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60 A. J. DI SCALA

More generally let n > 3 and let {ey,...,e,} be an orthonormal basis for V.
If we impose the condition that Qg(e; Ae)) =0 with i < j, then we have

imposed @ conditions. Since the dimension of the space of algebraic

. 2 2_ —_— . .
curvature tensors is - (”12 D> ”("2 D, , a simple counting argument then shows
there are non-trivial algebraic curvatures with Qg(e; Aej) =0 for i < j; thus

Assertion 1.1 fails in the algebraic setting.

3. CURVATURE ZERO 2-PLANES IN S% x H% x T?

In this section we discuss two examples showing Assertion 1.1 1s false.
Let H*, §*, and T” be spaces of constant sectional curvature —1, +1, and 0
where a > 2. We begin by studying orthonormal frame fields.

PROPOSITION 3.1. Let M(a,b) := S% x H* x T® with the product metric,

where a > 2. There exists a local orthonormal frame {e;} for the tangent
bundle of M(a,b) such that Q(e; Nej) =0 for 1 <i<j<2a+b.

Proof. Let {u;} and {v;} be local orthonormal frames for the tangent
bundles of S¢ and H* for 1 <i < a. Let {w;} be a local orthonormal frame
for the tangent bundle of 7% for 1 <j < b. Define

€i1 :— ui\—i/—;i for 1 S I S a,
ey = u"_\/%” for 1 <i<a,

€rqtj 1= Wj for 1 <j<b.

The {ex} for 1 < k < 2a + b form a local orthonormal frame for the
tangent space of M(a,b) := S* x H* x T®. We have (R(w;,w;)w;,u;) =0,
(R(vi, w) wj,v;) = 0, and (R(v;,wp)wj,v;) = 0. Thus QOe; A ¢j) = 0 if
either i > 2a or j > 2a. We also have (R(u;,u;)u;,,u;) = +1 and
(R(vi, ,v3,) vy, v,y = —1 for iy < ip. We can show that Q(e; A¢) = 0
for i < 2a and j < 2a by computing:

(R(e1,ex)ez,e1) =0

(R(e1,e3) e3,e1) = T{(R(u1,u) uz, ur) + (R(v1, 1) vp,v1)} =0,
(R(e1,eq) eq,e1) = H{(R(ur, u2) uz,ur) + (—1)*(R(vy,v2) v2,v1)} =0, ete. [

Proposition 3.1 deals with orthonormal frames. We now turn to coordinate

frames. If (xi,...,x,) is a system of local coordinates, set 0% .:= %.
J
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PROPOSITION 3.2. Let M(2,b) := S? x H?> x T?. There exist local
coordinates (uy,...,us4p) on M(2,b) such that Q(0F N (9}‘) = 0 for
1<i<j<4+0b.

Let w be the volume form. Before beginning the proof of Propesition 3.2,
we recall the following technical result and refer to [K, p.6] for details:

LEMMA 3.3. Let M" be an orientable Riemannian manifold. Then
around each point there exists a coordinate system {xi,...,x,} such that

w(@, ..., 05 =1.

Proof of Proposition 3.2. We use Lemma 3.3 to find local coordinates
(x1,x2) and (y1,y2) on §* and H* such that w(87,0%) = 1 and w(0y,05) = 1.

Let (z1,...,25) be the usual flat coordinates on 7”. Define local coordinates
on $? x H> x T® by:
Uy i=x; +yi, Uy 1=X1 — Y1, Uz '=x2 +yz, Ug 1= X — ¥2,

and ugiq4 = wy for 1 <k < b. We then have
O =0F 48,  H=07-0, K=+, =+
and 0f,, = 0y for k> 0. If N is a Riemann surface with constant sectional

curvature €, then (R(x,y)y,x) = ew(x,y). Thus, the calculations performed
in the proof of Proposition 3.1 show that Q(0* A 9Y) =0. [

4.  CURVATURE ZERO 2-PLANES IN WARPED PRODUCTS

We can use warped products to construct additional examples where
Assertion 1.1 fails. We adopt the notation of [O, p.210].

PROPOSITION 4.1. Let M = B Xr F be a warped product, where B is
a small open ball around (0,0) in R?, where f(x,y) = x + y+xy+1 is
positive, and where F = R. Then M is not flat. Furthermore Q(O, A 0y) =0,
OOy N8,) =0, and Q(O, N O,) =0.

Proof.  We use [O, p.210, Proposition 42], to compute :
(R(Or,0)0:,0,) =0,  (R(D,,0,)0,,d,) = 0,
<R(8y7 82) aya az> =0, <R(8x> 82) aza 8y> =f. L]

Proposition 4.1 generalizes to higher dimensions by taking products with
flat tori.
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