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ON AN ASSERTION IN RIEMANN'S HABILITATIONSVORTRAG

2. An algebraic example

Let V be an n -dimensional real vector space and let be a positive

definite inner product defined on V. A bilinear R: V xV ^ End(V) is called

an algebraic curvature tensor if it has the following three properties :

(1) (R(x,y)z,w) ~{R(y,x)z,w)

J (2) (R(x, y)z,w) -(R(x, y)w,z)
;j (3) (R(x, y)z,w) + (R(y, z)x,w) + (R(z, x)y,w) 0

These three properties then imply the following symmetry property

1 (R(x,y)z,w) (R(z,w)x,y);

I see [KN, p. 198] or [Spl, p.4D-17]) for details. We can also identify the space
I of algebraic curvature tensors with the space K of symmetric endomorphisms

of the second exterior product /\2(V) such that:

I (4) (K(x Ay),z /\w) + (K(y Az),x Aw) + (K(z Ax),y Aw) 0.

Here the inner product on /\2(V) is induced from the inner product on V.
I We say that a collection of 2-dimensional subspaces are linearly independent

if the associated elements of A2(^) are linearly independent in A^)- For
I example, let {eu ,en} be a basis of V. Then the 2-subspaces spanned by
I {<?/, are independent. The bi-quadratic tensor (R(x,y)y,x) determines R ;

we refer to [KN, p. 198] for the proof of the following result:

PROPOSITION 2.1. Let R be an algebraic curvature tensor such that

(R(x,y)yJx) 0 for all x and y.

Then R — 0.

The space of curvature tensors has dimension - ; see for example
M. Berger [B, p. 63]. Thus, if n 3 then equations (3) and (4) follow from
equations (1) and (2). Let {^1,^2,^3} be an orthonormal basis for V. We

j define a symmetric endomorphism K of A2(^) by;

j K(ß\ A ef) — £3 A e\ K(e2 A ef) 0 A ef) e\ A £2 •

; Note that K is a non-trivial algebraic curvature tensor with the following three
; vanishing sectional curvatures:

Qk(z 1 A ef) — Qk(^2 A £3) Qk{^3 A e\) 0
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More generally let n > 3 and let {ei,..., en} be an orthonormal basis for V.

If we impose the condition that Qx(ei A ef) 0 with i < j, then we have

imposed w(n~0 conditions. Since the dimension of the space of algebraic

curvature tensors is n (n12-1) > a simple counting argument then shows

there are non-trivial algebraic curvatures with Qxißi A ef) 0 for i < j ; thus

Assertion 1.1 fails in the algebraic setting.

3. Curvature zero 2-planes in Sa x Ha x Tb

In this section we discuss two examples showing Assertion 1.1 is false.

Let Ha, Sa, and Tb be spaces of constant sectional curvature —1, +1, and 0

where a > 2. We begin by studying orthonormal frame fields.

PROPOSITION 3.1. Let M{a,b) := Sa x Ha x Tb with the product metric,
where a > 2. 77zer£ exfsts a /6>ca/ orthonormal frame {ei} for the tangent
bundle of M(a, b) such that Q{et A ef) — 0 for 1 < i < j < 2a + b.

Proof Let {u{\ and {vt} be local orthonormal frames for the tangent
bundles of Sa and Ha for 1 < i < a. Let {wj} be a local orthonormal frame

for the tangent bundle of Tb for 1 < j < b. Define

«2i-i := for 1 < <

e2i for 1 < < a,

e2a+j-=Wj for 1 <j<b.
The {et} for 1 < k < 2a + b form a local orthonormal frame for the

tangent space of M(a,b) := Sa x Ha x Tb. We have (R(ui^Wj)wj^Ui) 0,

(.R(vi,Wj)wj,Vi) 0, and (R(vi,Wj)wj,Vi) 0. Thus Q{et A ef) 0 if
either i > 2a or j > 2a. We also have (R(uiv ui2) ui%) ut^ +1 and

(R(viiyVi2)vinVi2) -1 for h < h. We can show that Q{et A ej) 0

for i < 2a and j < 2a by computing:

(R(eue2)e:i,ef) =0,
(R(eue3)e3,ei) \{(R(uuu2) u2,ui) + (R(vuv2)v2jvi)} 0,

ef) £4, |{(/?(mi,m2)m2, Wi) + (-1)2(^1, ^2)^2,^1)} 0, etc.

Proposition 3.1 deals with orthonormal frames. We now turn to coordinate

frames. If (xi,... ,xn) is a system of local coordinates, set df := ^.
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