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we H respecting positiveness, which is unique up to multiplication with
totally positive elements in Z.

Similarly one finds a suitable map w’: Hom4(V*,V) — HomgOW*, W)
as required in Definition 2.6. Finally, to make «w' unique, one requires
w’ (qﬁ_l):w(@_l for one (and hence for all) invertible ¢ € Hom4(V, V™).
Now it is a routine matter to check that (w;,w,,w,w’) defines an algebra
~ isomorphism Q of End4(V @ V*) onto Endg(W @ W*) with the required
- properties. [

‘ At the end of this basic chapter some comments might be in place: The

- reader should check as a little exercise that Bilp(L) (given as explicit bilinear
- forms or as maps from L to L*) determines Enda(L) (but not conversely of
- course) and Enda(L @ L*). One now may ask how much is determined by

- Bili(L).

| DEFINITION 2.10. Call L, V and Bily(L) exceptional, if End 4,(Vr) has
~ a simple component isomorphic to C or H.

REMARK 2.11. The following three conditions are equivalent.
(i) Bil, (L) can be recovered from Bilj{(L);
(i1) Enda(L) can be recovered from Bﬂj\L(L);

(ii1) L is not exceptional.

For instance the difference between the Bravais group and the strict Bravais
- group in Example 2.2 (ii) only occurs in the exceptional situation.

3. AUTOEQUIVALENCES AND INVARIANTS

| The basic notation is kept: (A,°), L C V, Bily(L) = Homu(L,L*).
~ Continuing Definition 2.6 in the direction ‘autoequivalences’, we fix the
- following notation.

5 DEFINITION 3.1. Let R be a subring of R containing Z. The group of
all R-equivalences w: Bily,(Lg) — Bilp(Lg) is denoted by Aut’(Bils,(Lg)).
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From the discussion following Definition 2.6, it is clear that one has a
monomorphism of Aut®(Bily(Lz)) into the group of all automorphisms of
Enda, (L ® L*)R) as a C,- -graded algebra with involution, and also into the
automorphism group of Endy,(Lg). It therefore makes sense to look at the
pointwise stabilizer of the centre of Endy, (Lg).

REMARK 3.2. Denote by Aut’ .(Bila,(Lg)) the biggest subgroup of
Aut®(Bila(Lg)) fixing the centre of Endy, (Lg)

(1) Aut;(Bils,(Lg)) is a normal subgroup of Aut®(Bily,(Lg)) of finite index
with the factor group Aut®(Bily, (Lg))/ Aut?(Bily,(Lg)) acting faithfully on the
centre of Endy,(Lg).

(i) Aut;(Bilp,(Lg)) is isomorphic to the group of inner automorphisms of
Endy,(Lg) in case R is a field.

(iii) If R is not a field, let O be its field of fractions. Then Aut® - (Bily,(Lg))
is isomorphic to a subgroup of Aut’ .(Bilp,(Lp)).

Proof. (i) Finite dimensional semisimple commutative algebras have finite
automorphism groups. The same applies to R-orders in such algebras.

(i1) This follows from the Skolem-Noether Theorem.

(111) Obvious.  []

PROPOSITION 3.3.  The group Aut®(Bils(L)) acts properly discontinuously
on Bily _o(Lg).

Proof. That Aut’(Bily(L)) acts on Bil >0(LR) follows from the defi-
nition of equivalence. By Remark 3.2 it sufﬁces to show that Aut (Bils(L))
acts properly discontinuously. But this follows from the well known fact that
GL,(Z) acts properly discontinuously on the cone of positive definite sym-
metric matrices of degree n. [

In fact, the action is even discontinuous on BilJr >0(LR) modulo the action
of R>o by multiplication and, apart from some margmal exceptions, it is also
faithful. One interesting issue is the structure and size of Out; (Bils(L)), to
be defined now.

DEFINITION 3.4.

(i) The subgroup of Aut{(Bils(L)) corresponding to the inner automor-
phisms of End, (L) will be denoted by Inn(Bil,(L)) and referred to as the group
of inner automorphisms of Bily(L). (Clearly Inn(Bily(L)) = Inn(End, (L)) =
(Endx (L))" /Z(Enda(L)*).)
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(i1) Similarly,
Out{(Bilx(L)) := Aut;(Bils(L)) / Inn(Bila (L))
- will be the outer central group of equivalences of Bilx(L), and

Out’(Bil, (L)) := Aut®(Bil(L))/ Inn(Bil (L))

the outer group of equivalences of Bilp(L).
Aut®(Bil(L))
Out®(Bil(L)) Aut;(Bil(L))

} Out; (Bil(L))
Inn(Bil(L))

PROPOSITION 3.5. The group Out®(Bils(L)) is well defined and embeds
into Out(End, (L)) := Aut(Enda(L))/ Inn(Enda(L)). In particular, it is finite.

Proof. Clearly, conjugation by w € Aut’(Bilp(L)) of an inner auto-
morphism induced by some ¢ € End(L)* results in the inner automor-
phism induced by w;(y) in the notation of the discussion of Definition 2.6.
Hence Out®(Bils(L)) is well defined. The finiteness follows from the Jordan-
Zassenhaus Theorem, which implies that Out(I) is finite for any Z-order I'
in a semisimple Q-algebra, cf. [CuR87] (55.19). L]

Obviously Out;(Bils(L)) is an interesting invariant for the equivalence class
of Bily(L). Further on in this chapter, it will be proved that it is an Abelian
group in case Enda(L) is hereditary. But some notions from the theory of
orders first have to be recalled, in order to define some invariants measuring
the distance from this favourable situation.

Recall from [BeZ85] that the arithmetical radical arad(I") of a Z-order T’
in a semisimple Q-algebra B is defined as the ideal which localizes to
the radical of I', at the primes dividing the discriminant of I', and to the
localization I', of the order itself at the other primes. The left idealizer or
left order T\ of the arithmetical radical arad(I") is the biggest Z-order in B

~ in which arad(T") is a left ideal, in particular T'® arad(T") C arad(I"). It is well
known, cf. [Rei75], that T is hereditary if and only if I' = I'® . Likewise the
two-sided idealizer of arad(I') is the biggest Z-order in B having arad(I') as
a two-sided ideal. It is denoted by TU?. A slight modification of the argument
in [Rei75] characterizing hereditary orders by the property I' = T'® also shows
- that T is hereditary if and only if I" = I'"? | Besides, if T is invariant under
an involution of B, so is T". Define the left, respectively two-sided, idealizer
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sequence of T' by I'p:=T" and Ty :=T¥, resp. Ty := I, for i > 0.
The length of either of these sequences 1S the smallest i with I'; = i1

DEFINITION 3.6.

(1) The e-depth of Bily(L) is defined as the length of the left idealizer
sequence of End,(L).

(ii) The e-x-depth of Bily(L) is defined as the length of the two-sided
idealizer sequence of End,(L & L*).

Clearly, e-depth and e-*-depth are well defined and compatible with equiva-
lence. As for the definition of e-*-depth, note that all members of the two-sided
idealizer sequence of Endy(L@L*) are both C, -graded and invariant under the
involution of End 4(V @ V*). However, it does not seem that they are neces-
sarily endomorphism rings of lattices M @ M* with the M’s constructed from
L in a canonical way. That is why we shall focus here mainly on the e-x-depth,
resp. e-depth, zero case. The general discussion will be resumed in the next
section; cf. 4.8 and 4.10. Already the case of one-dimensional Bilo(L) shows
that even if the e-depth is zero, the e-x-depth can be arbitrarily large, since the
discriminant of (Bila(L), Bil(L*)) can be arbitrarily big. However, it seems that
for every isomorphism type of End4(V) the equivalence classes of e-*-depth 0
lattices Bils(L) of covariant integral forms can be classified, provided one re-
stricts the number of primes involved in the discriminant. Here is an example,
whose verification is left to the reader as an exercise in combinatorics.

EXAMPLE 3.7. Let End 4(V) = Q?>*?. Assume that Bils (L) is of e-x-depth
zero and that the discriminant of the pair (BilA(L), Bil(L*)) is a power of a
prime p. Then there are nine equivalence classes of such lattices and the
endomorphism rings satisfy End(L®L*) =2 X(E) with E one of the matrices

0 0 0 O 0 0 1 1 0 0 0 1 0 0 01
0 0 0 O 0 0 1 1 1 0 1 1 I 0 1 1
0O0o0O0)”{oo0o0o0f”{oo0o0 1/°l0 0 0 1
0 0 0O 0 0 0O 0 0 0O 0 -1 0 0
0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 1 1 0 1 1 I 0 1 2
000 1})°21t0 0 0 1)°10 0 0 1
0 0 0 O 0 -1 0 0 0 -1 0 0
0 0 1 1 0O 0 1 2
1 0 1 2 I 0 2 2
0 -1 0 1)1 0 -1 01
-1 -1 0 0 -1 -1 0 O
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and X((my)) := {(xy) € Q" | x; € pmiZY) for any (my) € Z"".

In all cases L = L, @& L, with irreducible A-lattices Ly, L satisfying
pL, < L, < Ly < L¥ < p7'L;, where the dual lattice is taken with
respect to the positive definite generator of Bils(L;). The individual cases are
characterized by a chain of inclusions which can be read off from the rows
of the matrices, like L = L, = L = L} in the first case, L; = L, < LY =14
'~ in the second case, pLf < L, < L; = L} < L§ in the third case, or
pl? = I, < Ly = L} < L} in the fourth case. Moreover, the second, the
. fourth, and the last three cases might have outer automorphisms.

To proceed to the promised structure theorem on Out;(Bily(L) for the
depth 0 case, the following lemma is needed, which is implicit in [Neb9g]
and which certainly does not depend on the big Picard group machinery of
[CuR87], Chapter 55.

LEMMA 3.8. Let T be a hereditary order in a simple Q-algebra B,
which has Schur index s and degree d (over its centre). Then Out,(I') is
Abelian. Moreover, if n is the number of primes in the centre Z(I') dividing the
discriminant of T with respect to the centre, then Out,(I') can be embedded
into an extension of the class group CIU(Z()) by (Cs)".

Proof. Define N(I) := {b € B* | bTb~! = I'}. Then Out,(I) =
N(@)/(T*,Z(B)*). Let W be an irreducible 3-module. Then N(I') acts on the
I'-sublattices in VY. For every prime p in the centre of I', the I', -sublattices
in the completion WV, form a chain by inclusion, on which N(I') acts by
shifting the lattices up and down. Clearly the intersection of all the kernels
of these shifts at the various primes is I'*. Hence Out,(I') is Abelian.

More precisely, let Sh()V) be the group of all permutations of the
["-sublattices of ¥V which fixes all lattices in W, for almost all primes p in
the centre of I" and induces shifts at the remaining finitely many completions.
Then Sh(WWV) is the direct sum of the Sh()V,), each of which is infinite cyclic.
Moreover Sh(W) acts regularly on the set of all nonzero I'-lattices in W.
The above argument shows that N(I')/I™* embeds into Sh(J/). But so does
the group F of all fractional ideals of Z(B), resulting in a subgroup F of
Sh(W). The cokernel of this embedding is isomorphic to a subgroup of a
direct product of n cyclic groups, the order of each one of which divides sd.
It is well known that Z(B)* maps into F with cokernel the class group of
Z(I") and kernel the torsion subgroup of Z(3), which lies in I'* anyhow.
Now by the above description of Out(I'), it can be viewed as a subgroup of
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Sh(W)/X, where X is the image of Z(B)* in Sh(W). But Sh(W)/X is also
an extension of F/X = CI(Z(I)) by Sh(W)/F. [

As a consequence one gets the following

THEOREM 3.9. Let Bilp(L) be of depth 0, then Out;(Bils(L)) is
Abelian. [

It is worthwhile to extract more precise statements from Lemma 3.8.
They will be used and extended in the forthcoming chapter in the study of
Out(Bilp(L)) when the e-x-depth of Bily(L) is zero.

DEFINITION 3.10. Let I' be a hereditary Z-order in a simple Q-algebra
B and let p be a prime ideal in the centre Z(I') of T'. The p-local shift index
s(I', p) of T is defined as follows : For any irreducible A, -lattice L define m(L)
by p™® :=[L: Lyu], Where Ly, is the unique maximal T-sublattice of L.
The chain ---L; > L;y--- of irreducible lattices in a simple B,-module W
yields a periodic sequence ...,m(L;),m(L.y1),... because of m(L) = m(pL).
The index of the group of all “central” shifts generated by multiplication with
p in the group of all shifts of the chain respecting m(L) is called s(I,P).

Obviously, s(I',p) is equal to the p-local Schur index of B if I'y is a
maximal order. In particular it is almost always equal to 1. With the definition
of the local shift index at hand, the refined statement of Lemma 3.8, which
was actually proved, should read as stated with (C,;)" replaced by @p Cer,p) -

4. EXTRINSIC NOTIONS: USING THE UNDERLYING LATTICE

Up to now, the lattices Bily(L) of covariant forms have only been
investigated by themselves without much reference to the underlying lattice L.
In this section L will be taken more seriously into account. Unless confusion
can arise L will also denote the underlying Z-lattice of L, which is usually
considered as a A-lattice.

To start with, we discuss the determinant function and its behaviour under
equivalence.
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