such that
uj{df...,dxn) 1.

Proof of Proposition 3.2. We use Lemma 3.3 to find local coordinates
(xux2) and on S2 and H2 such that u(dfdf) 1 and uo(dfdl) 1.
Let (z\,..., Zb) be the usual flat coordinates on Tb. Define local coordinates
on S2 xH2 x Tb by :

u\ := x\ -by!, u2 := x\ — yi u3 := x2 + y2 := x2 — y2

and Uk+4 Wk for 1 < k < b. We then have

and d%+k OJf for k>0.If Nisa Riemann surface with constant sectional
curvature e, then (R(x,y)y,x)ecv(x,y).Thus,the calculations performed
in the proof of Proposition 3.1 show that A =0.

4. Curvature zero 2-planes in warped products

We can use warped products to construct additional examples where
Assertion 1.1 fails. We adopt the notation of [O, p. 210],

Proposition 4.1. Let M B Xf F be a warped product, where B is
a small open ball around (0,0) inR2,where f(x,y) x + 1

positive, and where FR. Then M is not flat. Furthermore Q(dxAdy) 0,
Q(dxA dz)b= 0, and Q(dyA dz) 0.

Proof. We use [O, p.210, Proposition 42], to compute:

(R(dx,dy) dx, dz)0, {Rdz)dz)=0,
(R(dy,dz)dy,dz)0, (R

Proposition 4.1 generalizes to higher dimensions by taking products with
flat tori.
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