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ON AN ASSERTION IN RIEMANN’S HABILITATIONSVORTRAG

by Antonio J. DI SCALA™)

ABSTRACT. We study an assertion in Riemann’s Habilitation Lecture of 1854.

Namely, the determination of the metric given n”gl sectional curvatures.

1. INTRODUCTION

Modern differential geometry was born with Riemann’s Habilitation Lecture
“Ueber die Hypothesen, welche der Geometrie zu Grunde liegen” (On the
Hypotheses which lie at the Foundations of Geometry) of 1854 at Gottingen
[R], [We]. In this lecture Riemann defines the curvature tensor R. One says
that M is flar if M is locally isometric to R" with the usual metric; the
tensor R vanishes if and only if the metric is flat. M. Spivak [Spl] translates
Riemann’s Lecture and explains it in modern terms. Let

(RX, Y)Y, X)

QX,Y) = 3
X AY|

be the sectional curvature. Spivak [Spl, p.4B-25], [Sp2, p.176] makes the
following
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ASSERTION 1.1. If M is n-dimensional and if Q = 0 for n% independent
2-dimensional subspaces of each M,, then M is flat.

It is well known that the metric is flat if and only if the sectional
curvature () vanishes identically. The number n”;l of Assertion 1.1 is
“deduced” from the following “counting argument” given by Riemann: the
metric ds* = Y g; dx;dx; contains @;—l) functions while a new coordinate
system involves only n functions, so that we can change only n of the g,
leaving @ other functions which depend on the metric; thus there should
be some set of Q(”z;l) functions which will determine the metric completely
(see [D1, p.198], [Spl, p.4B-4]). We quote from the original text as follows
[We], [R]:

“...wenn also das KrummungsmaB} in jedem Punkte in n”;l Flachen-
richtungen gegeben wird, so werden daraus die MaBverhéltnisse der Mannig-
faltigkeit sich bestimmen lassen, wofern nur zwischen diesen Werthen keine
identischen Relationen stattfinden, was in der That, allgemein zu reden, nicht
der Fall ist.”

“... es reicht aber nach der frihern Untersuchung, um die MaBverhaltnisse zu
bestimmen, hin zu wissen, daf} es in jedem Punkte in n”;l Flachenrichtungen,

deren Krimmungsmafle von einander unabhangig sind, Null sei.”

We remark that this text is omitted by Hermann Weyl in his discussion of
Riemann’s ideas. Relating the curvature tensor to the metric is a very classical
subject and we refer to [Ku, Ya, B] for further details.

In this note we construct several families of counter-examples to Asser-
tion 1.1. In §2 we discuss the space of algebraic curvature tensors and construct
an algebraic curvature tensor in dimension 3 which has vanishing sectional
curvature on three independent 2-planes: this shows that Assertion 1.1 is not
an algebraic consequence of the curvature tensor identities. Let H?, S? and
T* denote the hyperbolic plane, the sphere and the torus with the. metrics of
constant curvature —1, 1, and 0. Give M = $? x H? x T* the product metric;
this manifold is not flat. In §3 we construct local orthonormal frames {e;}
and local coordinate frames O; for the tangent bundle such that the sectional
curvatures Q(e;, ej) and Q(0;, 0;) vanish for i # j. Again this shows Asser-
tion 1.1 is false. Finally, in §4, we use warped products to construct still other
examples of non-flat metrics which are counter-examples to Assertion 1.1. It
is a pleasant task to thank Professors V. Cortez and P. Gilkey for helpful
discussions concerning these matters.
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2. AN ALGEBRAIC EXAMPLE
Let V be an n-dimensional real vector space and let ( , ) be a positive

definite inner product defined on V. A bilinear R: V XV — End(V) is called
an algebraic curvature tensor if it has the following three properties: -

(1) <R(x,y)z,w> = —<R(y,X)Z,'U)>
1 (R(x,y)z,w) = —(R(x,y)w, 2)
(€ (R(x,y) z,w) + (R(y,2) X, w) + (R(z,%) y, w) =0

These three properties then imply the following symmetry property

(R(x,y)z,w) = (R(z, w)X,y) ;

see [KN, p. 198] or [Spl, p.4D-17]) for details. We can also identify the space
of algebraic curvature tensors with the space K of symmetric endomorphisms
 of the second exterior product /\2(V) such that:

@ (K@AY,zAw) (KA xAw) + (KE A,y Aw) =0,

Here the inner product on /\Q(V) is induced from the inner product on V.
~ We say that a collection of 2-dimensional subspaces are linearly independent
" if the associated elements of /\Z(V) are linearly independent in /\Z(V). For
- example, let {e,...,e,} be a basis of V. Then the 2-subspaces spanned by
e, e;}ij are independent. The bi-quadratic tensor (R(x,y)y,x) determines R ;
~ we refer to [KN, p. 198] for the proof of the following result:

PROPOSITION 2.1. Let R be an algebraic curvature tensor such that
(R(x,y)y,x) =0  for all x and y.
“ Then R = 0.

; The space of curvature tensors has dimension ”2(”122_1) ; see for example
- M. Berger [B, p.63]. Thus, if n =3 then equations (3) and (4) follow from
~ equations (1) and (2). Let {e;,ep,e3} be an orthonormal basis for V. We
define a symmetric endomorphism K of /\Z(V) by:

K(egy Ney) =e3 Ney, K(ey Ne3) =0, K(es Ne)=e Ney.

Note that K is a non-trivial algebraic curvature tensor with the following three
vanishing sectional curvatures :

Qk(e1 Ney) = Okl(ex Ne3) = Qgles Nep) =0.
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More generally let n > 3 and let {ey,...,e,} be an orthonormal basis for V.
If we impose the condition that Qg(e; Ae)) =0 with i < j, then we have

imposed @ conditions. Since the dimension of the space of algebraic

. 2 2_ —_— . .
curvature tensors is - (”12 D> ”("2 D, , a simple counting argument then shows
there are non-trivial algebraic curvatures with Qg(e; Aej) =0 for i < j; thus

Assertion 1.1 fails in the algebraic setting.

3. CURVATURE ZERO 2-PLANES IN S% x H% x T?

In this section we discuss two examples showing Assertion 1.1 1s false.
Let H*, §*, and T” be spaces of constant sectional curvature —1, +1, and 0
where a > 2. We begin by studying orthonormal frame fields.

PROPOSITION 3.1. Let M(a,b) := S% x H* x T® with the product metric,

where a > 2. There exists a local orthonormal frame {e;} for the tangent
bundle of M(a,b) such that Q(e; Nej) =0 for 1 <i<j<2a+b.

Proof. Let {u;} and {v;} be local orthonormal frames for the tangent
bundles of S¢ and H* for 1 <i < a. Let {w;} be a local orthonormal frame
for the tangent bundle of 7% for 1 <j < b. Define

€i1 :— ui\—i/—;i for 1 S I S a,
ey = u"_\/%” for 1 <i<a,

€rqtj 1= Wj for 1 <j<b.

The {ex} for 1 < k < 2a + b form a local orthonormal frame for the
tangent space of M(a,b) := S* x H* x T®. We have (R(w;,w;)w;,u;) =0,
(R(vi, w) wj,v;) = 0, and (R(v;,wp)wj,v;) = 0. Thus QOe; A ¢j) = 0 if
either i > 2a or j > 2a. We also have (R(u;,u;)u;,,u;) = +1 and
(R(vi, ,v3,) vy, v,y = —1 for iy < ip. We can show that Q(e; A¢) = 0
for i < 2a and j < 2a by computing:

(R(e1,ex)ez,e1) =0

(R(e1,e3) e3,e1) = T{(R(u1,u) uz, ur) + (R(v1, 1) vp,v1)} =0,
(R(e1,eq) eq,e1) = H{(R(ur, u2) uz,ur) + (—1)*(R(vy,v2) v2,v1)} =0, ete. [

Proposition 3.1 deals with orthonormal frames. We now turn to coordinate

frames. If (xi,...,x,) is a system of local coordinates, set 0% .:= %.
J
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PROPOSITION 3.2. Let M(2,b) := S? x H?> x T?. There exist local
coordinates (uy,...,us4p) on M(2,b) such that Q(0F N (9}‘) = 0 for
1<i<j<4+0b.

Let w be the volume form. Before beginning the proof of Propesition 3.2,
we recall the following technical result and refer to [K, p.6] for details:

LEMMA 3.3. Let M" be an orientable Riemannian manifold. Then
around each point there exists a coordinate system {xi,...,x,} such that

w(@, ..., 05 =1.

Proof of Proposition 3.2. We use Lemma 3.3 to find local coordinates
(x1,x2) and (y1,y2) on §* and H* such that w(87,0%) = 1 and w(0y,05) = 1.

Let (z1,...,25) be the usual flat coordinates on 7”. Define local coordinates
on $? x H> x T® by:
Uy i=x; +yi, Uy 1=X1 — Y1, Uz '=x2 +yz, Ug 1= X — ¥2,

and ugiq4 = wy for 1 <k < b. We then have
O =0F 48,  H=07-0, K=+, =+
and 0f,, = 0y for k> 0. If N is a Riemann surface with constant sectional

curvature €, then (R(x,y)y,x) = ew(x,y). Thus, the calculations performed
in the proof of Proposition 3.1 show that Q(0* A 9Y) =0. [

4.  CURVATURE ZERO 2-PLANES IN WARPED PRODUCTS

We can use warped products to construct additional examples where
Assertion 1.1 fails. We adopt the notation of [O, p.210].

PROPOSITION 4.1. Let M = B Xr F be a warped product, where B is
a small open ball around (0,0) in R?, where f(x,y) = x + y+xy+1 is
positive, and where F = R. Then M is not flat. Furthermore Q(O, A 0y) =0,
OOy N8,) =0, and Q(O, N O,) =0.

Proof.  We use [O, p.210, Proposition 42], to compute :
(R(Or,0)0:,0,) =0,  (R(D,,0,)0,,d,) = 0,
<R(8y7 82) aya az> =0, <R(8x> 82) aza 8y> =f. L]

Proposition 4.1 generalizes to higher dimensions by taking products with
flat tori.
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5. CONCLUDING COMMENTS

In order to solve the local equivalence problem (i.e. when two met-
rics g1, g2 on a differentiable manifold M”" differ (locally) by a diffeo-
morphism), Riemann tried to compute n% Diff(M™)-equivariant functions
(ie. K(g2)(p) = K(g)(f(p)) for all f € Diff(M"), p € M", g2 =f*g1). The
Gaussian curvature K is such a function when n = 2. To do this, Riemann
expanded the metric in normal coordinates and defined a map Q from M,,
the space of Riemannian metrics on M", to C(G,(M™)), where Go(M")
is the two-Grassmannian bundle over M". In other words, Q(g)(m,) is the
sectional curvature of the 2-plane 7, at p € M" with respect to the metric g.
Then he said that “... if the curvature is given in n";l surface directions at
every point, then the metric relations of the manifold may be determined...”
[Sp2, p-144]. More precisely, Riemann took nngl independent sections 7
of the bundle G,(M") and he defined the n% functions by composing with

Q (i.e. a map from M, to {COO(M”)}”%). Perhaps the expression of Q
in coordinates, the two-dimensional flat case and the counting argument led
Riemann to the wrong conclusion that Q can be recovered from evaluation in
n”gl independent 2-planes. It is hard to believe that he did not observe that
this map 1s not actually a Diff(M")-equivariant morphism, as follows from the
fact that a generic diffeomorphism does not preserve the m; (i.e. f*m; # ;)

when n > 2.

REMARK 5.1. A way of defining n”gl Diff(M"™)-equivariant functions
from M, to C*°(M"™) such that:

(i) if n = 2 then the function is the Gauss curvature K ;

(11) if the n”;l functions vanish identically then the metric g is flat;

is as follows. Regarding the curvature tensor R as a symmetric endomorphism
of the second exterior product bundle /\2(M”) one can take the characteristic
polynomial xz(X) of R. Then the coefficients of xg(X) are the required nngl
functions.
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