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of different degrees.

In this sense the examples at the end of the paper describe infinitely many
normalizers. The reader who wants to look at some other, more concrete,
examples might use the package') CARAT® handling low-dimensional crys-
tallographic groups; cf. [OPS98] or [PS00]. Here are some further applications
of the present investigations: they help to check when two finite unimodular
groups are conjugate in the full unimodular group by comparing the lattices of
invariant forms; they help to create models of such lattices in low dimensions
by passing to equivalent lattices of covariant forms; they help to find candi-
dates for lattices of covariant forms which contain interesting positive definite
bilinear forms, and to locate these forms inside the lattice of covariant forms.

It is a pleasure to acknowledge many inspiring discussions with G. Nebe.

2. COVARIANT FORMS AND EQUIVALENCE

Throughout the paper, A denotes a semi-simple Q-algebra with a positive
involution °, i.e. an antiautomorphism of order two of 4 such that A — Q:
a — tra q(aa®) is a positive definite quadratic form on A, where r.4/q
denotes the reduced trace of A. Together with A, fix a faithful finite
dimensional right A-module V. The basic data to start with are A, °,
and L, where L is a full Z-lattice in V = Lg := Q ®z L. Because of the
involution, V* := Homg(V, Q) becomes a right A-module again, which is
isomorphic to V. Inside V* one has L* := {p € V* | Ly C Z}, which can
be identified with Homgy(L,Z).

DEFINITION 2.1.
(i) A(L) :={a€ A| La CLandL*a CL*} is called the °-invariant
order of L in A.

(i) A Z-bilinear form ¢: L x L — 7Z 1is called covariant (with respect
to ©) if it satisfies

d(Va, W) = &(V,Wa®) for all V. WeL, acA,

where A is any °-invariant Z-order in A, contained in A(L) of finite index.

(ii1) The Z-lattice of all, resp. all symmetric or skew-symmetric, covariant
Z-bilinear forms on L is denoted by Bils(L), resp. Bﬂj\L(L) or Bil, (L).
Finally Bilj{,>0(L) denotes the set of positive definite elements in Bilj\L(L).

') This is available via internet http://wwwb.math.rwth-aachen.de/carat/index.html.
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Extending this notation for any commutative ring R containing Z, one can
consider covariant R-valued bilinear forms. They give rise to the R-modules
Bils, (Lg), resp. Bilj\LR (Lg) and BilXR (Lr), spanned by the above Z-lattices. If R
is contained in R, Bilj{R7>0(LR) denotes the set of positive definite elements in
Bilj{R (Lgr). One checks, that BﬂXR,>0(LR) 1S an open, nonempty cone in the real
vector space Bilj{R (Lr). Any nondegenerate element of Bil A(Lg) can be used
to recover the involution ° on A. To connect covariance with the more familiar
notion of a sesquilinear form — cf. [Scha85], p.- 236, [BaF96] —, one should
note that composition with the reduced trace of A yields a Z.-isomorphism
of the lattice of sesquilinear maps of L taking values in the inverse different
of A(L) onto Bils(L). Three typical examples will demonstrate the generality
of the concept:

EXAMPLE 2.2.

(i) Fix a positive definite symmetric matrix f € Q"™ ". Let A = Qnx»
with a® = fa"f~! for all a € A and let L = Z'*". There is a unique
positive definite rational multiple f; of f, which is integral and primitive,
i.e. the greatest common divisor of the entries of f; is 1. One checks that
Bilx(L) = Zfy and Biljt>o(L) = Nfo. If fo is unimodular, then A(L) = Z"*",
any other A(L)-lattice is of the form @kL, and BilA(@kL) ={x®f |
x € Zka}, where ® denotes the Kronecker product (of two matrices). Note
that Endaq,(P* L) = Zk**.

(i) Let G < GL,(Z) be a finite unimodular group. Set A := QG
the enveloping algebra of G, i.e. the subalgebra of Q™" spanned by the
matrices of G (clearly an epimorphic image of the group algebra QG) and
let L := Z'*". Obviously the standard involution g — ¢g~! for g € G of
QG induces a positive involution on QG. The order A(L) contains ZG, the
Z-span of the matrices of G as a suborder of finite index. Bil,(Z) consists of
all G-invariant bilinear forms. Bilj{R,>0(LR) is known as the Bravais manifold
of G. If there is no finite unimodular group H cbntaining G properly with
the same Bils(L), resp. Bil]\L(L), then G is called the strict Bravais group,
resp. the Bravais group; cf. [OPS98].

(ii1) Up to isomorphism there are three types of real simple algebras with
a definite involution, namely (R"*" ), (C"*" =") and (H"*",~"), where ~
denotes complex, resp. quaternionic, conjugation. A (right) module for such
K"*" can be taken to be K**" with endomorphism ring K*** according to
the three possibilities for K above. Then the R-space of covariant forms can
also be represented by K**°, where the symmetric forms correspond to the
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symmetric matrices in case K = R and to the Hermitian matrices in the
remaining two cases. According to the decomposition of Ag into such simple
components, one clearly has a decomposition of Bil 4,(Lr) Into components,
each of which can be described as such a K**° with suitable K and s as
~ above. In particular, this gives the Z-ranks of Bilx(L), BilX(L), and Bil, (L).

It is often helpful to identify Bily(L) = Bilaq)(L) with Homy(L,L*) =
Homy (L, L*) as Z-lattices. More precisely ¢ € Bilx(L) is identified with
7 € Hompg)(L,L*) by W(r(V)) := ¢V, W) for all V,W € L, where we
write A(L)-homomorphisms of right A(L)-modules on the left. As A(L) can
be replaced by any suborder A of A(L) of finite index (invariant under the
involution), we shall usually write A instead of A(L) in the sequel. In this
way, Bil,(L*) is also identified with Homy(L*, L) and one gets bilinear maps
Bilp(L) x Bilp(L*) — Enda(L*) and Bils(L*) x Bilp(L) — Enda(L), which
can be composed with the reduced traces of the endomorphism rings of Lg
and of Lo respectively, to obtain Z-valued bilinear maps. Of course the
latter become nondegenerate pairings if one tensors with the field of rational
numbers. Hence one gets a discriminant for Bils(L), which measures the
deviation of (Bils(L),Bilp(L*)) from being in perfect duality. Obviously, the
same can be done for Bilf (L) and Bil, (L).

DEFINITION 2.3. Let e stand for the empty symbol, +, or —. The
discriminant of the pair (Bilj(L), Bil{(L*)) is defined as

bl

discr (Bil§ (L), Bil§ (L") = \det (Te(ds1y))

1<ij<d

where (¢1,...,¢q), resp. (Y1,...,14), form Z-bases of Bil§(L), resp.
Bilj (L*), and Tr denotes the reduced trace of End 4(V*).

Clearly, the definitions are independent of the choice of bases and one
can even define a discriminant group, whose order is the discriminant. As
an easy exercise the reader may check that in the case of Example 2.2 (i)
the discriminant discr (BilX(L)),Bil/f(L*)) is equal to the exponent of the
discriminant group L*? /L of (L, ¢y), where L := {V € V| ¢o(L, V) C YA
with ¢q the bilinear form described by f;.

Another observation along the lines of the interplay between Bily(L),

BilA(L*), Enda(L), and Enda(L*) is the presence of all of these in
Endp(L & L¥).
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REMARK 2.4.

End4(V @ V*) = ( SIOALY) HomA(V*’V)>

Hom 4(V, V*) End 4(V*)
. ) . . ¢ Y "’ .
is a Q-algebra with involution s = s and a C;-graduation
End 4 (V) 0 5 0 Hom4(V*, V)
0 End 4(V*) Hom4(V, V*) 0 '
The involution is induced by the symmetric bilinear form v on V@ V* defined
by

v:(VeV)x VeV — Q: ((Vi,e1), (Va,02) — Vigs + Vagpy

With respect to this bilinear form one has (X @ Y)* = Y* @ X* for any two
full lattices X C V and Y C V*. In particular, Ends(L & L*) is invariant
under the involution.

The following proposition yields a better understanding of the discriminant.

PROPOSITION 2.5.
discr (Bila(L), Bila(L*)) - discr (Enda (L)) = |discr (Enda(L & L*))

where the discriminants are taken with respect to the reduced traces.

’

Proof. One has End(L & L*) =
End A (L) 0 0 Hom A(L* . L)
( 0 EndA(L*)> © (HomA(L, L) 0 ) '
Since the two summands are orthogonal to each other with respect to the
trace bilinear form, and since Ends(L) and Enda(L*) are antiisomorphic and
therefore have the same discriminant, the claim follows. []

Now the basic definition is well motivated.

DEFINITION 2.6. Let (B,°) be a Q-algebra with a positive involution,
and W a (faithful) B-module containing a full Z-lattice M. Let I'" be
some suborder of finite index in A(M). Finally let R be some subring
of R containing Z. We say that Bily(L) and Bilp(M) are R-equivalent
if there exists an R-module isomorphism w: Bily,(Lg) — Bilp,(Mg), called
an R-equivalence, which extends to an isomorphism €2 of R-algebras with
involution and C,-grading from End,,((L ® L*)g) onto Endr,(M & M*)g)
and which induces a bijection from BilXR,>O(LR) onto Bil{, ~oMg). If R=17
then one simply says equivalence instead of Z-equivalence.
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It is worthwhile to spell out the isomorphism of Enda,((L © L*)r) onto
Endr,((M & M*)g) in more detail. The equivalence w: Bilx(Lg) — Bilry, (Mg)
obviously induces an R-module isomorphism w': Bily,(L}) — Bilr,(Mp), for
one may assume R = R and Bily(Lg) is spanned by nondegenerate (resp.
invertible) elements ), and accordingly Bila,(Lg) by the 1. The relation
W~ = idy, translates into w’'(p 1= (w(x))~'. Obviously w and w’, taken
together, yield unique R-algebra isomorphisms wi: Enda,(Lg) — Endr, (Mg)
and w,: Enda,(L}) — Endr,((M}), which are related by wa(n) = (wi(n™)”
for all n € Endr,((L}). So one has the following

REMARK 2.7. In Definition 2.6 the R-algebra isomorphism
Q: Endp, (L ® L*)g) — Endr, (M & M*)z)

is uniquely determined by the equivalence w: Bila,(Lg) — Bils,(Mg).

Obviously the discriminant of the pair (Bils(L), Bila(L*)) and the discrim-
inant group of Bily(L) do not change when one passes to an equivalent lattice
of covariant forms. In the case of one-dimensional spaces of compatible forms,
the discriminant separates equivalence classes.

REMARK 2.8. In the situation of Definition 2.6 let Bil 4(V) and Bilg(WV)
be both one-dimensional. Then Bily(L) and Bily(M) are equivalent if and
only if

discr (Bilo (L), Bily (L™)) = discr (Bilp(M), Bilp(M™)) .

Proof. The missing direction follows from the following description of
Enda(L & L*). Let d := discr (Bily(L), Bilo(L*)) and Bilp(L) = Z¢. Then

. Zid, Zdd—! 7 7d
EndA(L@L):(Zl¢L Zi;b“>g<z Z>. O

From the discussion in Example 2.2 and the definition, it is reasonably
clear that Bilx(L) and Bilo(M) are R-equivalent if and only if End 4,(VR)

and Endg,(Wgr) are isomorphic. For Q-equivalence the statement is more
difficult to prove.

PROPOSITION 2.9. Let (B,°) be a Q-algebra with a positive involution,
W a faithful B-module containing a full Z-lattice M, and let T := A(M).
Then two lattices Bilx(L) and Bilr(M) of covariant forms are Q-equivalent
if and only if End 4(V) and Endg(WV) are isomorphic as Q-algebras.
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Proof. By Definition 2.6 equivalence of V and W implies that the
endomorphism rings are isomorphic. To prove the converse, we may assume
without loss of generality that A and B are simple. Then the endomorphism
rings are also simple. Fix an isomorphism w;: End 4(V) — Endi(VV). Then
wy: End4(V*) — EndpW*) : n — (wi(n™)” is also an 1somorphism
and (wr(¢")" = wi(¢) for all ¢ € End4(V). To shorten the notation,
set £ := End4(V) and & := End (V*). (Note, transposing induces an
antiisomorphism between £ and &£’.)

The next aim is to find a suitable map

w: Hom4(V,V*) — HomgW, W*)

as required in Definition 2.6. Clearly, Hom 4(V,V*) is a simple (£/,E)-bi-
module. The two isomorphisms w; and w, can be used to turn Homg(W, W*)
into a simple (£’, £)-bimodule as well. Then w lies in

H := Homg: g(Hom4(V, V*), Homp(WV, W*)),

which is a one-dimensional Z-module, where Z is the centre of £. To get
the right identification of Z with the centre of £, note that the centres of A
and £ can be identified via their action on V and that z — (z°)” therefore
gives the right identification of Z with Z(&).

Now some properties of H have to be investigated: For each h € H
define A" by h"(¢) := h(¢p™)" for all ¢ € Homu(V*,V). This defines a
Z-semilinear action of the cyclic group of order 2 on H. Indeed, one easily
checks: (h")" = h and (zh)"” = z°h™ for all z € Z and all h € H. Next, one
verifies that there exists a nonzero & € H with A" = h. Indeed, if ° fixes
Z pointwise, any h € H is fixed by 7, because the subspaces of symmetric
and skewsymmetric forms have different dimensions in this case. If °© does
not fix Z pointwise, the existence of an h € H with A" = h follows from a
straightforward analysis of semilinear C;-actions. In any case, the & € H with
h" = h form a one-dimensional Z- -subspace H of H, where Z is the °-fixed
subfield of Z. It is clear that any symmetric ¢ € Hom4(V, V*) = Bils(V) is
mapped onto a symmetric w(¢) by any w € H. The final point is that w can
be chosen in such a way that positive definite forms map onto positive definite
ones. This can easily be seen for the ground field R by the classification of
the simple R-algebras with positive involutions. The present case of rational
ground field can be reduced to the previous case, i.e. if & € H does not
respect positive definite forms, then there exists a z € Z with the right
sign combinations in the various archimedean completions of Z such that
zh maps positive forms onto positive ones. One ends up with a nonzero
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we H respecting positiveness, which is unique up to multiplication with
totally positive elements in Z.

Similarly one finds a suitable map w’: Hom4(V*,V) — HomgOW*, W)
as required in Definition 2.6. Finally, to make «w' unique, one requires
w’ (qﬁ_l):w(@_l for one (and hence for all) invertible ¢ € Hom4(V, V™).
Now it is a routine matter to check that (w;,w,,w,w’) defines an algebra
~ isomorphism Q of End4(V @ V*) onto Endg(W @ W*) with the required
- properties. [

‘ At the end of this basic chapter some comments might be in place: The

- reader should check as a little exercise that Bilp(L) (given as explicit bilinear
- forms or as maps from L to L*) determines Enda(L) (but not conversely of
- course) and Enda(L @ L*). One now may ask how much is determined by

- Bili(L).

| DEFINITION 2.10. Call L, V and Bily(L) exceptional, if End 4,(Vr) has
~ a simple component isomorphic to C or H.

REMARK 2.11. The following three conditions are equivalent.
(i) Bil, (L) can be recovered from Bilj{(L);
(i1) Enda(L) can be recovered from Bﬂj\L(L);

(ii1) L is not exceptional.

For instance the difference between the Bravais group and the strict Bravais
- group in Example 2.2 (ii) only occurs in the exceptional situation.

3. AUTOEQUIVALENCES AND INVARIANTS

| The basic notation is kept: (A,°), L C V, Bily(L) = Homu(L,L*).
~ Continuing Definition 2.6 in the direction ‘autoequivalences’, we fix the
- following notation.

5 DEFINITION 3.1. Let R be a subring of R containing Z. The group of
all R-equivalences w: Bily,(Lg) — Bilp(Lg) is denoted by Aut’(Bils,(Lg)).
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