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5. INVERSION AND MODULARITY

Since Bilj‘l(V) C Hom(V,V*), the inverse ¢~! of a nondegenerate
¢ € Bil,(V) is well defined and lies in Bil;(V*). By Cramer’s rule
inversion is a rational map from Bi]jZ(V) to Bilj‘l(V*), more precisely
there is a homogeneous polynomial map P: Bilj(V) —¥ Bilj(V*) such
that ¢’¢p = det(¢) - idy. Viewing this as an identity of matrices with
polynomial entries, one might cancel out the greatest common divisor of
all occurring entries and get new polynomial maps p: Bilj(V) — Bi]jZ(V*)
and d: Bilj(V) — Q with ¢¢ = d(¢) - idy. The properties of the map p
have not been studied in this generality. The aim here is to investigate the
simplest case, where p is homogeneous of degree 1, i.e. a Q-linear map ¢,
as it is called in the sequel. Of course, the same analysis can be done with
Bil (V). The question whether such a ¢ is an equivalence, will be treated
later in this section.

DEFINITION 5.1. Let R be one of Z or Q. Then Bils,(Lg) is called
special if there is an R-linear map ¢: Bily,(Lg) — Bily,(L}) and a quadratic
form g: Bily,(Lg) — R such that for any nondegenerate ¢ € Bily,(Lg) one
has ¢‘¢ = q(¢) id;, . Analogous definitions hold for Bilj\LR (L)

EXAMPLE 5.2.

(1) One-dimensional lattices of covariant forms are special for trivial
reasons.

(11) If Bil4(V) is two-dimensional, then it is special. This is because
Bil 4(V) can be viewed as a free Z(A)-module and for two-dimensional
algebras 55 one has a canonical automorphism « of B such that b* = n(b)b=!
for all b € B*, where n: B — F is the norm map with respect to the regular
representation. (Note that Z(A) = End 4(V) in the present situation.)

(1) If Bilj\(V) is two-dimensional then it is special. This is because
Bil%,(V) can be viewed as a free Z(A)*T-module, where

ZAT ={p e ZA) | ¢° = ¢}
Here are some more interesting examples.

PROPOSITION 5.3. Let R®qEnd4(V) 2 K2%2 with K e {R,C,H}. Then
Bilj{t(V) is special. In the first two cases also Bil A(V) is special.
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Proof.: Define £ := End 4(V) = (eAe)***, where e = ¢° is a primitive
°-invariant idempotent of .4 and k is defined by V = (e A)*. In particular,
the positive involution ° on A induces a positive involution * on &,
(aij)" = (afj ' such that Bilj(V) can be identified with the subspace £+
of the symmetric elements in the algebra (£,°) with involution. It suffices to
prove that there exists a Q-vector space automorphism of £T, also denoted
by ¢, and a Q-valued quadratic form on £, also denoted by ¢, such that
P o =q(P)l¢.

(i) Let R®q & =2 R?*2, Then & is a quaternion algebra over Q. Denote
its canonical involution by w’ and its reduced norm by n. Clearly, n is a
quadratic form and w’(¢) ¢ = n(¢)1 holds for all elements ¢ € £. With
L= wl’ g+ and g :=njg+ one gets the desired formula.

(i) Let R®o& = C**?. Then & is a quaternion algebra over the imaginary
quadratic number field Z := Z(A). Denote its canonical involution by o
and 1ts reduced norm by n. The involution ° induces the nontrivial Galois
automorphism of (Z/Q), and therefore one checks quite easily, using [Scha85]
Theorem 11.2 (ii) of Chapter 8, that the norm n maps £ into Q. Now one
argues as in (i).

(iii) Let R®q & =2 H**?, Then & =2 D?*2, where D is a positive definite
quaternion algebra over Q (with canonical involution w’). Indeed, £ carries
an involution of the first kind and hence cannot be of index 4. Since ° is a
positive involution one sees from the proof of Theorem 13.3 of Chapter 8 in

[Scha85] that x = f~'X"f for all x € £, where f =F € £* and (x) = (%)
tr

for all (x;) € D¥? =g If (x;j) € € is symmetric with respect to ~" one
checks

X111 X12 i .
() = | — with x; = x; for i =1,2
X12  X22

X22  TX12 X111 X120\ ) 1
and il _ = (X2 x11 — X12%12) l¢g .

—X12 X1 X12 X22
This is the desired formula for f = 1¢. In the general case, note that x € £T
if and only if fx is symmetric with respect to ~" and apply the above formula
to fx.

(iv) The remaining two cases for Bil 4()) are treated similarly, like (i)
and (ii) with &1 replaced by £. [

The question immediately arises, whether the map ¢ of Definition 5.1
is or can be extended to an equivalence of Bil 4(V) onto Bil 4(V*). This is
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clearly the case for two-dimensional End 4()). It may fail for two-dimensional
BiljZ(V) with four-dimensional commutative End 4()) for the simple reason
that the nontrivial automorphism of the real quadratic subfield does not
necessarily extend to the whole of End 4(V). For R®q End 4(V) = R>*? one
gets a nice canonical answer, cf. Proposition 5.4 below. For R®qEnd4(V) =
C>*2 the answer is still positive, but the proof is computational and we omit
it. Finally, for R ®q End 4(V) = H>*? the map ¢ no longer extends to an
equivalence.

PROPOSITION 5.4. Let R ®qg End4(V) =2 R?*%. Then any nonzero
Y € Bil(V*) defines an equivalence Bil4(V) — Bil4(V*) : @ — Yo’
which restricts to a map .: Bilj(V) — Bilj(V*) with the properties de-
scribed in Proposition 5.3.

Proof. If V is a simple .A-module, obviously any nonzero element of
Bil ,(V*) is invertible if viewed as an .4-homomorphism from V* to V.
Otherwise, V =2 V@V, for some simple A-module V). Any A-isomorphism
Vo — Vg gives rise to an invertible element of Bil4(V), which therefore
consists of 0 and invertible elements, since it is one-dimensional. One easily
checks that any nonzero 1) € Bil ,(V*) leads to an equivalence, whose
associated isomorphism End4(V @ V*) — End AV* @ V) is induced by
conjugation with diag(—t~' ). Finally, for any ¢ € Bilj(V) one has
P(YpYp™) = q(p)idy with q(¢) := n(1p¢), where n is the reduced norm map
of the quaternion algebra End4(V*). This is so, since (YY) = —(Pap)?
and ¢t lies in End4(V*) and is of trace zero by tr(¢y) = tr((py)") =

r(=p¢) = —tr(¢yp). [

The next result normalizes ¢ and interprets it in the integral environment
of Bil(L).

THEOREM 5.5. Let R ®q End4(V) 2 K?X2 with K e {R,C,H}.

(1) There is a unique Aut(Bily(L))-invariant quadratic form q: BilX(L) — 7
such that the gcd(q(p)) for ¢ € Bilj\r(L) is 1, and q(¢) > 0 for
O € Bil;\F(L) positive definite.

(i1) There is a unique constant ¢ € 7, satisfying det(¢p) = cq(p)™ with
m=2""dimqgV for all ¢ € Bilf(L). (Clearly ¢ > 1. )

(i) There is a unique Aut(Bilx (L)) -monomorphism - Bilj\L(L) — BillJ{(L*)
mapping positive definite forms on positive definite ones such that the
image of . is not contained in pBilj\L(L*) for any integer p > 2.
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(iv) There is a unique constant cy € Z with ¢*¢ = coq(¢)id, for all
¢ € Bilj{(L). Moreover ¢ divides cjj, where n = dimgV. (In fact
det(¢") = cgc™q(®)™ for all ¢ € BilS(L).)

(v) Aut(Bily (L)) < OBil} (L), q) is a subgroup of finite index.

Proof. Let Bilf(L) = (¢1,¢2,...,04)z (with d = 3, 4, resp. 6 for
K = R, C, resp. H). Choose the isomorphism ¢ of Proposition 5.3 by
multiplying with a suitable positive rational number such that Bilj\'(L) 1S
mapped into BilX(L*) but not into a proper multiple of Bilj{(L*). After
rescaling g of Proposition 5.3 appropriately, one gets a quadratic form
q € Z[xy,...,x4] with

d d
O xit) O xid) = qars ..., xa) idy -
i=1 i=1

Since Z[x,...,x4] is a unique factorization domain, one obtains a constant ¢
and a quadratic form ¢ as required in (i) and (iv). Also by taking determinants,
the unique factorization property yields det(¢) = cq(¢) with a unique integer
¢ dividing cj. Since det(g¢p) = det(g)? det(¢) = det(¢) for g € N(L), one
sees that g is Aut(BilX'(L))—invariant, at least up to sign. And since the
action respects positive definiteness, one gets invariance. One clearly has
(gp) = g~ "¢* for all g € N(L) and all ¢ € Bilj‘\F (L) of nonzero determinant.
But since all other elements of BilX(L) are rational linear combinations of
these, one obtains the equation for all ¢ € Bﬂj{(L).

To prove (v) we first note that, by a standard Lie group argument, the
group S of norm 1 units of End 4(R®q V) is mapped onto the 1-component
of O(Bilgg,(R ®q V),q). Also it is well known that the subgroup T of
norm 1 elements of Endy(L)* (which is clearly of finite index in N(L)) has
finite covolume in §. This implies that Aut(Bilj{(L)) 1s of finite covolume in
OBiljg (R ®q V),q) and therefore of finite index in O(Bil} (L), ).

It follows from (v) and the fact that the signature of g is (1,d — 1) that
Aut(Bil} (L)) acts absolutely irreducibly on Bil}(L). This again implies that
the invariant quadratic form g is unique up to rational multiples, i.e. unique
with the properties specified in (i). It also implies the uniqueness of ¢ in (iii).
The uniqueness of the constants ¢y and ¢ now follows from the considerations
at the beginning of the proof. []

The corresponding results for the other examples given in Example 5.2
are left as exercises to the reader, who should note however that the action
of O(Bilj{(L),q) on Bilj{(L) need not be absolutely irreducible any more.
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The next topic it to set the concepts of this chapter into relation with
modular lattices as introduced by Quebbemann in [Que95]; cf. also [SSch98]
and [P1e98] for surveys.

DEFINITION 35.6.

(1) ¢ € Bilj\L(L) is said to be k-modular, for k € Z, if (L}, k@) is isometric
to (L,¢), where L¥ = {l €V | ¢(I,L) C Z}. (Note the Gram matrix of ¢ on
L* is inverse to the Gram matrix on L if one chooses the bases dual to each
other.)

(i) Bily(L) is called modular if Bil7(L) is special by the maps
L: Bilj{(L) — Bilp(L*) and gq: Bilj{(L) — 7., cf. Definition 5.1, such that
¢ 1s (the restriction to Bilj((L) of) an induced equivalence; cf. Definition 4.3.

Clearly, if Bilf(L) is modular, each nondegenerate ¢ & Bilf(L) is
coq(¢)-modular with ¢y as in Theorem 5.5, and the isometries are all given by
the same map. Some examples of two-dimensional modular lattices of covariant
forms have already been investigated in the literature, cf. e. g. [Neb98b] where
even the Hermite function was discussed for some examples or [Neb96a], where
the extremal 3-modular lattice in dimension 24 was discovered. Here the main
issue concerns the cases with R ®g End 4(V) =2 R?*? or C2*2, since H2*2
cannot occur. Example 6.6 (i) provides an example where Bilj{(L) 1s special
without being modular. It should be emphasized that induced equivalence
between Bily(L) and Bil,(L*) is not an uncommon phenomenon. For instance
it occurs whenever L and L* are A-isomorphic. That the induced equivalence
1S ¢, 1s rather rare.

PROPOSITION 5.7 Let R®qEnd 4(V) = R**? and assume Bil (L) = Za),
and Bil, (L*) = Zapy with )11, = e -id; for some natural number e.

(1) If e =1 then Bilx(L) is modular. with . induced by .

(i1) If ¢1 and s do not have the same elementary divisors, then BilX(L)
is not modular.

(iii) If "™ £ det(1h,)? then Bilf (L) is not modular.

Proof. (i) This follows along the lines of Proposition 5.4. That Bil(L)
i1s mapped onto Bily(L*) follows from the fact that det(vn) = +1.
(i1) This is because induced equivalence respects elementary divisors.

(ii1) This can be derived from (ii) by taking determinants. It can also be
obtained from the observation that 1» induces e - .. []
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EXAMPLE 5.8.

(i) Of the four irreducible Bravais groups of degree 8 whose commuting
algebra is a nonsplit rational quaternion algebra (ramified at 2 and 3), cf.
[Sou94], the e of Proposition 5.7 is 1, 2, 3 and 6. In all cases Bilj((L)
is modular and ¢y is equal to 1. In [Neb99] the Hermite function on the
fundamental domains for these cases is plotted.

(i1) In Example 2.2 (ii), choose f; to be m-modular for some natural
number m. Then BilX (L@ L) (in the notation of Example 2.2 (ii)) is modular,
where the e of Proposition 5.7 is equal to m, as is cp.

To test whether Bilj{(L) is modular, one can simply compute the images
of a Z-basis of Bilj\L(L) under ¢ as described in Theorem 5.5 and find a
simultaneous isometry of L to L* (with respect to all of the forms, resp. their
images). For this there is a powerful algorithm with implementation available,
cf. [PIS97]. Instead of a whole basis, it is sometimes enough to look at one
sufficiently general form; details on this will be given in a subsequent paper,
as well as some examples with R ®q End 4(V) & C?*2. One such example,
involving the Leech lattice with End 4()) a non-split quaternion algebra. over
Q[/—7], is sketched in the last chapter of [Ple96].

6. SOME THREE-DIMENSIONAL LATTICES OF COVARIANT FORMS

This chapter is devoted to some examples in the case where End4()) 2
Q**% and where the depth of Bily(L) is 0. The typical questions we try to
answer are: how to relate the various invariants ? are outer automorphisms
possible ? are modular lattices possible ? how does the automorphism group
of Bil{ (L) compare to the orthogonal group of (Bilf(L),q) ? The simplest
case is End,(L) = Z**?, where all these questions can be answered.

THEOREM 6.1. Let Bndy(L) = Z**?. Then L = Ly @® Ly for some
irreducible A-lattice Ly. Let ¢q be the positive definite generator of Bilj{(Lo).
Then c, co, and q, introduced in Theorem 5.5, are as follows.

(1) With respect to a suitable basis of Bilj{(L), the quadratic form q of
Theorem 5.5 becomes xy — z°.

(i) ¢ = det(¢p)>.
(ii1) co is the exponent of Lg/Lo, i.e. the biggest elementary divisor of a
Gram matrix of ¢q.
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