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have zero norm... Consider the case of the bounded Euler class, seen in the
real bounded cohomology.

THEOREM 6.7. The image of the bounded Euler class eu in the real
bounded cohomology H,%(HomeoJr(Sl),R) has norm 1/2.

Proof. This is the abstract version of the Milnor-Wood inequality. Note
that a constant 2-cocycle is the coboundary of a constant 1-cochain. We
found a representative of the Euler class taking only two values 0 and 1.
If we subtract from this cocycle the constant cocycle taking the value
1/2, we get a cohomologous bounded (real) cocycle taking values =+1 f2.
This shows that the norm of the image of eu in Hg(Homeo+(Sl),R)
is at most 1/2. The opposite inequality follows from Milnor’s compu-
tation of the Euler number for an embedding of the fundamental group
I, of a closed oriented surface as a discrete cocompact subgroup of
PSL(2,R) that we mentioned in 6.1. If the norm were strictly less than
1/2, then this number would be strictly less than 2g — 2. See [25] for more
explanations. [

6.5 ACTIONS ON THE REAL LINE AND ORDERINGS

Our main concern is to study actions on the circle but there is a preliminary
question which deals with actions on the line. Of course, if a group acts on
the line, we can always add a point at infinity to produce an action on the
circle (with a common fixed point). In other words studying actions on the
line is equivalent to studying actions on the circle with vanishing bounded
Euler class. This is the reason why we begin by general remarks on groups
acting on the line.

Observe first that the dynamics of a single orientation preserving homeo-
morphism A of R are very easy to describe. Let F = Fix(h) be the set of
fixed points. Each interval of the complement of F is h-invariant and the
action of A on this interval is conjugate to a translation (positive or negative,
according to the sign of h(x) — x on this interval).

We say that a group I' is left orderable if there exists a fotal ordering < on
I' which is invariant under left translations (i.e. v; = v, implies yvy; < vy2).
We write v; < 72 if 71 =12 and v; # 2. An obvious necessary condition
for a group to be left orderable is that it be torsion free (i.e. there is no non
trivial element of finite order).

The following theorem is well known but we weren’t able to find its origin
in the literature.
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THEOREM 6.8. Let T' be a countable group. Then the following are
equivalent :

1) T' acts faithfully on the real line by orientation preserving homeomor-
phisms.

2) I' is left orderable.

Proof. Suppose that I" acts faithfully on the line by orientation preserving
homeomorphisms, i.e. that there exists an injective homomorphism ¢ from
I' into the group Homeo (R) of orientation preserving homeomorphisms of
the real line. Assume first that there is a point x; in R with trivial stabilizer.
Then we can define a left invariant total ordering by defining v, < v, if
d(y1)(x0) < () (xg). If there is no such point x, choose a sequence of
points (x;);exy Which is dense in the line. Now define Y1 27 if vy =5 orif

the first i for which ¢(v1)(x:;) # ¢(12)(x;) is such that ¢(1)(x) < ¢(v2)(x;).
This defines a left invariant total order on T.

Conversely, let < be a left invariant total order on the countable group I.
Enumerate the elements of T, i.e., choose a bijection i € N+ v, € I'. We are
going to construct inductively an increasing injection v of (I, <) in R, ).
Define wv(vo) arbitrarily and suppose that v(yp), ... , V(7;) have been defined.
If iy is smaller (resp. bigger) than all ~y,...,v; then define v(7Yi+1) as
any real number smaller (resp. bigger) than min(v(vy),. .. (7)) — 1 (resp.
max(v(Y), - - -, v(7;)) + 1). Otherwise, there is a pair of integers 0 < o, B8 < i
such that v, < 41 < 3 and such that there is no v (0 <j <i) between
Yo and yg. Then we define v(viy1) as (v(va) +v(y5))/2. Let X C R be the
closure of v(I").

By our construction, it is easy to verify that X is unbounded and that
any connected component ]a,b[ of the complement of X is such that a
and b are in v(I'). The group T' acts on itself by left translations so
that every element v of I' induces an increasing bijection #(v) of w(I).
We claim that ¢(y) extends continuously to X. Otherwise, there would
exist a point x = lim,v(y;,) = lim,v(y; ) for an increasing sequence of
elements ;, and a decreasing sequence ; and such that lim, v(yy,) <
lim,, v(yy;,). Then a = lim,v(yy;) and b = lim,, v(yy,,) would be the
endpoints of some connected component of the complement of X. By
our previous observation, a and b would be the image by v of two
distinct elements of I'. On multiplying these two elements on the left
by 7!, this would produce two distinct elements ~_ and ¥+ such that
v(y;,) < v(y-) < v(y+) <wv(y,) and this contradicts the fact that the two
sequences have the same limit x.
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Therefore we have produced a homeomorphism ¢(vy) of X . We now extend
¢(7) to the whole line R in such a way that ¢(v) is affine on each interval
of the complement of X. It is now clear that ¢ is an injective homomorphism
from I to the group of orientation preserving homeomorphisms of the real
line. [

Theorem 6.8 produces many examples of actions on the real line. For
instance, suppose I' is a countable group containing a nested sequence of
subgroups ' =Ty D Iy D --- D I; D ... (finite or infinite) such that the
intersection of this family reduces to the trivial element and that each T}
is a normal subgroup in the previous one I';_;. Assume that each quotient
Q; = T;/Ti_y is left orderable and denote by =; such a left order on Q;.
Let us construct a left order < on I'. Consider two distinct elements -y,
in T and let i be the first integer such that vy'~' is not in I';. Then !+
is in T;_; and determines an element [y~ !7'] of Q;. Then define v <~/ if
[Y~'~4'] =; 1. This is a left invariant total order on T .

As an example, note that a countable torsion free abelian group A embeds
in the tensor product A ® Q which is a Q-vector space whose dimension is
at most countable and therefore embeds in R. Hence, countable torsion free
abelian groups are orderable. Let us say that a group I' is solvable (resp.
residually solvable) if there is a finite (resp. infinite) decreasing sequence of
subgroups as in the previous paragraph such that the quotient groups Q; are
abelian. We have now proved:

PROPOSITION 6.9. Let I" be a countable group which is (residually)
solvable with torsion free abelian quotients. Then T acts faithfully on the
real line by orientation preserving homeomorphisms.

There are many examples of such groups: free groups or fundamental
groups of closed orientable surfaces for instance have these properties [46].
Observe that the left orderings that we produced by the previous argument
are in fact left and right invariant orderings. If we go back to the proof of
Theorem 6.8 we can check that for bi-invariant ordered groups, the actions on
the line ¢: I' — Homeo (R) produced by the proof are very peculiar: they
are such that for every non trivial v € I', we have either ¢(v)(x) < x for
all x € R or ¢(y)(x) > x for all x. In other words the graphs of ¢() don’t
cross the diagonal. However, there will be elements whose graphs touch the
diagonals, unless of course the action is free, which is almost never the case
because of the following well known theorem of Holder.




376 | E. GHYS

THEOREM 6.10 (Holder). If a group acts freely on the real line by
homeomorphisms, it is abelian. More precisely, such a group embeds as
a subgroup of R and the action is semi-conjugate to a group of translations.
In the same way, a group acting freely on the circle is abelian, embeds in
SO(2), and is semi-conjugate to a group of rotations.

Proof. Let ¢: T — Homeo  (R) be a homomorphism such that for all y
different from the identity the homeomorphism ¢(y) has no fixed point. If
7,7 are elements of T', write v =2 if $(y)(0) < ¢(+')(0) (which implies
P(7)(x) < d(y")(x) for all x since the action 1s free). This defines a left and
right invariant ordering < which is archimedean, i.e. such that for any pair of
non trivial elements ~,~" for which id < v and id < 7', there is a positive
integer n such that 7/ < ~". Indeed, the sequence ¢(7)"(0) is increasing and
has to tend to oo since otherwise its limit would be a fixed point of @(v);
hence for n sufficiently large we have ¢(v/)(0) < ?(v™")(0).

Then we show that any group T’ equipped with a bi-invariant total
archimedean ordering embeds in R and is therefore abelian. Fix a non trivial
element vy such that id < ~, and for each v € I', define ®(y) as the smallest
integer k € Z such that v < 7%. We have

D(y)—1 D(y)

This defines a map ®: I’ — Z which satisfies
DY)+ P(Y) — 1 < D(vy') < D(y) + D(y')

so that @ is a quasi-homomorphism. As we have already observed, ¢(v) =
lim,,_, ., ®(v")/n exists and defines a quasi-homomorphism ¢: I' — R which
is homogeneous (i.e. ¢(y") = no(v)) and which is increasing (i.e. v < +/
implies ¢(y) < ¢(y')). Note that ¢(vp) = 1.

We claim that ¢ is a group homomorphism. Indeed, consider two elements
7,7" in T and assume for instance that vy =< 4'~. It follows easily by
induction that for every positive integer n, we have e e N (0 L
Evaluating @ on this inequality, we get

DY) + D(Y") — 1 < (7)) < O(y") + D(y™) .

Dividing by n and taking the limit, we obtain
PN+ (V) < 6(vy) < 9(9) + B(v)

so that ¢ is indeed a homomorphism.
We still have to show that ¢ is injective. For any -y such that id < v we
know, since the ordering is archimedean, that there is some positive integer k
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such that vy < +*. It follows that 1 < k¢(y) so that ¢(7) is non trivial. This
proves the injectivity of ¢.

Observe that the non decreasing embedding ¢ of I" in R is unique up to
a multiplicative constant. Indeed, if ¢’ is another one, we have by definition
(D(™)— 1) (70) < ¢'(4") < D(v)P' (o). Dividing by n and taking the limit,
we get ¢' = ¢'(70)-¢.

We now show that the action of I' is semi-conjugate to a group of
translations. If T' is isomorphic to Z, it acts freely and properly on the line
so that it is indeed conjugate to the group of integral translations. Otherwise,
&) is dense in R. Let x be any point in R and define

h(x) = sup{p(y) € R | ¥(0) < x}.

Clearly, & is non decreasing and satisfies A(y(x)) = h(x) + ¢(vy) identically.
The continuity of & is easy and follows from the density of the group ¢(I):
if & were not continuous, the interior of R\ A(R) would be a non empty
open set invariant by all translations in ¢(I").

The proof for groups acting on the circle follows easily: if I" is a group
acting freely on the circle, its inverse image in Homeo. (S') acts freely on
the line. [

The following is an elementary corollary of the previous theorem.

PROPOSITION 6.11. Let 1" be a torsion group (i.e. such that every element
in T has finite order). Then any homomorphism from T to Homeo, (S') has
abelian image.

Proof. We know the structure of elements of finite order of Homeo, (S!) :
they are conjugate to rotations of finite order. It follows that an element having
a fixed point and of finite order in Homeo_ (S') is the identity. In other words,

a torsion group acting faithfully on the circle acts freely. The result follows
from 6.10. [

There is another very interesting example of a group which admits a
left and right invariant total ordering: the group PL_ ([0, 1]) of orientation
preserving piecewise linear homeomorphisms of the interval [0, 1]. Indeed,
let v,+" be two distinct elements of PL_ ([0, 1]) and consider the largest real
number x € [0, 1] such that v and ' coincide on the interval [0,x]. Then
for € > 0 small enough, we have either ~(¢) < 7/'(t) for ¢ € Jx,x + €] or
¥(t) > +'(¢) for t € Ix,x + €]. Say that v <+ in the first case and +' < « in
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the second case. This defines a total ordering on PL, ([0, 1]) and it is clearly
left and right invariant. We can induce this ordering on countable subgroups
of PL, ([0, 1]), for instance the subgroup of elements with rational slopes and
apply the general construction that we described above. We get an action of
this rational group on the line which is very different from the given action
of PL([0,1]) on ]0,1[: the corresponding graphs don’t cross the diagonal.

Remark that an affine bijection of the line x — ax-b has at most one fixed
point (if it is not the identity). Solodov proved that this property essentially
characterizes groups of affine transformations.

THEOREM 6.12 (Solodov). Let T be a non abelian subgroup of
Homeo (R) such that every element (different from the identity) has at most
one fixed point. Then T is isomorphic to a subgroup of the affine group
At (R) of the real line, and the action of T on the line is semi-conjugate
to the corresponding affine action.

Solodov did not publish a proof but mentions his result in [62] and
explained it to the author of these notes in 1991. Later T. Barbot needed this
theorem for his study of Anosov flows and published a proof in [3]. More
recently, N. Kovacevi¢ published an independent proof in [43]. See also the
recent preprint [20] for a detailed proof.

Proof. Let I' be a subgroup of Homeo, (R) such that every element
(different from the identity) has at most one fixed point. If no non trivial
element has a fixed point, Holder’s Theorem 6.10 implies that T is abelian
(and that the action is semi-conjugate to a group of translations). If there is a
point x which is fixed by the full group T", then one can restrict the action
to the two components of R\ {x} on which we can use Holder’s theorem
again: this would imply that I" is abelian. :

We claim that T contains an element -y with a repulsive fixed point x,
i.e. such that ~(y) >y for every y > x and v(y) <y for every y < x. Indeed
choose some non trivial v in I' fixing some xo. If xy is not repulsive for
Y and for -y, !, this means that x, is a parabolic fixed point, i.e. replacing
Yo by its inverse, we have 7o(y) >y for all y # xq. Conjugating Yo by some
element which does not fix xy, we get an element v fixing some x; and
such that ~(y) > y for y # x;. Assume for instance x; < x; and consider
the element v = vy, L Obviously, one has v(xp) < xo and ~y(x;) > x; and
since we know that  has at most one fixed point, v must have a repulsive
fixed point between xy and x; as we claimed.
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Now, we can try to mimic the proof of Holder’s theorem. Consider two
elements v and v of I'. Write v < +/ if there is some x € R such that
v(y) < 4/(y) for all y > x. Clearly, our assumptions imply that this defines
a total ordering on I' which is left and right-invariant. Denote by I't the
subset of elements of I'\ {id} such that id < .

The next claim is a weak form of the archimedean property. Fix some g
in T with a repulsive fixed point xy, and let v be any other element of Tt .
Then there exists some positive integer k such that vy =< ~&. Indeed, choose
some real numbers x_,x; such that x_ < xop < x,. For k big enough, one
has E(x_) < y(x_) and ~(x;) > y(xy) since xo is repulsive. It follows

B that v~ !4f has a fixed point in the interval [x_,x,] which is therefore the

unique fixed point of y~!~&. Hence we have ~£(y) > v~ !(y) for all y > x
and v < ~&. This proves our last claim.

Again, we fix some ~ in I'" with a repulsive fixed point xq. For each
v €T we define ®(y) € N to be the smallest integer k such that v < v,
B If v T, we let D(y) = —B(y~!) and finally we define ®(id) = 0. This
| defines a map ®: ' — Z. Then we can copy from the proof of Holder’s
B theorem: @ is a quasi-homomorphism and the limit d(y) = lim,—, 00 D(v") /1
exists and defines a group homomorphism ¢: I' — R.

It follows in particular that the first commutator group [I', I'] is contained in
the kernel of ¢. The final observation is that this kernel acts freely on the line.
Otherwise, we saw that Ker(¢) would contain some element -y with a repulsive
| fixed point and we have already observed that this implies the existence of
@ some integer k such that vy < +* which in turn implies that ¢() > 1 /k#£0,
| a contradiction. Using Holder’s theorem, we conclude that [I',T'] is abelian.
We know the structure of free actions (of abelian groups) on the line: they
| are semi-conjugate to translation groups. More precisely, we know that there

B is amap 2: R — R and an injective homomorphism : [I',T] — R which

are such that for every v € [I',I'] and x € R, one has: h(y(x)) = h(x)+ (7).
| If the image ([I',T']) is non discrete, this map & is unique up to post-
| composition by an affine map. So assume first that ([T, T']) is non discrete.
Note that [I',I] is a normal subgroup of I'. It follows that for every -y
i in T", the map h o+ coincides with 2 up to some affine map. This means
precisely that 4 realizes a semi-conjugacy between I" and some group of affine
transformations of R and shows that I" is indeed isomorphic to a subgroup
of Aff(R). To finish the proof, we still have to show that Y([I',T']) cannot be
discrete, i.e. isomorphic to Z. In this case, inner conjugacies by an element
B 7 <T have to preserve the generator 1 of Z (the unique generator which is
| bigger that the identity in our ordering). This means that Z (=~ [I',T]) lies
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in the center of I". This is not possible since for every fixed point x of an
element v of I', its orbit under Z would consist of fixed points of +. L]

Holder’s theorem essentially characterizes translation groups as groups
acting on the line with no fixed points. Solodov’s theorem essentially
characterizes groups of affine transformations as groups acting on the line
with at most one fixed point. It is very tempting to try to prove a similar
characterization of groups of projective transformations as groups acting on
the circle with at most two fixed points... Unfortunately, this is not the case !
N. Kovacevi¢ recently constructed a nice counter-example in [44].

THEOREM 6.13 (Kovalevié). There exists a finitely generated subgroup of
Homeo (S!) such that every element different from the identity has at most
two fixed points, such that all orbits are dense, and which is not conjugate
to a subgroup of PSL(2,R).

Nevertheless, there is a very important characterization of groups which are
conjugate to subgroups of PSL(2,R). This characterization is due to Casson-
Jungreis and Gabai [15, 24], following earlier work of Tukia. We would have
liked to include a discussion and a proof of this result, but that would be too
long and we have to limit ourselves to a statement! Consider a sequence 7,
of elements of Homeo_ (S!). Let us say that -y, has the convergence property
if it contains a subsequence -y, which satisfies one of the following two
properties :

* 7, 1S equicontinuous;
e there exist two points x,y on the circle such that -, (resp. 7, h
converges to a constant map on each compact interval in S'\ {x} (resp.

in 8\ {y}).

A subgroup T' of Homeo, (S!) is called a convergence group if every
sequence of elements of I' has the convergence property.

THEOREM 6.14 (Casson-Jungreis, Gabai). A subgroup of Homeo (S!) is
conjugate to a subgroup of PSL(2,R) if and only if it is a convergence group.

The reader should at least be able to prove the easy part of the theorem:
subgroups of PSL(2,R) are convergence groups !

We revert now to groups acting on the circle. We state a general criterion
which characterizes the bounded classes coming from some action.
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THEOREM 6.15 ([25]). Let T" be a countable group and c¢ a class in
HX(T',Z). Then there exists a homomorphism ¢: I — Homeo(S') such that
¢*(eu) = c if and only if ¢ can be represented by a cocycle which takes only
the values 0 and 1.

Proof. Of course, the necessary condition is clear from 6.3 and the main
difficulty will be to construct some action from a cocycle taking two values.
Let ¢ be a 2-cocycle on the group I' taking only the values 0 and 1. We
saw that a central extension and a section lead to a 2-cocycle. The process
can be reversed and we can construct a central extension I' in the following
way from a 2-cocycle c¢. As a set, T is the product Z x I' and we define a
multiplication e by:

(n1,71) o (N2, 72) = (n) + ny + (1, 72), V172)

where, as usual, ¢ denotes the inhomogeneous cocycle associated to c¢. The
fact that T is a group is a restatement of the fact that ¢ is a cocycle. The
projection I >Tisa group homomorphism.

Assume first that the cocycle ¢ is non degenerate, i.e. that ¢(id,~y) =
c(v,id) =0 for every ~v in I (where id denotes the identity element in ).
Then the identity element of T is (0,id) and the map n € Z +— (n,id) € r
is also a group homomorphism. Hence, we have a central extension

~

0 Z r r l.

The fact that ¢ takes non negative values means that the subset P of T
consisting of elements of the form (n,v) with n >0 is a semi-group, Le. is
stable under the product e. Moreover, since ¢ takes the values 0 and 1, the
inverse of (n,7) is (—n,y~!") or (—n—1,4~1). It follows that every element
of T belongs to P or to its inverse. In other words, if one defines 4; < 7,
if 2917 €P we get a total pre-order on ' which is left invariant. Denote
by t the element (1,id) in T'. Note that for every 7 in I we have v 2 ty.

The end of the proof mimics 6.8: One constructs a map v: I — R such
that v < %, if and only if v(¥;) < v(¥,) and such that v(yt) = v(v) + 1
for every 7 € I. We may even choose v in such a way that the action of
T on itself by left translations defines an action on v(I') C R which extends
to its closure. Then we extend this action of T" to R using affine maps in
the connected components of the complement of this closure. Finally, since t
acts on R by the translation by 1, we get an action of the quotient group I
on the circle R/Z. This construction was carried out in such a way that it is

clear that the bounded Euler class of this action is precisely the class of the
cocycle c.
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Finally, we have to deal with the case of degenerate cocycles c. Note that
the fact that ¢ is a cocycle can be expressed by the identity :

(1, 72) + (2, 713) = €72, 73) + (71, 1273) -

It follows that there exists an integer v = 0 or 1 such that for every v in
I' we have ¢(1,v) = ¢(y,1) = v. The fact that ¢ is degenerate means that.
v =1. Then we can define ¢/ =1 — ¢. This is a new cocycle which is non
degenerate and takes only the values 0 and 1. By the previous construction,
we get an action of I" on the circle corresponding to the bounded class of
c’. Reversing the orientation of the circle, we get finally an action of T" on
the circle whose bounded Euler class is the class of ¢. []

6.6 SOME EXAMPLES

Recall that a group I is called perfect if every element is a product
of commutators. It is uniformly perfect if there is an integer k such that
every element is a product of at most k¥ commutators. For such a uniformly
perfect group, every quasi-homomorphism from I' to R is bounded (since
it is bounded on a single commutator) so that the canonical map from
H;T,R) to HXT,R) is injective. Moreover the map from HZ(,Z) to
Hy(I',R) is also injective since there is no homomorphism from T to
R. In such a situation, the usual Euler class in H*(I',Z) determines the
bounded Euler class, and therefore most of the topological dynamics of a
group action.

An example of such a group is SL(n,Z) which is uniformly perfect for
n > 3 and which, moreover is such that H*(SL(n, Z),7) =0 (for n > 3) [52].
As a corollary, we get immediately that for n > 3, any action of Sl(n,Z)
on the circle has a fixed point. This will be strengthened later in 7.1. Some
other matrix groups have this property: see for instance [5, 14].

Consider the case of the Thompson group G. We can show that every
element in G is a product of two commutators (see [28]) and that H*(G,Z)
is isomorphic to Z. Using the Milnor-Wood inequality we can show that in
H*(G,Z) only the elements —1,0,+1 have a norm less than or equal to
1/2. Hence we deduce that any non-trivial action of the Thompson group
G on the circle is semi-conjugate to the canomical action given by its
embedding in PL,(S') or to the reverse embedding obtained by conjugating
by an orientation reversing homeomorphism of the circle (see [28] for more
details).
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