Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 47 (2001)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: LATTICES OF COVARIANT QUADRATIC FORMS
Autor: Plesken, Wilhelm

Kapitel: 6. Some three-dimensional lattices of covariant forms
DOI: https://doi.org/10.5169/seals-65427

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-65427
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

LT

48 _ W. PLESKEN

EXAMPLE 5.8.

(i) Of the four irreducible Bravais groups of degree 8 whose commuting
algebra is a nonsplit rational quaternion algebra (ramified at 2 and 3), cf.
[Sou94], the e of Proposition 5.7 is 1, 2, 3 and 6. In all cases Bilj((L)
is modular and ¢y is equal to 1. In [Neb99] the Hermite function on the
fundamental domains for these cases is plotted.

(i1) In Example 2.2 (ii), choose f; to be m-modular for some natural
number m. Then BilX (L@ L) (in the notation of Example 2.2 (ii)) is modular,
where the e of Proposition 5.7 is equal to m, as is cp.

To test whether Bilj{(L) is modular, one can simply compute the images
of a Z-basis of Bilj\L(L) under ¢ as described in Theorem 5.5 and find a
simultaneous isometry of L to L* (with respect to all of the forms, resp. their
images). For this there is a powerful algorithm with implementation available,
cf. [PIS97]. Instead of a whole basis, it is sometimes enough to look at one
sufficiently general form; details on this will be given in a subsequent paper,
as well as some examples with R ®q End 4(V) & C?*2. One such example,
involving the Leech lattice with End 4()) a non-split quaternion algebra. over
Q[/—7], is sketched in the last chapter of [Ple96].

6. SOME THREE-DIMENSIONAL LATTICES OF COVARIANT FORMS

This chapter is devoted to some examples in the case where End4()) 2
Q**% and where the depth of Bily(L) is 0. The typical questions we try to
answer are: how to relate the various invariants ? are outer automorphisms
possible ? are modular lattices possible ? how does the automorphism group
of Bil{ (L) compare to the orthogonal group of (Bilf(L),q) ? The simplest
case is End,(L) = Z**?, where all these questions can be answered.

THEOREM 6.1. Let Bndy(L) = Z**?. Then L = Ly @® Ly for some
irreducible A-lattice Ly. Let ¢q be the positive definite generator of Bilj{(Lo).
Then c, co, and q, introduced in Theorem 5.5, are as follows.

(1) With respect to a suitable basis of Bilj{(L), the quadratic form q of
Theorem 5.5 becomes xy — z°.

(i) ¢ = det(¢p)>.
(ii1) co is the exponent of Lg/Lo, i.e. the biggest elementary divisor of a
Gram matrix of ¢q.
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(iv) Inn(Bill (L)) = Aut(Bil} (L)).
‘ (v) Aut(B11+(L)) is of index 2 in O(B11+(L) q). More precisely, it is equal
to the kernel of —0 intersected with O(B11+(L)) where 0 is the spinor
norm of O(Bll (V),q) ([Scha85], p.336).
(vi) The nondegenerate ¢ € B11+(L) are modular if and only zf Qo IS
co-modular. In this case such a ¢ is coq(¢)-modular.
(vii) The e-x-depth of Bilp(L) is given by [35], where r is maximal with
p" | co for some prime number p.

Proof. Choose a basis for Ly. This yields a Gram matrix A of ¢o. With

respect to a suitable basis of L, one gets (g 8), (g 2 ), (2 ’8) as Gram matrices
for the obvious basis of Bil(L). Since det((}) ®A) = det(AY*(xy —2°)"
and ((15) @A) =@y —7'(2, ) ®A™!, the claims (i) to (iv) follow.

(V) 18 stralghtforward with [Mac81]. (vi) and (vii) are obvious. ]
The general case of depth 0 is more involved:

PROPOSITION 6.2. Assume € = Q**? and L, resp. Bilj{(L), is of depth 0.
Let d :=p;---px be the product of the different primes at which Ends(L) is
not maximal.

(i) There are unique natural numbers s,t such that the quadratic form g
on Bilj\L(L) described in Theorem 5.5 becomes sxy — tz> with respect
to any basis (¢,,x) of Bili(L) such that ¢,v € Bilf (L) with
L = Rady(L) ® Rady(L) and X is zero on both direct sum;q_zands. The
product st divides d.

(i1) The constant ¢ of Theorem 5.5 is given by

¢ = det(¢p) det(¢p)s™™,

where 2m - dimg(V), @ is the scalar product on Rady,(L) induced
by ¢, and 1 the scalar product on Rady(L) induced by .

Note that, providing k > 0, there are 2¥~! such bases up to interchanging
¢ and v and up to Endx(L) operation.

Proof. Let L = L, & L, with absolutely irreducible A-lattices L;, L,.
One may assume dL; < L, < L;. Note this implies that L] can
be considered to sit inside Li with L} < L} < d7'L}. As a re-
sult, Homu(L;,L;) = djHomy(L,,L}) for some divisor d; of d, and
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Homy (L, L) = dy Homyp(L;,L;) for some divisor d, of d. Introducing a
basis for L, as with Ly in Theorem 6.1, identifies L; =: L, with Z!*";
and choosing a basis for L, identifies L, with Z'*™T, where T € Z™*"
represents the change of bases. Denote the m X m-unit matrix by I = I,,. The
computation for Theorem 6.1 can be transformed as follows:

I 0\ (XA ZA\ (I 0\" [ xA zd; AT
0 T)\ZA yA)\O0 T) ~— \zd['TA yd;'d;'TAT" |’

with x = x',z = d17/,y = didyy’. The parameter choice (1,0,0), (0,1,0),
(0,0,1) for (x,y,z) yields a typical basis for BilX(L) as described above.
Taking determinants yields

det(T)? det(A) (== — (= 2)m
et(7)” det(A) id; (dl) ;
and hence (i) and (ii) with s = dig~',t = dpg~' relatively prime, where
g = gcd(dy,dy), if one uses det@) = det(A). That s, do not depend on
the particular decomposition of L follows from analyzing the determinant

of g. [

1

Working through the various cases for determining ¢y in Theorem 5.5
1s left as an exercise. Before analyzing Aut(Bilj{(L)) one needs to look
at the automorphism groups of the quadratic forms involved. Note that the
automorphism groups of kxy —z> for k € N square free are analyzed in quite
some detail in [Mac81]. In the present context two extra details are needed.

LEMMA 6.3. Let s,t € N be square free and relatively prime, and
let k := st.
(i) The diagonal matrix diag(t,t,1) transforms O(Z'*3 sxy — tz%) onto
O(Z1X3,kxy _ Zz)_
(i1) There is an exact sequence of groups:

<—12><ﬁ(kZZ ;) — O™ oy =) = D — 1,

where Dy < Q*/ (Q*)? is generated by the cosets of the divisors d of
k (including —1).

Proof. (i) Denote the quadratic forms sxy —#z> and kxy—z? by g and ¢’
respectively. On L = Z'*3 they define integral bilinear forms b and &', e.g.
b(li, 1) = q(ly + L) — q(ly) — q(lp) for [;,1, € L. Clearly, O(L, q) also acts on
the reciprocal lattice Lf of L with respect to b, and O(L,q’) also acts on
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the reciprocal lattice L't of L with respect to b'. Hence diag(t,t,1), which
maps L onto tL* NL and g onto tg’', conjugates O(L,q) into O(L, q'). For
the reverse inclusion one argues similarly for ¢ odd with (L'* NL and one
has to work with L "t N L, taking the even sublattice, for ¢ even.

(i) Define Ly := {(° ) | a,b,c € Z} and consider the determinant det as
i a quadratic form on Ly for any natural number d. Then (L, det) is isometric
i to (2, kxy—2z*). One easily checks that (kZZ ;)* acts on L; by X — gXg"
' forall X €L and g€ ( kZZ ;)* Clearly this action respects the determinant,
whence the exactness of the left half of the sequence is established. Note, for
k=1, the full claim was already proved in Theorem 6.1. Clearly L; < L;
" and the stabilizer S, of L; in O(L;, det) is generated by —id;, and the image
| of </<z Z) . As in Theorem 6.1 denote the spinor norm of O(Q'*3 xy — z%)
. by 6. Then —6 restricted to O(L,det) will be the homomorphism on the
right of the exact sequence. Clearly the image of ( kZZ ;)* is in the kernel of
© —0. To complete the proof, it is enough to show, by induction on the number
- d(k) of prime divisors of k, that O(Ly,det) contains S; of index 240 and is
- generated by an S; and elements (Atkin-Lehner involutions) mapped by —0
~onto p(Q*)? for the primes p dividing k.
The statement follows for d(k) = 1, i.e. k = p prime, as follows: the
~orbit of L; under O(L,,det) consists of L; and L;,, where in general

 Lig = {(d?“ ;b) | a,b,c € Z}. This is because L; must be mapped onto an

~ isometric lattice contained in Lg and containing L,. The isometry fixing L,
and mapping L; onto L;, is the reflection by the vector diag(—1,p) € L,,

which can also be realized by extending the operation via 2 X 2-matrices to
1

p( 2 (])) This settles the case d(k) = 1. Now assume the statement proved
for O(Ly,det) for all proper divisors d of k. Let k = pk’ for some prime
divisor p of k. Obviously the orbit of L; under the action of O(Ly,det) is
of length p + 1, as is the orbit under ( k’ZZ ;)* Hence, the stabilizer of L;
- 1n O(Ly,det) is an extension of S; by an elementary Abelian 2-group of
rank d(k) —1 = d(k’). An argument similar to the one above shows that this
stabilizer is of index at most 2 in O(Ly,det). That it is of index exactly 2
can then be seen via the element of O(L,,det) with spinor norm —p. (In

[Que96] the precise element is given, cf. also [Mac81].)

Note, the elementary Abelian 2-group O(Ly,det)/S; acts regularly on the
set {Li4 | d divides k}. In terms of the affine building belonging to the
p-adic completion of the group, all L; ; with ptd | k belong to one vertex
~ of the attached tree and all other L, ; belong to a different vertex, which is
not of the same type as the first vertex. Finally L,, resp. all L; with p | d,
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belong to the edge connecting the two vertices. [
Now Proposition 6.2 can be completed :

PROPOSITION 6.4. Under the hypothesis and notation of Proposition 6.2
the index of Aut(Bilj{(L)) in O(BilI(L),q) is 21+a [+ 1), where p runs
through all prime divisors of % and a is at most equal to the number of
prime divisors of st. Moreover, Aut(Bilj{(L))/ Inn(Bilj{(L)) s an elementary
2-group of rank a.

Proof. This is an immediate consequence of Proposition 6.2 and
Lemma 6.3. [

The question arises, whether there are examples for which the minimal
possible index of Aut(Bil; (L)) in O(Bil} (L), q) according to Proposition 6.4
is attained, i.e. a = 0 and d = s¢. This is already possible in the group case;
cf. Example 2.2 (ii).

PROPOSITION 6.5.  For a prime number p let c(p) = p—1 if p is odd and
c(2) = 2. Then, for any sequence of prime numbers py < p, < --- < p;, there
are examples with dimg)V = 2Hl  ¢(pi), where A is an image of a finite
group algebra and End (V) =2 Q?*?, where Aut(B11+(L)) is of (minimal)
index 2 in O(B11+(L) q)- If pi =3 (mod 4) for all i with p; #+ 2, then L
can be chosen so that each ¢ € B11+(L) is coq(@)-modular.

Proof.  First construct a finite C-irreducible subgroup G(p) of GL»(Q)
as follows: for p =2 take the automorphism group of the quadratic lattice
(which is a dihedral group of order 8); for p odd take the Frobenius group of
order p(p — 1) in its action on the permutation module factored by the fixed
points, which is then identified with Q'*?®)  Take the span of —I.; with
this group to obtain G(p) < GL,»(Q) of order 2p(p — 1). The G(p)-lattices
in Q' are described in [NeP95a] p.29: up to multiples they come in a
chain Lo(p) > Li(p) > -+ > Le) = pLo(p) > - - -, where L;(p) is of index p
in Lo(p). There exists an element »n in the normalizer of G(p) in GL,»(Q)
mapping L;(p) onto L; . /2(p). Choosing L = Li(p) ® Litcq) ,2(p) and taking
the G(p)-invariant symmetric bilinear forms for BilX(L) gives the desired
result for the case d = p. The case i =0 for p =2, resp. i = ”—;—3 for p=3
(mod 4), gives modularity. The general case of composite d is obtained from
the above by taking tensor products.  []

R S e —
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One should note that in the above proof one gets modular lattices by
choosing L = L; @ L,—; without having the big Aut(Bilj{(L), if ¢ is not

| chosen as above. The same holds for the composite case. By now it should be
! clear that the existence of outer automorphisms and modularity of the lattices
- are different phenomena.

To end up, some explicit examples of *-depth zero will be given, where

' Endy(L) & (2°%). One easily checks that the unit group is generated by

zZ
a,b,c and that the outer automorphism is induced by d with

~1 3 1 0 1 0 (0 3
e (3 ) me (P 0) e (1 0) a0 ).

" Note that defining relations for the inner, resp. outer, automorphism group are
- provided by a?, b?, &%, (ab)® and b*, 2, 4, (€d), (@h)°® respectively. The
~ fundamental domains in the hyperbolic plane identified with BﬂXR,>o(V) /Rso,
- where Ry acts by multiplication, are triangles with vertices P, C;, (; in
~ the first case, where C; and C, are cusps, and P, C|,M 1in the second case.
- The angles can be read off from the presentation. According to Example 3.7

there are seven possibilities for the equivalence type of Bily(L), parametrized
by the exponent matrices of Enda(L & L*) given there. Only in four cases
can one have outer automorphisms.

EXAMPLE 6.6.
(1) Take the fourth possibility in the list of Example 3.7. Then L = L, ® L,

~with Lf = L; and L} = 3L,, where the reciprocal lattices are taken with

respect to a generator ¢; of Bils(L;), and L, < L; is necessarily of index

3"/2 in L; with n:= dim(L;). (Note: n must be even.) Representing Bilj[(L)

by Gram matrices one gets Bilj{(L) = {(3;‘ ;;(2) | o, 8,7 € Z}, where F;

- and F, are unimodular (Gram matrices for L; and L,) and XF L Ixr — 3F,.

Obviously one has no outer isomorphism if F; and F, are not equivalent.
In this case BilX(L) 1s not modular, though ¢ is bijective, but it is not an

~ equivalence. In any case, the vertices of the fundamental domain in this case
are given by the (o, 3,7) € {(2,2,1), (1,0,0), (0,0,1)} corresponding to

P,Cy, C,, the determinant is (3 — 3+?)" and a nice realization of this setup
is for n = 12, where one can find the 3-scaled version of the unimodular
lattice Df“z as a sublattice of the standard lattice of index 3°. Things can be
so chosen that the 2-fold cover of the Mathieu group M, acts. In Bilj\L,>O(L)
one has two orbits of primitive M, -perfect lattices, one unimodular with
minimum 2 and one of determinant 5'* with minimum 4. Obviously one can
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produce many more examples in higher dimensions. One can show that there
is no realization of this situation for n < 12.

If one has an outer automorphism, there seems to be the possibility that
Bilj{(L) 1s modular. The vertices of the fundamental domain in this case
are given by the («,f,v) € {(2,2,1), (1,0,0), (1,1,0)} corresponding to
P,Cy,M. For the case F| = F, I have computed some examples: F; = I,
Eg, Ays (Leech lattice). In the first case the vertex P represents the root
lattice Eg, which is the only perfect lattice here. In the other two cases my
choice of X (there might be more than one!) yielded a 6-modular form as
the only perfect form; the coordinates were (3,3, 1), the minima were 6 and
12 respectively.

(i1) Take the eighth possibility in the list of Example 3.7. Then L = L $L,
with 3L; < L, = 3L§* < Ly = 3L,, where the reciprocal lattices are taken with
respect to a generator ¢; of Bila(L;).

Again representing BilX(L) by Gram matrices with respect to suitably

311: g%) | o, B,y € Z}, where F are the

Gram matrices for (L;, ¢;) and F =3F~!. The determinant is Baf —y)".
Obviously one has an outer isomorphism if and only if F and F are
Z -equivalent, i.e. if (Lj, ¢;) is 3-modular. Many such examples, with and
without outer automorphisms and also for other exponents different from 3
of L’f/Ll, have been investigated in [Bav97], because in this case Bil, (L)
is spanned by unimodular symplectic forms. By Proposition 5.7 Bilj{(L)

1s modular. Here are some examples with outer automorphisms: F = A,,

A 2
Ar, ® Eg, K, (the Coxeter-Todd lattice), and [£S¢(3) [ C3]o¢ of [Neb96b];
one gets one relative extremal lattice with coordinates (o, (3,7v) = (1,1,1).
They are 2-modular with minima 2, 4, 4, and 6 respectively. However,

2(3)
F = [SL,(9) ® SL,(9).2]i¢, which is also 3-modular with minimum 4 of
00,3

chosen bases one gets Bilj{(L) = {(

dimension 16 (like A; ® Ey), yields the 11-modular form with minimum 12
and coordinates («, 3,7) = (3,3,4) as extremal lattice. Finally, F = Ny
(the extremal 3-modular lattice of dimension 24 of [Neb95]; or [Neb98b],
Theorem 5.1 for an alternative construction) yields a 23-modular lattice as
extremal with minimum 24 = 4 -6 and coordinates (o, 3,7v) = (4,4,5). It
would be interesting to investigate the density function on the fundamental
domain theoretically.
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