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ON AN ASSERTION IN RIEMANN’S HABILITATIONSVORTRAG

by Antonio J. DI SCALA™)

ABSTRACT. We study an assertion in Riemann’s Habilitation Lecture of 1854.

Namely, the determination of the metric given n”gl sectional curvatures.

1. INTRODUCTION

Modern differential geometry was born with Riemann’s Habilitation Lecture
“Ueber die Hypothesen, welche der Geometrie zu Grunde liegen” (On the
Hypotheses which lie at the Foundations of Geometry) of 1854 at Gottingen
[R], [We]. In this lecture Riemann defines the curvature tensor R. One says
that M is flar if M is locally isometric to R" with the usual metric; the
tensor R vanishes if and only if the metric is flat. M. Spivak [Spl] translates
Riemann’s Lecture and explains it in modern terms. Let

(RX, Y)Y, X)

QX,Y) = 3
X AY|

be the sectional curvature. Spivak [Spl, p.4B-25], [Sp2, p.176] makes the
following
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ASSERTION 1.1. If M is n-dimensional and if Q = 0 for n% independent
2-dimensional subspaces of each M,, then M is flat.

It is well known that the metric is flat if and only if the sectional
curvature () vanishes identically. The number n”;l of Assertion 1.1 is
“deduced” from the following “counting argument” given by Riemann: the
metric ds* = Y g; dx;dx; contains @;—l) functions while a new coordinate
system involves only n functions, so that we can change only n of the g,
leaving @ other functions which depend on the metric; thus there should
be some set of Q(”z;l) functions which will determine the metric completely
(see [D1, p.198], [Spl, p.4B-4]). We quote from the original text as follows
[We], [R]:

“...wenn also das KrummungsmaB} in jedem Punkte in n”;l Flachen-
richtungen gegeben wird, so werden daraus die MaBverhéltnisse der Mannig-
faltigkeit sich bestimmen lassen, wofern nur zwischen diesen Werthen keine
identischen Relationen stattfinden, was in der That, allgemein zu reden, nicht
der Fall ist.”

“... es reicht aber nach der frihern Untersuchung, um die MaBverhaltnisse zu
bestimmen, hin zu wissen, daf} es in jedem Punkte in n”;l Flachenrichtungen,

deren Krimmungsmafle von einander unabhangig sind, Null sei.”

We remark that this text is omitted by Hermann Weyl in his discussion of
Riemann’s ideas. Relating the curvature tensor to the metric is a very classical
subject and we refer to [Ku, Ya, B] for further details.

In this note we construct several families of counter-examples to Asser-
tion 1.1. In §2 we discuss the space of algebraic curvature tensors and construct
an algebraic curvature tensor in dimension 3 which has vanishing sectional
curvature on three independent 2-planes: this shows that Assertion 1.1 is not
an algebraic consequence of the curvature tensor identities. Let H?, S? and
T* denote the hyperbolic plane, the sphere and the torus with the. metrics of
constant curvature —1, 1, and 0. Give M = $? x H? x T* the product metric;
this manifold is not flat. In §3 we construct local orthonormal frames {e;}
and local coordinate frames O; for the tangent bundle such that the sectional
curvatures Q(e;, ej) and Q(0;, 0;) vanish for i # j. Again this shows Asser-
tion 1.1 is false. Finally, in §4, we use warped products to construct still other
examples of non-flat metrics which are counter-examples to Assertion 1.1. It
is a pleasant task to thank Professors V. Cortez and P. Gilkey for helpful
discussions concerning these matters.
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