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34 - W. PLESKEN

Sh(W)/X, where X is the image of Z(B)* in Sh(W). But Sh(W)/X is also
an extension of F/X = CI(Z(I)) by Sh(W)/F. [

As a consequence one gets the following

THEOREM 3.9. Let Bilp(L) be of depth 0, then Out;(Bils(L)) is
Abelian. [

It is worthwhile to extract more precise statements from Lemma 3.8.
They will be used and extended in the forthcoming chapter in the study of
Out(Bilp(L)) when the e-x-depth of Bily(L) is zero.

DEFINITION 3.10. Let I' be a hereditary Z-order in a simple Q-algebra
B and let p be a prime ideal in the centre Z(I') of T'. The p-local shift index
s(I', p) of T is defined as follows : For any irreducible A, -lattice L define m(L)
by p™® :=[L: Lyu], Where Ly, is the unique maximal T-sublattice of L.
The chain ---L; > L;y--- of irreducible lattices in a simple B,-module W
yields a periodic sequence ...,m(L;),m(L.y1),... because of m(L) = m(pL).
The index of the group of all “central” shifts generated by multiplication with
p in the group of all shifts of the chain respecting m(L) is called s(I,P).

Obviously, s(I',p) is equal to the p-local Schur index of B if I'y is a
maximal order. In particular it is almost always equal to 1. With the definition
of the local shift index at hand, the refined statement of Lemma 3.8, which
was actually proved, should read as stated with (C,;)" replaced by @p Cer,p) -

4. EXTRINSIC NOTIONS: USING THE UNDERLYING LATTICE

Up to now, the lattices Bily(L) of covariant forms have only been
investigated by themselves without much reference to the underlying lattice L.
In this section L will be taken more seriously into account. Unless confusion
can arise L will also denote the underlying Z-lattice of L, which is usually
considered as a A-lattice.

To start with, we discuss the determinant function and its behaviour under
equivalence.
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DEFINITION 4.1.
det: Bily(L) — Z : ¢ — det(¢pp)

is called the determinant function on Bily(L), where B is some lattice basis
for L over Z and ¢p is the Gram matrix of ¢ with respect to B.

Clearly, choosing some Z-basis for Bily(L) turns the determinant into
a homogeneous polynomial in Z[X;,...,X4] of degree n = dimz(L) in
d = dimgz(Bils(L)) variables. A connection of the factorization properties
in Q[X,,...,X,] with the structure of V' is indicated in the rather obvious
- Remark 4.2 below. Those in Z[Xj,...,X;] have not yet been investigated.
There sometimes seem to be changes in the factorization behaviour when one
restricts from Bily(L) to Bil}(L); cf. Chapter 5.

| REMARK 4.2. Let 1 = e; + ...+ e, be the decomposition of 1 € A
~into central primitive idempotents of A, and fix some isomorphism
1 € Hom4(V,V*). There is a constant a = a(y,L) € Q depending on
- % such that, for all ¢ € Bils(L), one has

h
det(¢) = a - | [(detrea (id:))™®,
i=1

where the ¢; and 7); denote the restrictions of ¢, resp. ¥, to Ve;, resp. to
V*e;, deteq is the reduced determinant of End 4(Ve;), and finally m(7) is the
- degree of the matrix algebras which are the simple components of C®q Ae;.

If w: Bily(L) — Bilp(M) 1s an equivalence, only the constant a in the
above formula changes to some other constant b = b(w'(v)), M), and the
exponents m(i) change to the degrees m(i)’ of the corresponding simple
- components of C ®q Be;. One has

h
det(w(@®)) = b - | [(detrea (i)™,

i=1
since deteq (Vi) = detreq (W' (1))w(¢;)), cf. discussion of Definition 2.6.
As an instructive example, which comes up as a step in the proof of

- Remark 4.2, the reader may want to relate the above formula to the well
- known determinant formula for the Kronecker product of two matrices.
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DEFINITION 4.3. Let (B,°), W, M, and R be as in Definition 2.6.

(1) Call L and M form-R-equivalent, or simply form-equivalent in
case R = Z, if there is an R-module isomorphism 7: Mr — Lr which
induces an R-equivalence w: Bilp,(Lg) — Bilp,(Mg) : ¢ —w(¢)= T¢ with
TO(W1, Wa) = ¢(WiT, Wor) for all Wi, Wy € Mg. In this case (L,Bily(L))
and (M, Bilr(M)) are also called R-equivalent and the R-equivalence w is
said to be induced.

(i) We denote by N(Lg) the group of all 7 € Autg(Lg) inducing
autoequivalences of Bily(Lg).

(iif) The group of all induced autoequivalences of Bila,(Lg) is denoted
Aut(BilAR(LR)) ; 1ts elements are also called automorphisms of Bily(Lg).

The connection with the earlier concepts is easily seen: for the determinant
functions, one has det(¢) = det(w(¢)) for all ¢ € Bilo(L) if the equivalence
w: Bily(L) — Bilp(M) is induced, i.e. the constant and the exponents in
the formula of Remark 4.2 do not change any more. In other words, the
associated polynomials in Z[X,...,X,;] are Z-equivalent, or even equal
if one chooses appropriately the bases of the lattices of forms. Clearly,
Inn(Bilx (L)) < Aut(Bils(L)) < Aut?(Bilo(L)) with all indices finite.

To get a full picture of the situation, one more group has to be introduced,
namely the kernel of the epimorphism of N(L) onto Aut(Bilo (L)), which is
U(L) defined as follows. |

DEFINITION 4.4. ~

(1) U(Lg) is the image of the group U(A(L)g) = {u € A(L)g | uu® = 1}
in Autg(Lg) defined by its natural linear action on Lg.

(i1) The exact sequence

I — U(L) — N(L) — Aut(Bily(L)) — 1

is called the basic exact sequence.

Obviously U(L) is finite. If the Q-algebra spanned by U(L) is all of the
image A of A in Endqg(V), then N(L) is the normalizer of (the strict Bravais
group) U(L) in Autz(L); cf. [BNZ73]. In general one only has that N(V) is
the normalizer of U(V) in Autg()). The structure of N(V) is easily worked
out: it is dominated by the pair of semisimple subalgebras A and End A(V)
of Endg()), which are centralizers of each other. In fact, if one restricts to the
pointwise stabilizer N,()) of the common centre of these two algebras, then
N,(V) is the central product of End 4(V)* and a group U (V) amalgamated over
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their common centre, where U()) is the image of {u € A* | uu® € Z(A)} in
A. Note that the index N(V) : N,(V) is finite. As a point of general notation,
Inn(I") will always denote the group of automorphisms of a ring I" induced
- by conjugating with units in ', and Out(I") := Aut(I')/ Inn(T').

PROPOSITION 4.5.

() N(L) acts on Bily(L) with kernel U(L).

| (ii) N(L) acts on End(L) via conjugation also with kernel U(L). In
particular, Aut(Bily(L)) embeds into Aut(Endp(L)).

(i) N(L) acts on A(L) by conjugation with kernel Ends(L)*. The induced

automorphisms respect the involution °©.

(iv) Denote the kernel of the conjugation action of N(L) on Z(Endp(L)) =
Z(AL)) (or on Z(A) = Z(Enda(V))) by NL). Then N,(L) is a normal
subgroup of finite index in N(L) containing (Enda(L)*, U(L)), which is also
of finite index.

(v) (Ends(L)*, U(L)) is a central product of Endx(L) and U(L) amalga-
mated over Z(L) := Endx(L) N U(L).

(vi) The image of the conjugation action of N,(L) on A(L) induces a finite
index subgroup Aut, [(A(L),°) of Aut,(A(L),°). The latter is also the image
of the conjugation action of {u € U(A,°) | u'A(L)u = A(L)}.

(vii) The image of the conjugation action of N,(L) on Enda(L) induces a
subgroup Aut, (Ends(L)) of Aut,(Ends(L)). The latter is also the image of
{p € End4(V)* | ¢! Enda(L)¢ = Enda(L)}

(viii) The group N (L)/Z(L) is a subdirect product of Aut,;(A(L),°) and
Aut, ((Enda(L)), amalgamated over the common finite factor group

Aut, 1 (A(L), )/ Inn(A(L), °) = Aut, ;(Enda(L))/ Inn(End, (L))
= NZ(L)/<EndA(L)*, U(L)> .

N(L)
N.(L)

EndA (L) *
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Proof. Most of the statements can be verified in a straightforward way
in the order in which they are listed, by using the preceding discussion
of N,(V). The various finiteness statements follow from Proposition 3.5. [

Here 1s the main consequence for Aut(Bily(L)) :

COROLLARY 4.6. Inn(Bilx(L)) < Aut(Bilo(L)), and
Out(Bils (L)) := Aut(Bila(L))/ Inn(Bils (L))
embeds into Out(Enda (L)) and into Out(A(L),°). In particular, Out(Bily(L))

is finite.

It is worthwhile to extract the following slightly more technical consequence
as well.

COROLLARY 4.7. Denote by Aut,(Bily(L)) the group of automorphisms
of Bilx(L) induced by N,(L). Then
Inn(Bily (L)) < Aut,(Bils (L)) < Aut(Bily (L)),

Aut(Bils(L))/ Aut,(Bilx(L)) is isomorphic to a subgroup of the (obvzously)
finite group Aut(Z(A(L)), and

Out,(Bilo(L)) := Aut,(Bila(L))/ Inn(Bils (L))
embeds into the finite groups Out,(Enda(L)) and Out,(A(L),°).

The next topics are the lattice versions of e-depth and e-x-depth, cf.
Definition 3.6. Recall the notation introduced before Definition 3.6.

DEFINITION 4.8.

() Let LY be defined as (Enda(L))PL.

(i) Define L@ := L and L® := (LE~D)D which yields an increasing
sequence of full lattices in V :

L = 1O < 158 < L@ <.
(iii) The length of this sequence, i.e. the first i with L = L+D ig called
the depth of L, resp. of Bily(L).

As a subtle point, note that End, (L") might contain (End, (L))" properly.
In particular, L is of depth O if and only if End(L) is hereditary, which is
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also equivalent to Bily(L) having e-depth zero. For these situations the Picard
group techniques mentioned above can easily be applied. But before going
into the details of the depth-zero case, a general remark on the smoothing
process must be made.

 REMARK 4.9. N(L®) acts on LD i.e. N(L") is conjugate to a subgroup
of N(LUTDY under GL(V).

‘ Proof. Clearly, the conjugation action by elements in N(L®) preserves
arad(End, (L®)) and therefore also the idealizer (Endp(L?)®. But LI+D =
(Endp(LO)OLO . [

Continuing the discussion of e-x-depth of the last section, the notion of
x-depth will be defined. Ideally one is tempted to imitate Definition 4.8 along
the following lines: define LUP as the lattice in V' containing L with the
~property Endy(L & L*)"(L & L*) = LD @ M for some A-lattice M in V
~containing L*; define L' := L and LY := (L= - which yields an
increasing sequence of full lattices in V:

L=1Y<iM<®<...y

and define the *-depth of L, resp. Bils(L), to be the length of this sequence,
i.e. the first i with L' = LU+,

To prove that everything is well defined, one needs a statement ensuring
that this process really terminates. This boils down to: End (L™ & (L)*)
 contains Bndp(L & L*) properly up to conjugation, unless Enda(L & L) is
. hereditary. I have not been able to prove this statement, though the argument
~ below for the soundness of the less satisfactory definition, points somewhat
" in the right direction.

DEFINITION 4.10.
(i) Define sequences L = L < LM < LIH . of lattices in V' and
L0 — px < 1 < 1*21 0 a5 follows:

L[i—i—l] @L*[i—{—l] — Fgrl)(L[i] D L*[i])

with T; := Enda(L @ L*1) N Enda (L*1H)* & (L"),
(ii) Define the *-depth of L, resp. Bilx(L), to be the length of these
sequences, i.e. the first i with L = LU+1 and L0 = L+
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Here is a verification that the definition makes sense.

LEMMA 4.11.
(i) T @ (L)) decomposes as indicated in Definition 4.10 (i).

(ii) For the order T; one has Ty C I't € ..., so that the *-depth is well
defined, namely as the first i with T hereditary.

(iii) Let s be the x-depth of L, then Enda (LI @ (LI1Y*) s hereditary, i. e.
the x-depth of L is zero.

Proof. (i) Since the two idempotents mapping L& L* onto L, resp. L*,
lie in any of I7, the result follows.

(i) By definition T{"” C Enda (L1 @ L*l+11) . Moreover T'¥ is invariant
under the involution; by Remark 2.4, it is therefore also contained in
End, (L1*1)* @ (LFH11)*). Hence I} C T¥M C T4

(i) I's is hereditary; hence Endr,((L! @ L*I)) @ (L*I)* @ (1)) ¢ A
is hereditary. But A(LI"!) contains this order and is therefore also hereditary,
which makes Endx(L'¥! @ (LI¥))*) hereditary. [

Various comments should be made. The notions of *-depth zero and
e-x-depth zero are the same. This paper will mainly concentrate on the
*-depth zero case, for which the two approaches yield the same answer.
The first approach would in general be superior to the second one, because
it defines a directed graph on the set of isomorphism classes of lattices in V
with an arrow pointing from L to L (in the first meaning).

This would have the nice property that one has no cycles except for
the one with *-depth 0, and the depth of any lattice could be read off
from the graph. In the second setting this is no longer possible. One has
only an assignment to a x-depth zero lattice for any lattice without the
intermediate steps. Example 2.2 (i) and Remark 2.8 show that one can produce
situations where the x-depth is arbitrarily high with the depth being zero
already.

It should be noted that this result implies a classical theorem by Watson,
cf. [Wat62], which has been rediscovered by various people; and it puts
the Watson process into the proper general framework. Strictly speaking, the
assumption of positive definiteness is too strong, but it is retained here because
it is the general hypothesis of the present paper. Various generalizations have
been discarded, though they could have also been listed here.
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COROLLARY (Watson). Let L :=Z"*" and ¢: L x L — Z be a (positive
definite) Z-bilinear form on L. Then there exists a full Z-lattice M in
V= Q®gz L which is Aut(L, ¢)-invariant and satisfies M C M* C k=M for
some square-free divisor k of det(L, ), where the reciprocal lattice M* is
taken with respect to some rational multiple of ¢.

Proof. ¢ induces an involution on A := Q"*" containing A := A(L) as
an invariant Z-order. Denote the *-depth of L by s and set M := LI!. Clearly,
Aut(L, ¢) = U(L), and M is U(L)-invariant. Since I' := End\(M & M*) is
hereditary, the same applies to A(M) (= Endr(M @ M*)). By the general
properties of hereditary orders (as chain orders), the claim follows, since M*
is an absolutely irreducible A-lattice isomorphic to M*. [

Having a canonical procedure for constructing *-depth zero lattices from
ones of arbitrary x-depth such that the statements of Remark 4.9 carry over,
it becomes an interesting question to look into the structure of Out,(Bily(L))
in this case. Of course, it is no loss of generality if one restricts to the case
of simple algebras 4. Here is a first statement, whose hypothesis is often
satisfied.

THEOREM 4.12. Let L be of x-depth zero and assume that the centre
Z(A) is a totally real number field. Then Out, (Bily(L)) is of exponent
dividing 2.

Proof.  Because of Proposition 4.5 (vi) and Corollary 4.7, one has to

prove the following: for u € l7(A) NN(A(L)) the square u?> induces an inner
automorphism of A(L). Let uu® = z for some element z € Z(A). Then 2

and z~'u” induce the same automorphism. But z='u? lies is U(A), since

z° = z. Each prime of Z(A) is mapped onto itself by the involution °.
Hence, at the completion of the whole situation at any prime p of Z(A),
the element z~'u* again lies in a unitary group and cannot induce a shift on
the irreducible lattices in the sense of the proof of Lemma 3.8. It therefore
lies in any completion of A(L) and hence in A(L). Since A(L) is invariant
under the involution, also the inverse of 7z !u? lies in A(L) and the claim

follows. []

Here is a x-depth zero example, where the hypothesis of Theorem 4.12 is
violated and Out,(Bils(L)) is of order 3.
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EXAMPLE 4.13. Let G := (a,b,c|d’,b% a® = b? 3, [a,cl, [b, cl) be the
group (C7: C3) x C3 and let A be the residue class order of ZG modulo the
ideal generated by a—1 and ¢—1. Then A =2 K33 with K = Q[v/—3,/—7]
(of class number 1, cf. [PoZ89]) and

A

I%

R R
I R
I 1

XN XX

where R = Z[”1+2\/‘_3, ‘1+2*/“_7] = Zg is the maximal Z-order in K and
I is the product of the two prime ideals I; and I, above 7 in K, i.e.
7R = I?. The natural involution of QG induces the involution © of A of
interest. Finally, L := A, is chosen as the regular A-lattice, i.e. with respect
to the above description of A, one has L = (R,R,R)® (I,R,R) ® (I,I,R).
One easily checks that the group automorphism a — a, b — bc, ¢ — ¢
maps A onto itself and things can be arranged so that (R,R,R) is mapped
onto (I,R,I;"), and (I;,R,I;") onto (I;,I,I;',I;"). Since, clearly, L =
(R,R,R) & (II,R,Iz_l) < (11,1112_1,12_1), this reveals an element of order 3 in
Aut,(Bils(L))/ Inn(Bil,(L)). In fact, Out(Bil,(L)) is of order 12.

The general situation for the x-depth zero case is as follows with the
notation of Definition 3.10.

THEOREM 4.14.  Let L be of *-depth zero and assume (w.lo.g.) that A

is simple. Then Out,(Bily(L)) is Abelian and embeds into an extension of the
class group CUZ(A(L))) of the centre Z(A) by a group of the form

Do D Cuww,

peS {p.poteN
with S the set of prime ideals p of Z(A) with p = p° and S(A(L), p) even,
and N the set of pairs {p,p°} of prime ideals with p # p°.

Proof. That Out(Bily(L)) is Abelian was already shown in Theorem 3.9.
As in the proof of Theorem 4.12, let u € ﬁ(A) N N(A(L)). At each prime p
of Z(A), u induces a shift of period a(p) | s(A(L), p), as explained in Lemma
3.8 and Definition 3.10. Let uu® = z for some element z € Z(A). At the real
primes p = p°, both u and u°® shift by the same index, and hence the induced
shift generates at most a subgroup of order 2 of Cyryyy. If p # p°, the
induced shifts at p and p° are opposite to each other and of the same order
modulo local central shifts. Since the situation is global, the class group of
the centre has to be taken into account, as in the proof of Lemma 3.8. [
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