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homomorphism from I" to R. Of course, for any v in I', the projection of
¥(v) in R/Z is nothing more than the rotation number of @(v). Summing
up, with these algebraic conditions on the group T, any action of T on the
circle determines canonically a quasi-homomorphism : T' — R which is a
lift of the rotation number map.

A specific example is the modular group PSL(2,Z). As a group, it
is isomorphic to the free product of two cyclic groups: PSL(2,Z) ~

2/27 % Z./3Z (see for instance [61]). Of course there is no non-trivial

homomorphism from this group to R since it is generated by two elements of
finite order. In the same way, its second real cohomology group is trivial
(this follows for instance from the Mayer-Vietoris exact sequence since
finite groups have trivial cohomology over the reals). We deduce that every
action of PSL(2,Z) on the circle yields a well defined quasi-homomorphism
¥: PSL(2,Z) — R lifting the rotation number. If we start with the canonical
action of PSL(2,Z) on the circle RP!, the rotation numbers are not interesting :
the only elliptic elements in PSL(2,Z) have order 2 and 3 so that the rotation
number of elements in PSL(2,Z) are 0,1/2,1/3,2/3 € R/Z. However the
quasi-homomorphism ¥: PSL(2,Z) — R that we get is very interesting
and has been studied in many different contexts: it is called the Rademacher
JSunction. The explicit formula giving ¥ as a function of the entries of a matrix
in PSL(2,Z) involves the so called Dedekind sums which are important in
number theory. We refer to [4] for a description of W and a bibliography on
this very nice subject.

7. HIGHER RANK LATTICES

In this section, we study the problem of determining which lattices in
semi-simple groups can act on the circle. .

Let G be any Lie group and & be its Lie algebra. The real rank of G is
the maximal dimension of an abelian subalgebra 2 such that for every a € 2
the linear operator ad(a): & — & is diagonalizable over R. For instance, the
real rank of SL(n,R) is n— 1: its Lie algebra consists of traceless matrices
and contains the abelian diagonal traceless matrices. A lattice in a Lie group
G is a discrete subgroup I' such that the quotient G/I" has finite measure
with respect to a right invariant Haar measure. A lattice in a semi-simple
group 18 called reducible if we can find two normal subgroups Gi,G, in G,
connected and non trivial, which generate G, whose intersection is contained
in the (discrete) center of G, and such that (G; NT).(G, NT") has finite index
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in T. Otherwise, we say that I" is irreducible. Note that Jattices in simple
Lie groups are obviously irreducible.

The first example of a lattice is SL(n, Z) in SL(n,R) : the corresponding
quotient has finite volume (but is not compact).

Another example to keep in mind is the following. Consider the field Q(v/2)
and its ring of integers O = 7[/2]. The field Q(v/2) has two embeddings in
R given by a + b2 € Q(W2) — a = bv/2 € R. This gives two embeddings
of the group SL(2,0) in SL(2,R). The images of these embeddings are
dense but the embedding of SL(2,0) in SL(2,R) X SL(2,R) has a discrete
image which is an irreducible lattice in SL(2,R) x SL(2,R) (whose real rank
is 2). Of course, we can construct many more examples using this kind of
arithmetic construction: Borel showed for instance that any semi-simple Lie
group (with no compact factor) contains at least an irreducible lattice (and
even a cocompact one).

Note also that if a compact oriented manifold M of dimension n admits a
metric with constant negative curvature, its universal cover is identified with
the hyperbolic space H" of dimension n. It follows that the fundamental
group T' of M is a discrete cocompact subgroup of the group of positive
isometries of H" which is the simple Lie group SOg(n,1). These examples
provide lattices in real rank 1 simple Lie groups.

For the theory of lattices in Lie groups, we refer to [48, 72].

7.1 WITTE’S THEOREM

In-[70], Witte :proves the-following remarkable theorem:

THEOREM 7.1 (Witte). Let I be a finite index subgroup of SL(n,Z) for
n > 3. Then any homomorphism ¢: 1 — Homeo_(S!) has a finite image.

The proof will be derived from the following

THEOREM 7.2 (Witte). A finite index subgroup of SL(n,Z) for n > 3 is
not left orderable.

Proof. It suffices to prove it for a finite index subgroup I' of SL(3,Z)
since a subgroup of a left ordered group is of course left ordered. Suppose by
contradiction that there is a left invariant total order < on I'. Choose some
integer k > 1 so that the following six elementary matrices belong to I :
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‘ 1k0 10k 100
a={010 ], a =1010 ], a =01k},
001 001 001
100 100 100
ag = (k10 |, as= (010 |, ag =010} .
001 k01 0k1

It is easy to check the following relations between these matrices. Taking
indices modulo 6, for every i the matrices a; and a;+1 commute and the
commutator of a;,_; and a;,; is al-ik. Fix some i and let us analyze the
structure of < on the group H; generated by a;,_1,a;,a;4,. Allowing ourself
to replace a;_; or a;+1 by their inverses and to permute them, we can define
three elements «, 3, such that {a, B} = {afl,aill} and v = ¢;** and
such that the following conditions are satisfied :

ay=vya ; By=98 ; afa'fl =1
l<a 5 1<8 ; 1<~

(1 denotes the identity element). If ¢ is an element of I', we set || = ¢ if
1 ¢ and ¢! otherwise. If two elements §,¢ in I' are such that 1 < ¢ and
1 < ¢, we write £ < ( if for every integer n > 1, we have £ < (. We claim
that v < o or v < B (which implies that ai| < |ai—y1| or |a;| < laiv1]).
Indeed, suppose that there is some integer n > 1 such that o < ~v" and
B <~" and let us compute

O = " B" (@™ Yy (B Iy
Since ¢, is a product of elements in " which are bigger than 1, we have
1 < 4. Now the product defining 6,, can easily be estimated since we know

that v commutes with « and S and that interchanging the order of an o
and a [ is compensated by the introduction of a v. We find

6m — ,y-—m2+2mn.
Since 1 < v, we know that + to a negative power is less than 1. For m big
enough, we get 6, < 1. This is a contradiction.

Coming back to our six matrices a;, we find that la;] < |a;i_{| or
la;] < |ai+1]|. If we assume for instance lai| < |az|, we therefore deduce
cyclically |a1| < |az]| < |a3| < |as| < |as| < |ag| < lai|, and this is a
contradiction. [

Let us now prove Theorem 7.1 using similar ideas. Of course, Theorem 7.2
means that a finite index subgroup of SL(n, Z) for n > 3 does not act faithfully
on the line (by orientation preserving homeomorphisms).
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Consider first a torsion free finite index subgroup I' of SL(3,Z) and
suppose by contradiction that there is an action ¢: I’ — Homeo. (S!) with
infinite image. According to an important theorem, due to Margulis, every
normal subgroup of a lattice in a simple Lie group of rank at least 2 is either
of finite index or is finite (see [48, 64]). It follows that the action ¢ is faithful.

As in the proof of Theorem 7.2, choose an integer k such that the matrices
(a;)i=1..6 are iIn I'. Note that the group H; generated by a;_1,a;,a;+1 is
nilpotent, hence amenable, so that the rotation number is a homomorphism
when restricted to H;. Since al-ik 1s a commutator, it follows that the rotation
numbers of all ¢(a;) vanish. Define A; as being the unique lift of ¢(a;)
whose translation number is 0. We claim that the elements A; of HO/I—I\l/eO_,_(SI)
also satisfy the relations that for every i the homeomorphisms A; and A;i;
commute and the commutator of A; | and A1 is AF¥. Indeed A;A; 1A AL
and A,-+1Al-_1Al.jr11Al.—_ llA,-:Fk project on the identity and have translation number
0 since the inverse image of H; in Homeo.(S') is nilpotent and the restriction
of 7 to this group is a homomorphism. Consider now the (left ordered) group
of homeomorphisms of the line generated by the A;. We can reproduce exactly
the same argument that we used in Theorem 7.2 to get a contradiction.

Consider finally the general case of an action ¢: I' — Homeo (S!) of a
finite index subgroup of SL(n,Z) (n > 3). Replacing I" by a finite index
subgroup, we can assume that I" is torsion free. Of course, SL(3,Z) is the
subgroup of SL(n,Z) consisting of matrices preserving Z> ~ Z> x {0} C Z
and I' intersects SL(3,Z) on a subgroup of finite index in SL(3,Z). Since we
have already dealt with the case n = 3, the kernel of ¢ contains a subgroup
of finite index in the infinite group I'NSL(3,Z). By the theorem of Margulis
that we mentioned, the kernel of ¢ is a subgroup of finite index in T" so that
the image of ¢ is a finite group. Theorem 7.1 is proved.

It turns out that the arguments used in this proof can be extended to
a family of lattices more general than finite index subgroups of SL(n,Z)
for n > 3. The general situation in which Witte proves his theorem is for
arithmetic lattices in algebraic semi-simple groups of Q-rank at least 2. We
will not define this concept and refer to the original article by Witte. Note
however that the method of proof cannot be generalized to an arbitrary lattice
since it uses strongly the existence of nilpotent subgroups (which don’t exist

for example if the lattice is cocompact). However, this strongly suggests the
following :

PROBLEM 7.3. Is it true that no lattice in a simple Lie group of real rank
at least 2 is left orderable ?
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7.2 ACTIONS OF HIGHER RANK LATTICES

We now study actions of the most general higher rank lattices on the
circle. Most of this section is an expansion (and a translation) of a small part
of [26] to which we refer for more information.

THEOREM 7.4 ([26]). Let T be a lattice in a simple Lie group G with
real rank greater than or equal to 2. Then any action of I' on the circle has
a finite orbit.

Of course, in such a situation a subgroup of finite index in " acts with a
fixed point so that, deleting this fixed point, we get an action of a subgroup
of finite index acting on the line. Recall our question 7.3 concerning ordering
on lattices; it can be reformulated in the following way :

PROBLEM 7.5. Let I be a lattice in a simple Lie group G with real
rank greater than or equal to 2. Is it true that any homomorphism from T’
to Homeo, (S!) has a finite image ?

These notes only deal with actions by homeomorphisms and we decided
not to discuss properties connected with smooth diffeomorphisms. However,
we mention that the previous question has a positive answer assuming some
smoothness.

THEOREM 7.6 ([26]). Let T" be a lattice in a simple Lie group G with
real rank greater than or equal to 2. Then any homomorphism from T to the
group of Cl-diffeomorphisms of the circle has a finite image.

This theorem is an immediate consequence of 7.4 and of two important
results. The first one, due to Kazhdan, states that a lattice like the one in the
theorem is finitely generated and admits no non trivial homomorphism into R
(see [48]). The second, due to Thurston, states that if a finitely generated group
I" has no non trivial homomorphism to R then any homomorphism from T
to the group of germs of C!-diffeomorphisms of R in the neighbourhood of
the fixed point O is trivial (see [66]).

If we add more smoothness assumptions (but this is not the goal of
this paper...), A. Navas, following earlier ideas of Segal and Reznikov,
recently proved a remarkable theorem which applies to groups with Kazhdan’s
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property (T) (see [57]). Note that lattices in higher rank semi-simple Lie groups
have this property (see [32]).

THEOREM 7.7 (Navas). Let I" be a finitely generated subgroup of the
group of diffeomorphisms of the circle of class C'T% with a > 1/2. If T
satisfies Kazhdan’s property (T), then T is finite.

When the Lie group G is not simple but only semi-simple, the situation
is more complicated since there are some interesting examples of irreducible
higher rank lattices that do act. We have already described some examples of
irreducible lattices in SL(2,R) x SL(2,R) which act on the circle via their
projection on the first factor (which is a dense subgroup in SL(2,R)). As a
matter of fact, the next result shows that these examples are basically the only
ones.

If ¢; and ¢,: I' — Homeo, (S') are homomorphisms, we say that ¢; is
semi-conjugate to a finite cover of ¢, if there is a continuous map h: S' — S!
which is onto and locally monotonous, such that for every v € I' we have

$2(V)h = ho1(7).

THEOREM 7.8 ([26]). Let I' be an irreducible lattice in a semi-simple Lie
group G with real rank greater than or equal to 2. Let ¢ be a homomorphism
from T to the group of orientation preserving homeomorphisms of the circle.
Then either ¢(I') has a finite orbit or ¢ is semi-conjugate to a finite cover
of a homomorphism which is the composition of :

1) the embedding of T in G,
1) a surjection from G to PSL(2,R),
i) the projective action of PSL(2,R) on the circle.

These theorems show that higher rank lattices have very few actions on
the circle. Hence, according to Section 6.15, the second bounded cohomology

groups of lattices should be small. This is indeed what Burger and Monod
showed in [12]:

THEOREM 7.9 (Burger, Monod). Let T" be a cocompact irreducible lattice
in a semi-simple Lie group G with real rank greater than or equal to 2.
Then the second bounded cohomology group HZ(T,R) injects in the usual
cohomology group H*(T',R).
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The assumption that the lattice is cocompact is important in the proof but
the theorem probably generalizes to non-cocompact lattices. Note also that for
many lattices in semi-simple Lie groups, it turns out that the usual cohomology
group H*(T',R) vanishes. This is the case for instance for cocompact torsion
free lattices in SL(n, R) for n > 4 but more generally for cocompact torsion
free lattices in the group of isometries of an irreducible symmetric space of
non compact type of rank at least 3 which is not hermitian symmetric (see [7]).
In these cases, Theorem 7.9 means that Hg(l“, R) vanishes. Hence, using 6.6,
we deduce that every action I" on the circle has a finite orbit. In other words,
Theorems 7.4 and 7.9 are closely related and, indeed they have been proved
simultaneously (and independently). It would be very useful to compare the
two proofs.

As we have already noticed, the vanishing of the second bounded
cohomology group is closely related to the notion of commutator length.
If " is any group and < is in the first commutator subgroup I, we denote
by |y| the least integer k such that 77 can be written as a product of k
commutators. We “stabilize” this number and define ||v|| as lim,_, ., 17| /n
(which always exists by sub-additivity). It turns out that for a finitely generated
group I' it is equivalent to say that the second bounded cohomology group
HZ(T',R) injects in the usual cohomology group H*(T,R), and to say that this
“stable commutator norm” || || vanishes identically [5]. Theorem 7.9 therefore
implies that for cocompact higher rank lattices, this stable norm vanishes. The
following question is natural :

PROBLEM 7.10. Let I' be an irreducible lattice as in Theorem 7.4. Does
there exist an integer k > 1 such that every element of the first commutator
subgroup of T" is a product of k commutators ?

Recall that by a theorem of Kazhdan, there is no non trivial homomorphism
from I' to R; this is equivalent to the fact that the first commutator group
of I' has finite index in I". A positive answer to the previous question would
be a strengthening of this fact.

7.3 LATTICES IN LINEAR GROUPS

In this section, we prove Theorem 7.4 for lattices in SL(n,R) (n > 3).
The general case of a semi-simple Lie group is much harder but the proof
that we present here contains the main ideas. As a matter of fact, we shall
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first concentrate on the case of a lattice T’ in SL(3,R) and we shall easily
deduce the general case of SL(n,R) later.

Let us first informally describe the structure of the proof. Let I be a
lattice in SL(3,R) and consider a homomorphism ¢: I' — Homeo.Jr(Sl).

FIRST STEP. In order to prove the theorem, it is enough to show that
there is a probability measure y on the circle which is invariant under the

group ¢(I').

SECOND STEP (CLASSICAL). A flag in R? is a pair consisting of a
2 -dimensional (vector) subspace E; in R?® and a 1-dimensional (vector)
subspace E; contained in E;. Those flags, equipped with the natural topology,
define a compact manifold FI which is a homogeneous space under the action
of SL(3,R). Note that in particular, I" acts on F l.

Let Prob(S') be the space of all probability measures on the circle.
Equipped with the weak topology, this is a compact metrizable space on
which the group Homeo, (S!) acts naturally. The lattice I also acts on
Prob(S!) via the homomorphism ¢.

Equip FI with the o-algebra of Lebesgue measurable sets and Prob(S')
with the o-algebra of Borel sets. In the second step, we construct a measurable
map ¥: Fl — Prob(S') which is equivariant with respect to the actions of I'
on FI and Prob(S").

In order to prove the theorem, if is enough to show that this map ¥ takes
the same value p almost everywhere with respect to the Lebesgue measure
on FI. Indeed, by equivariance, this measure p Wwill be invariant by the
group ¢(I').

By way of contradiction, we now assume that ¥ is not constant on a set
of full Lebesgue measure.

THIRD STEP. Using ergodic properties of the action of I" on FI, we show
that there is an integer k and a measurable map ‘¥ as above such that the
image of almost every flag in FI is the sum of k Dirac masses on the circle
(each with weight 1/k). Let us denote by S, the set of subsets of S! with
k elements so that we can now consider ¥ as a map from FI to S;.

FOURTH STEP. Let X be the space consisting of triples (E.,E3,E3) of
distinct planes in R® intersecting on the same line E;. This is again a
homogeneous space under the action of SL(3,R). An element of X determines
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three flags. Therefore the map ¥ enables us to define a measurable map
PO X — (Si)>. We will get a contradiction between the ergodicity of the
action of I" on X and the non ergodicity of the action of I" on the set of
triples of points: a triple of points on S!' can be positively or negatively
ordered on the circle and this is invariant under Homeo_ (S!).

We now give the detailed proof.

FIRST STEP: FINDING AN INVARIANT MEASURE. Suppose that there is a
probability measure p on the circle which is invariant under ¢(I').

We know that the rotation number mapping p: Homeo, (S!) — R/Z is not
a homomorphism. However by 6.18, the restriction to the subgroup consisting
of homeomorphisms preserving a given measure g is a homomorphism. It
follows that the map v € T" — p(¢(7y)) € R/Z is a homomorphism. According
to the result of Kazhdan that we mentioned several times already, I" is finitely
generated and every homomorphism from I' to R is trivial. It follows that the
image of the restriction of p to I' is a finite cyclic subgroup Z/kZ. Consider
the kernel I'y of this homomorphism: this is a subgroup of index k of T,
hence a lattice in SL(3,R). We claim that the support of y is fixed pointwise
by I'g. This follows from the fact that for every homeomorphism of the circle
with zero rotation number, the support of every invariant measure is contained
in the set of fixed points. Hence every point in the support of p has a finite
orbit under ¢(I"). This is the conclusion of Theorem 7.4.

SECOND STEP: FURSTENBERG MAP. This step is classical in the study of
actions of lattices and is due to Furstenberg [23].

PROPOSITION 7.11.  There is a Lebesgue measurable map ¥': FI — Prob(S")
which is equivariant under the actions of I on FI and Prob(S').

Proof. We observed that FI is homogeneous under the action of SL(3,R).
The stabilizer of the flag consisting of the line spanned by (1,0,0) and
the plane generated by (1,0,0) and (0,1,0) is the group B of upper
triangular matrices. Therefore we can identify F/ and the homogeneous space
SL(33,R)/B.

Note that the group B is solvable. Hence B is amenable and there is a linear
form m on L°°(B,R) which is non negative on non negative functions, takes
the value 1 on the constant function 1 and is invariant under left translations. It
turns out that it is possible to choose m in such a way that it is a measurable
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function (see [55]). In other words, if f, € L°°(B,R) depends measurably on
a parameter A in [0, 1], the function )\ — m(f)) is Lebesgue measurable.

Coming back to our problem, we first observe that there are measurable
maps Wo: SL(3,R) — Prob(S') which are I'-equivariant. This follows from
the fact that the action of I" on SL(3, R) by left translations has a fundamental
domain; we define Wy in an arbitrary measurable way on this fundamental
domain and we can therefore define it everywhere using the equivariance.

To complete the proof of the proposition, we modify ¥y to make it
invariant under right translations under B. Of course, we use the mean m. We
define ¥: SL(3,R) — Prob(S") in the following way. If g € SL(3,R), the
probability W(g) is defined by its value on a continuous function u: S! — R:

/ ud¥(g) =mix € B — ud¥o(gx)) .

st St

By construction, ¥ is measurable and invariant by right translations by B
this defines another measurable map ¥: FI ~ SL(3,R)/B — Prob(S') which
is I'-equivariant, as required. [

THIRD STEP: THE MAP ¥ TO DIRAC MASSES. As mentioned above, we
now assume by contradiction that the map ¥ is not constant on a subset of
full Lebesgue measure.

PROPOSITION 7.12.  There exist an integer k > 1 and a map ¥: Fl — S|
to the set of subsets of S' with k elements which is Lebesgue measurable
and 1 -invariant.

In order to prove the proposition, we first recall an important ergodic
theorem due to Moore that we shall use repeatedly (see for instance [72]). Let
Y = G/H be a homogeneous space of a semi-simple Lie group G. Assume
that G is connected, has a finite center and has no compact factor. Assume
moreover that / is non compact. Let I" be an irreducible lattice in G. Then
the action of T" on Y is ergodic with respect to the Lebesgue measure (class),
Le. every measurable function on Y which is I'-invariant is constant almost
everywhere.

For instance, the stabilizer B of a flag is non compact. The action of T
on Fl is ergodic.

As another example, let us consider the space Y of pairs of flags of R>
which are in general position. For such a pair of flags, there are three non
coplanar lines Ej, Ef,E{ such that the first flag is given by the line E! and
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the plane spanned by E| and E} and the second flag is given by the line E3
and the plane spanned by E? and E3. Since SL(3,R) acts transitively on the
space of triples of non coplanar lines, it follows that Y is a homogeneous
space of SL(3,R). The stabilizer of an element of Y is the stabilizer of
a triple of non coplanar lines: it is clearly non compact. Consequently, the
action of I' on Y is ergodic. Since the set of pairs of flags in general position
has full Lebesgue measure in the set of pairs of flags, we deduce that I" acts
ergodically on the set of pairs of flags of R>.

However, the reader will easily check that this cannot be generalized to
the set of triples of flags: the action of SL(3,R) is not transitive on the set
of triples of flags in general position.

In order to prove Proposition 7.12, we analyze the action of ' on the
space of pairs of probability measures on the circle.

If 1 is a probability on the circle, we define atom(u) as the sum of the
masses of the atoms of y (i.e. those points x such that u({x}) > 0). This
is a measurable function on Prob(S!) which is invariant under the action of
Homeo (S!). The map:

d € Fl — atom((d)) € [0, 1]

is a measurable I'-invariant function. Using the ergodicity result that we
mentioned above, this function is constant almost everywhere.

Assume first that this constant is not zero. This means that the image of
almost every flag under ¥ has at least one atom.

Let o> 0 be a positive real number. For each probability measure 4 on
the circle, consider the points x such that u({x}) > «. Of course, the number
of those points x is finite (possibly zero). Denote this number by N(u, o).
The map d € Fl — N(¥(d),a) € N is measurable and I-invariant; it is
therefore constant, equal to some integer N, almost everywheré. Since we
assume that for almost every d the probability W(d) has at least one atom,
we can choose some o« in such a way that N, is an integer k > 1. This
enables us to construct a map (defined almost everywhere) from FI to the set
of subsets of S! with k elements, sending the flag d to the k atoms of ¥(d)
having a mass greater than or equal to «. Changing our notation, we shall
call this new map ¥ : it satisfies Proposition 7.12 which is therefore proved,
if almost every W(d) has at least one atom.

We now assume that for almost every d, the probability W(d) has no
atom.
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We shall show that under this assumption, almost all the measures Y(d)
have the same support.

Let p; and py be two probability measures on the circle with no atom.
Define D(ui, ti2) as the maximum of the pp-measures of the connected
components of the complement of the support of p1. If D(u1, 1) = 0, the
support of w; contains the support of u;. The map

(di,d) € FI* — D(¥(d1), ¥(do)) € [0,1]

is defined almost everywhere and is I'-invariant. Using the same ergodicity
result as before, we deduce that it is constant almost everywhere. We claim
that this constant ¢ is 0.

Suppose on the contrary that § > 0. Using Fubini’s theorem, we can find
a measurable part Q C FI such that:

e () has full Lebesgue measure.
e If d € Q, the probability ‘¥(d) has no atom.
o If d € Q, then D(d,d") =6 for almost every d’ in Fl.

e If d € Q, then W(d) belongs to the support of the measure W.(Lebesgue)
on the compact metrizable space Prob(S').

Fix a point d € Q. We can find a sequence d; € € such that Y(d;) = 1;
converges towards W(d) = . The probability measures u; have no atoms
and D(u;, ) = 0. This means that there is a component /; of the complement
of the support supp(u) such that p;(I;) = . If the sequence of lengths of
I; converges to 0, we can assume that the sequence of intervals I; shrinks
to a point p. This implies that the point p is an atom of p, contradicting
our assumption. Therefore we can assume (after taking a subsequence) that
the intervals I; all coincide with some interval /. Since we know that the
endpoints of [ are not atoms of ., that the sequence p; converges weakly
to u, and that w;(/) = 4, it follows that p(f) = . This contradicts the fact
that 7 is in the complement of the support of .

We showed that 0 = 0. This means that for almost every pair of flags
(d,d"), we have D(W(d), W(d")) = 0. Therefore, for almost every pair of flags
(d,d"), the probability measures W(d) and W(d') have the same support. In
other words, there exists a compact set K C S with no isolated point, such
that for almost every flag d, the support of W(d) is equal to K.

Each connected component of S! — K is an open interval. Collapsing the
closure of these intervals to a point, we get a space homeomorphic to a circle.
Therefore, there exists a continuous 7: S' — S! such that each fiber of =
is a point or the closure of a component of the complement of K. If u is
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a measure with no atom whose support is K, the direct image m,(u) is a
measure on the circle with no atom and full support on the circle.

Using 7, we get a map ¥ from FI to the space of probability measures
on the circle with no atom and full support which is I"-equivariant with respect
to the minimal action ¢ associated to ¢ (see 5.8).

The space of probability measures with no atoms and full support on
the circle is a homogeneous space under the action of Homeo_ (S') and the
stabilizer of the Lebesgue measure is of course SO(2). This space can therefore
be identified with the quotient Homeo_ (S!)/ SO(2). The group Homeo, (S'),
as any metrizable topological group, can be equipped with a left invariant
metric, that we can average under the action of SO(2) to produce a left
invariant metric dist on Homeo, (S!) /SO(2). In practice, we could simply
define dist(u1, () as the supremum of |u(/) — pp(I)| where I runs through
the collection of intervals on the circle: it is easy to check that this metric
indeed defines the weak topology when restricted to the set of probability
measures with no atom and full support.

For almost every pair of flags (d, d’) the distance dist(P(d), ¥(d')) defines
a I'-invariant function of pairs of flags; it is therefore constant almost
everywhere. Using the same argument as above, we see that this constant
is 0, which means that the map ¥ is constant almost everywhere. Of course,
two probability measures with no atom and with support in K which have the
same image under 7, have to coincide so that we deduce that W is constant
almost everywhere. We have found a probability measure on the circle which
is invariant under ¢(I'). This is a contradiction with our initial assumption
and proves 7.12.

FOURTH STEP: CYCLIC ORDERING ON TRIPLES OF POINTS ON A CIRCLE. In
order to explain the general idea, we assume first that the integer k that
we introduced is equal to 1. In other words, we have a I'-invariant map
¥: FI — S' defined almost everywhere which is not constant on a set of full
Lebesgue measure.

As explained above, let X denote the space of triples (E, E5, E3) of distinct
planes in R® intersecting on the same line E;. This is again a homogeneous
space under SL(3,R) and the stabilizer of a point in X is clearly non
compact. We deduce from Moore ergodicity theorem that the action of I" on
X is ergodic. Since a point of X determines three flags, we can define a
measurable I'-equivariant map ¥®: X — (S!)® (defined almost everywhere).
Indeed, let us consider the projection pr: FI — RP? from FI to the real
projective plane mapping a flag E; C E, to the line E; C R3. The space X
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is therefore the space of triples of flags having the same projection under pr.
It follows from Fubini’s theorem that for every subset of full measure in FI,
the set of triples of elements of this set having the same projection under pr
has full measure in X : this is exactly what we need to define ¥©.

The space (S')® can be decomposed into disjoint parts, invariant under
the action of Homeo, (S!):

i) Triples of the form (x,x,x).

ii) Triples consisting of two distinct points. In turn, this set can be
decomposed into three parts: the spaces of triples of the form (x,x,z), resp.
(x,y,x), resp. (x,y,y).

iii) Triples (x,y,z) of distinct elements on the circle whose cyclic ordering
is positive, i.e. such that the interval positively oriented from x to y does not
contain z.

iv) Triples (x,y,z) of distinct elements on the circle whose cyclic ordering
1S negative.

Inverse images of these six parts under W® are measurable and disjoint
I"-invariant sets and therefore have to be either of measure O or of full
Lebesgue measure. This means that there is a subset 2 C X of full measure
whose image 1s contained in one of the six parts that we described. We claim
that this is not possible.

Observe that the symmetric group &3 of permutations of three objects
acts on X and on (S')?, permuting respectively flags and points. Note that
these actions commute with the actions of I' on X and (S!)?. Of course ¥®
1s equivariant with respect to these action of &s.

It follows that the part which contains W®(Q) has to be invariant under S5 .
Among the 6 parts that we described, only the first one has this property. This
means that the map W: FI — S! factors through the projection pr: FI — RP2.
In other words, almost everywhere, the image of a flag by W depends only
on the line associated to the flag and not on its plane.

Exactly in the same way, we could have defined a space X’ consisting
of triples of flags having the same plane, i.e. having the same projection in
the dual projective plane. The same proof shows that almost everywhere ¥
depends only on the plane of a flag and not on its line.

This implies that ¥ is constant almost everywhere and gives the contra-
diction we were looking for when k= 1.

When k > 1, we shall use a similar idea.

Recall that we denote by S; the space of subsets A of the circle with k
elements. Given two elements (Aj,A;,A3) and (A}, A}, A}) of (S))?, we say
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that they have the same cyclic ordering if there is an orientation preserving
homeomorphism £ of the circle such that h(A;) = A7, h(Ay) = A), h(A3) = A}.
This gives a partition of (S})° into finitely many parts invariant under the action
of Homeo (S!). As before, it follows that there is a subset Q of full measure
in X such that () is contained in one of these subsets. Using again the
action of &3 we conclude that this subset consists of triples (A;,A,,As) which
have the same cyclic ordering as (A,(1),As2), As3)) for every element o € X3.
Therefore, for every o, there is an orientation preserving homeomorphism £,
such that h,(A;) = Asu for i=1,2,3. Let A be the union of A;,A; et Ajz:
this 1s a set with N < 3k elements. Orientation preserving homeomorphisms
globally preserving A must induce a cyclic permutation of its elements. In
particular, the commutator of two elements i, must fix each element of A
since cyclic permutations commute. As the cyclic permutation o = (1,2,3) is
a commutator in &3, the homeomorphism A 53y acts trivially on A. Since
we know that h(l,z,g)(Al) = A,, h(1,2,3)(A2) = A; and h(1,2,3)(A3) = A1, we
have A; = A, = A3;. We showed that there exists a measurable subset of full
measure €2 C X such that the image ¥() consists of triples of the form
(A,A,A). Exactly as we did in the case k = 1, we conclude that ¥ is constant
almost everywhere and this is a contradiction.

This is the end of the proof of Theorem 7.4 for lattices in SL(3,R).

Remark that the core of the proof is the incompability between two facts.
The group Homeo, (S!) does not act transitively on generic triples of points
on the circle but SL(3,R) does act transitively on X. Note that the existence
of an element of SL(3,R) fixing a line and permuting arbitrarily three planes
containing this line, means that the real projective plane is not orientable.

The proof for a lattice T' in SL(n,R) (n > 3) is very similar. For
every sequence of integers, 1 < i; < i, < --- < i; < n, we consider the
space Fl; . ; of flags of type (i1,...,1), i.e. sequences of vector sub-spaces
E, CE, C-- CE, CR" with dmE; =14 (j=1,...,0). This is a
homogeneous space under the action of SL(n,R). The space of complete
flags, i.e. Fl = Fli, . ., is equipped with projections pr; on incomplete flag
spaces Fl;, s , where the index j does not appear. The space X; consisting
of distinct triples of flags FI having the same projection under pr; is again
a homogeneous space of SL(n,R), with non compact stabilizer.

Now, the proof is the same as before. We first construct an equivariant
map ¥ from FI to Prob(S!) (same proof). Assuming by contradiction that
Y is not constant almost everywhere, we get another map, still denoted by
¥ from FI to S, (same proof). For each j = 1,...,n, we consider the
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corresponding map ‘PJ(-3): X; — S} and we show, as above, that the image of
this map consists almost everywhere of triples of the form (A,A,A). It follows
that for each j = 1,...,n and on a subset of full measure, the image of a
flag by W depends only on its projection by pr;. Since this is true for every
j, this means that W is constant almost everywhere. This is a contradiction
and finishes the proof of Theorem 7.4 for lattices in SL(n, R).

Of course, these proofs immediately generalize to lattices in complex or
quaternionic special linear groups SL(n,C) and SL(3,H) (for n > 3).

7.4 SOME GROUPS THAT DO ACT...

We saw that many higher rank lattices don’t act on the circle. To conclude
these notes, we give some more examples of “big” groups acting on the circle.
Let X be a compact oriented surface of genus g > 2 and x € X be some base
point. The fundamental group 7(Z,x) is a classical example of a hyperbolic
group in the sense of Gromov (see for instance [27]). The boundary of this
group is a topological circle: indeed 7;(Z,x) acts freely and cocompactly
on the Poincaré disc so that 7(Z,x) is quasi-isometric to the Poincaré disc.
Consequently, the automorphism group Aut(m(Z,x)) acts naturally on the
circle. This action is very interesting and has been very much studied. See for
instance [21]. Note that Aut(7(Z, x)) contains the group of inner conjugacies
and that the quotient Out(w((X, x)) is the mapping class group of the surface
(i.e. the group of isotopy classes of homeomorphisms of the surface):

1 — m (2, x) — Aut(m(Z, x)) — Out(m; (2, x)) — 1.

Fix an element f of infinite order in this mapping class group and consider
the group I'y which is the inverse image of the group generated by f in the
previous exact sequence. We have an exact sequence :

1 — m((Z, %) I'y Z 1.

This group I is the fundamental group of the 3-manifold which fibers over
the circle and whose monodromy is given by the class f. Thurston showed that
if f 1s of pseudo-Anosov type, then this 3-manifold is hyperbolic. In particular,
for such a choice of f, the group I'y embeds as a discrete cocompact subgroup
of the isometry group of the hyperbolic 3-ball, isomorphic to PSL(2, C). This
construction provides many examples of faithful actions of (rank 1) lattices
on the circle. In [68] Thurston constructs faithful actions of the fundamental
group of many hyperbolic 3-manifolds on the circle.

Suppose now that X has one boundary component 0. Choose the base
point on the boundary and equip ¥ with a metric with curvature —1 and
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totally geddesic boundary. The universal cover T of ¥ is therefore identified
with the complement in the Poincaré disc of a disjoint union of half spaces.
On the boundary of the disc, these half spaces define an open dense subset
Q2 whose complement is a Cantor set K which is the boundary of the
hyperbolic group (X, x). The union ST UK is a topological circle and if
we collapse each connected component of 8% to a point, this circle collapses
to another circle that we denote by C. Choose also a base point x above
x in the universal cover. Consider now the mapping class group I' of X
i.e. the group of homeomorphisms of X modulo isotopy. A homeomorphism
f of 2~ has a Iift f to 2 which fixes the boundary component containing
x. This homeomorphism f extends continuously to X UK and defines a
homeomorphism f of the circle C. Note that if two homeomorphisms are
isotopic, the two corresponding extensions agree on the Cantor set K. The
connected component of ox containing x yields a base point X in C which
is fixed by all homeomorphisms f. Hence we can define an action of T" on a
line by letting f act via f on the line C — {X}. Hence we proved (following
an idea of Thurston) that the mapping class group of (X,x) acts (faithfully)
on a line and is therefore left orderable.

We could also use the same idea for surfaces with several boundary
components, for instance the sphere minus a finite number of discs. The
corresponding mapping class groups turn into the so called braid groups.
In this way we get interesting faithful actions of braid groups on the
line, or equivalently total left orderings. It is interesting to note that these
orderings were initially discovered from a completely different point of view
by Dehornoy [16].

To conclude this paper, we would like to mention a rich family of group
actions on the circle, coming from the theory of Anosov flows on 3 -manifolds.
Let M be a compact connected 3-manifold with no boundary and X a non
singular smooth vector field on M. Denote by ¢’ the flow generated by X.
One says that ¢’ is an Anosov flow if there is a continuous splitting of the
tangent bundle TM as a sum of three line bundles TM = RX @ E* @ E“
which are invariant under (the differential of) the flow ¢’ and such that vectors
i E" are expanded, and vectors in E* are contracted. More precisely, this
means that for any riemannian metric on M, there are constants C > 0 and
A > 0 such that for any time ¢ > 0 and vectors v, € E and v, € E*,

1d' (wss)| < CexpAn)|vss |,

1d¢' ()| Z CexpAD)| vl -
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This kind of flow is rather abundant on 3-manifolds. The main example, which
gave birth to the theory, is the geodesic flow of a compact surface with negative
curvature, acting on the unit tangent bundle of the surface. We refer to [3, 22]
for a general presentation of the theory including a bibliography. Starting from
some Anosov flow and selecting a periodic orbit, one can perform a Dehn
surgery on this closed curve. It turns out that if the surgery is positive, one can
define a flow on the new manifold which is still of Anosov type. Using this
construction, one constructs many examples. For instance, one can construct
Anosov flows on some hyperbolic 3-manifolds (i.e. admitting a metric of
constant negative curvature).

One of the main properties of Anosov flows is that they give rise to two
codimension one foliations. Indeed, it has been shown by Anosov that there
are two codimension one foliations F* and F* whose leaves are everywhere
tangent to E* @ RX and E¥ D] RX. Verjovsky showed that if one lifts the
flow ¢' to the universal cover M of M, the orbits of the resulting flow gb
are the fibers of a (trivial) fibration of M over a surface S (diffeomorphic to
R?). Lifting the two foliations F* and F* to M we get two foliations which
project to two transverse foliations by curves f and f on the surface S. One
says that the flow is R-covered if the leaves of f are the fibers of a (trivial)
fibration p,: S — R, (where R, is homeomorphic to R). It follows that the

leaves of ]75 are also the fibers of a (trivial) fibration p;: § — R;. For instance,
the geodesic flow on a negatively curved surface i1s R-covered. It turns out
that a positive surgery on an R-covered Anosov flow is still R-covered so
that we get many examples. Consider the map (p,,ps): S — R, X R;. Barbot
and Fenley showed independently that this map is bijective if and only if the
Anosov flow is the suspension of some Anosov diffeomorphism of the 2-torus.
In all other cases, they showed that the image of (p,,ps) 1S an open strip in
R, xRy of the form {(x,y) | hA_(x) <y < hy(x)} where h_ and k., are some
homeomorphisms from R, to R;. Now, observe that the fundamental group
I' of the manifold M acts on all these objects so that we get in particular
actions of I' on R, and Ry which are conjugate by 4, and h;. Denote by
7 the composition h,h; ! : this is a homeomorphism of R, which acts freely
so that we can define a circle S! by taking the quotient of R, by the action
of 7. Note that the action of I" on R, obviously commutes with 7 so that
we get an action of T" on S!. In case we start with the geodesic flow of a
negatively curved surface 2, the fundamental group I' is a central extension
of the fundamental group 7(X) by Z. The action of I" that we get on S! is
not faithful: the center Z acts trivially and the induced action of 7(X) on
the circle is of course the familiar projective action. If the R-covered Anosov
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flow is not the geodesic flow (up to a finite cover), the action of T on Sl is
faithful. For instance, we get in this way some examples of faithful actions
of the fundamental group of some hyperbolic 3-manifolds on the circle.
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