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have zero norm... Consider the case of the bounded Euler class, seen in the

real bounded cohomology.

THEOREM 6.7. The image of the bounded Euler class eu in the real

bounded cohomology H%(Homeo+(S1), R) has norm 1/2.

I Proof This is the abstract version of the Milnor-Wood inequality. Note

that a constant 2-cocycle is the coboundary of a constant 1-cochain. We

1 found a representative of the Euler class taking only two values 0 and 1.

i If we subtract from this cocycle the constant cocycle taking the value

1/2, we get a cohomologous bounded (real) cocycle taking values ±1/2.
This shows that the norm of the image of eu in //|(Homeo+(S1), R)

is at most 1/2. The opposite inequality follows from Milnor's computation

of the Euler number for an embedding of the fundamental group

r9 of a closed oriented surface as a discrete cocompact subgroup of

PSL(2, R) that we mentioned in 6.1. If the norm were strictly less than

1/2, then this number would be strictly less than 2g — 2. See [25] for more

explanations.

6.5 Actions on the real line and orderings

Our main concern is to study actions on the circle but there is a preliminary
question which deals with actions on the line. Of course, if a group acts on

the line, we can always add a point at infinity to produce an action on the

circle (with a common fixed point). In other words studying actions on the

line is equivalent to studying actions on the circle with vanishing bounded

Euler class. This is the reason why we begin by general remarks on groups
acting on the line.

Observe first that the dynamics of a single orientation preserving homeo-

morphism h of R are very easy to describe. Let F — Fix(h) be the set of
I fixed points. Each interval of the complement of F is h -invariant and the
I action of h on this interval is conjugate to a translation (positive or negative,

according to the sign of h(x) - x on this interval).
I We say that a group T is left orderable if there exists a total ordering A on
I r which is invariant under left translations (i.e. 71 ± 72 implies 771 A 772).
I We write 71 -< 72 if 71 ± 72 and 71 7^ 72. An obvious necessary condition
] for a group to be left orderable is that it be torsion free (i.e. there is no non

trivial element of finite order).

I The following theorem is well known but we weren't able to find its origin
j in the literature.

i
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THEOREM 6.8. Let F be a countable group. Then the following are
equivalent :

1) F acts faithfully on the real line by orientation preserving homeomor-
phisms.

2) r is left orderable.

Proof Suppose that T acts faithfully on the line by orientation preserving
homeomorphisms, i.e. that there exists an injective homomorphism <fi from
r into the group Homeo+(R) of orientation preserving homeomorphisms of
the real line. Assume first that there is a point jc0 in R with trivial stabilizer.
Then we can define a left invariant total ordering by defining 71 ^ 72 if
0(7i)(xo) S <£(72)fro)- If there is no such point xq, choose a sequence of
points (x;);gN which is dense in the line. Now define 71 ^ 72 if 71 72 or if
the first i for which <£(71 )(*,-) 7^ </<72)fe) is such that < ^(72)(jq).
This defines a left invariant total order on T.

Conversely, let ^ be a left invariant total order on the countable group T.
Enumerate the elements of T, i.e., choose a bijection T. We are
going to construct inductively an increasing injection v of (r, 70 in (R, <).
Define «(70) arbitrarily and suppose that v(j0), ,•) have been defined.
If 7;+i is smaller (resp. bigger) than all 70, ...,7/ then define v(j!+lj as

any real number smaller (resp. bigger) than min(u(70),..., v(j,)) - 1 (resp.
max(u(7o),..., v(j,))+ 1 )• Otherwise, there is a pair of integers 0 <a,ß <i
such that 7„ 7 7,+ i 7 73 and such that there is no 7 (0 <j <i) between

7„ and >yß. Then we define «(7+1) as (v(-ya) + v(jß))/2. Let c R be the
closure of u(r).

By our construction, it is easy to verify that X is unbounded and that
any connected component ]a,b[ of the complement of X is such that a
and b are in u(T). The group Tactson itself by left translations so
that every element 7 of T induces an increasing bijection <^(7) of v(F).
We claim that 7(7) extends continuously to ^. Otherwise, there would
exist a point x ]im„ v(j,n) lim„, v(jim) for an increasing sequence of
elements jinanda decreasing sequence 7^ and such that lim„ '('(77,,,) <
limmu(77 im). Then a lim„ u(77,„) and b limm would be the
endpoints of some connected component of the complement of X. By
our previous observation, a and b would be the image by v of two
distinct elements of T. On multiplying these two elements on the left
by 7-1, this would produce two distinct elements 7_ and 7+ such that
f(7(„) < v(j-)<v(-y+) < u(t im)andthis contradicts the fact that the two
sequences have the same limit x.
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Therefore we have produced a homeomorphism <56(7) of X. We now extend

cj){7) to the whole line R in such a way that fQy) is affine on each interval

of the complement of X. It is now clear that f is an injective homomorphism

from r to the group of orientation preserving homeomorphisms of the real

line.

Theorem 6.8 produces many examples of actions on the real line. For

instance, suppose T is a countable group containing a nested sequence of
subgroups T T0 D Ti D • • O bo (finite or infinite) such that the

intersection of this family reduces to the trivial element and that each T;

is a normal subgroup in the previous one Ti_ 1. Assume that each quotient
Qi Ti/Ti-t is left orderable and denote by A; such a left order on Qt.
Let us construct a left order ^ on T. Consider two distinct elements 7,7'
in r and let i be the first integer such that 77'_1 is not in F, • Then 7_17/
is in fVi and determines an element [7—17/] of Qi. Then define 7^7' if
[f^V] 1- This is a left invariant total order on T.

As an example, note that a countable torsion free abelian group A embeds

in the tensor product A ® Q which is a Q -vector space whose dimension is

at most countable and therefore embeds in R. Hence, countable torsion free
abelian groups are orderable. Let us say that a group T is solvable (resp.

residually solvable) if there is a finite (resp. infinite) decreasing sequence of
subgroups as in the previous paragraph such that the quotient groups Qi are
abelian. We have now proved:

PROPOSITION 6.9. Let T be a countable group which is (residually)
solvable with torsion free abelian quotients. Then T acts faithfully on the

real line by orientation preserving homeomorphisms.

There are many examples of such groups: free groups or fundamental

groups of closed orientable surfaces for instance have these properties [46].
Observe that the left orderings that we produced by the previous argument
are in fact left and right invariant orderings. If we go back to the proof of
Theorem 6.8 we can check that for bi-invariant ordered groups, the actions on
the line f: T —» Homeo+(R) produced by the proof are very peculiar: they
are such that for every non trivial 7 G T, we have either f(y)(x) < x for
all x G R or f(j)(x) > x for all x. In other words the graphs of <£(7) don't
cross the diagonal. However, there will be elements whose graphs touch the
diagonals, unless of course the action is free, which is almost never the case
because of the following well known theorem of Holder.
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Theorem 6.10 (Holder). If agroup acts freely on the real line by
homeomorphisms, it is abelian. More precisely, such a group embeds as
a subgroup of R and the action is semi-conjugate to a group of translations.
In the same way, a group acting freely on the circle is abelian, embeds in
SO(2), and is semi-conjugate to a group of rotations.

Proof. Let f: T— Homeo+(R) be a homomorphism such that for all 7different from the identity the homeomorphism 7(7) has no fixed point. If
7,7' are elements of T, write 7 7 7' if 7(7X0) < XX/'XO) (which implies
7(7)0*)< fhf')(x) for all x since the action is free). This defines a left and
right invariant ordering 7 which is archimedean, such that for any pair of
non trivial elements 7,7' for which id 7 7 and id 7 7', there is a positive
integer n such that 7' 7 7". Indeed, the sequence 7(7)"(0) is increasing and
has to tend to 00 since otherwise its limit would be a fixed point of 7(7) ;
hence for n sufficiently large we have 7(7') (0) < 7(7" )(0).

Then we show that any group F equipped with a bi-invariant total
archimedean ordering embeds in R and is therefore abelian. Fix a non trivial
element 70 such that id 7 70 and for each 7 6 T, define <I)(7) as the smallest
integer keZ such that 7 7 7*. We have

This defines a map $: F —» Z which satisfies

0(7) + $(7') - 1 < 0(77') < 0(7) + 0(7')
so that is a quasi-homomorphism. As we have already observed, 7(7)
lirnn—oo <t>(7")/n exists and defines a quasi-homomorphism 7 ' F —> R which
is homogeneous {i.e. 7(7) «7(7)) and which is increasing 7 7 7'
implies 7(7) < 7(7')). Note that 7(7o) 1.

We claim that 7 is a group homomorphism. Indeed, consider two elements
7,7' in T and assume for instance that 77' 7 7'7. it follows easily by
induction that for every positive integer n, we have 7"7'" 7 (77')" 7 y'ny".
Evaluating <t> on this inequality, we get

®(t") + 3>(7'") - 1 < $((77')") < <p(7") + $(7'").
Dividing by n and taking the limit, we obtain

7(7) + 7(7') s 7(77') •' 7(7) + 7(7')

so that 7 is indeed a homomorphism.
We still have to show that 7 is injective. For any 7 such that 7 7 we

know, since the ordering is archimedean, that there is some positive integer k



GROUPS ACTING ON THE CIRCLE 377

such that 70 ^ 7*. It follows that 1 < k7)so that ^(7) is non trivial. This

proves the injectivity of f.
Observe that the non decreasing embedding 0 of F in R is unique up to

a multiplicative constant. Indeed, if ft is another one, we have by definition

(0(7n)- 1)07(7o) < ftift) < ^)(7n)0/(7o). Dividing by n and taking the limit,

we get ft ft(70)ft.
We now show that the action of T is semi-conjugate to a group of

translations. If T is isomorphic to Z, it acts freely and properly on the line

so that it is indeed conjugate to the group of integral translations. Otherwise,

ftT) is dense in R. Let x be any point in R and define

h(x) sup (0(7) G R I 7(0) < x}

Clearly, h is non decreasing and satisfies h(y(x)) h(x) + ft7) identically.

The continuity of h is easy and follows from the density of the group ftT) :

if h were not continuous, the interior of R \ h(R) would be a non empty

open set invariant by all translations in ftT).
The proof for groups acting on the circle follows easily : if T is a group

acting freely on the circle, its inverse image in Homeo_1_(S1) acts freely on

the line.

The following is an elementary corollary of the previous theorem.

PROPOSITION 6.11. Let T be a torsion group (i.e. such that every element

in r has finite order). Then any homomorphism from T to Homeo+(S1) has

abelian image.

Proof. We know the structure of elements of finite order of Homeo+(S1) :

they are conjugate to rotations of finite order. It follows that an element having
a fixed point and of finite order in Homeo+CS1) is the identity. In other words,
a torsion group acting faithfully on the circle acts freely. The result follows
from 6.10.

There is another very interesting example of a group which admits a

left and right invariant total ordering: the group PL+([0,1]) of orientation
preserving piecewise linear homeomorphisms of the interval [0,1]. Indeed,
let 7,7/ be two distinct elements of PL+([0,1]) and consider the largest real
number x G [0,1] such that 7 and ft coincide on the interval [0,x]. Then
for e > 0 small enough, we have either 7(t) < 7ft) for t G ]x,x + e] or
7(0 > ft if) for t G ]x,x + e]. Say that 7 -i ft in the first case and ft -< 7 in
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the second case. This defines a total ordering on PL+([0,1]) and it is clearly
left and right invariant. We can induce this ordering on countable subgroups
°f PL+([0,1]), for instance the subgroup of elements with rational slopes and
apply the general construction that we described above. We get an action of
this rational group on the line which is very different from the given action
of PL+([0,1]) on ]0,1[ : the corresponding graphs don't cross the diagonal.

Remark that an affine bijection of the line x i—» ax+b has at most one fixed
point (if it is not the identity). Solodov proved that this property essentially
characterizes groups of affine transformations.

THEOREM 6.12 (Solodov). LetY be a non abelian subgroup of
Homeo+(R) such that every element (different from the identity) has at most
one fixed point. Then T is isomorphic to a subgroup of the affine group
Al f (R) of the real line,andthe action of F on the line is semi-conjugate
to the corresponding affine action.

Solodov did not publish a proof but mentions his result in [62] and
explained it to the author of these notes in 1991. Later T. Barbot needed this
theorem for his study of Anosov flows and published a proof in [3]. More
recently, N. Kovacevic published an independent proof in [43], See also the
recent preprint [20] for a detailed proof.

Proof. Let T be a subgroup of Homeo+(R) such that every element
(different from the identity) has at most one fixed point. If no non trivial
element has a fixed point, Holder's Theorem 6.10 implies that T is abelian
(and that the action is semi-conjugate to a group of translations). If there is a
point x which is fixed by the full group T, then one can restrict the action
to the two components of R \ {x} on which we can use Holder's theorem
again : this would imply that T is abelian.

We claim that T contains an element 7 with a repulsive fixed point x,
i.e. such that 7(y) > y for every y > x and 7 < y for every <x. Indeed
choose some non trivial 70 in T fixing some x0. If x0 is not repulsive for
70 and for yQ 1, this means that xo is a parabolic fixed point, i.e. replacing
70 by its inverse, we have 70(7) > y for all y^x0. Conjugating 70 by some
element which does not fix xo, we get an element 71 fixing some xi and
such that 7i(y) > y for y f x\. Assume for instance x0 < x\ and consider
the element 7 y0yfl.Obviously, one has 7(x0) < x0 and y(x() > xi and
since we know that 7 has at most one fixed point, 7 must have a repulsive
fixed point between x0 and x, as we claimed.
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Now, we can try to mimic the proof of Holder's theorem. Consider two
elements 7 and 7' of T. Write 7 7? 7' if there is some x G R such that

7(y) < 7'(y) for all y > x. Clearly, our assumptions imply that this defines

a total ordering on T which is left and right-invariant. Denote by r+ the

subset of elements of T \ {id} such that id ^ 7-
The next claim is a weak form of the archimedean property. Fix some 70

in T+ with a repulsive fixed point xq, and let 7 be any other element of T+.
Then there exists some positive integer k such that 7 ^ 7J. Indeed, choose

some real numbers x_, x+ such that x_ < xo < x+. For k big enough, one
has 7o(x_) < 7(x_) and 7q(x+) > 7(x+) since xo is repulsive. It follows
that 7-17o has a fixed point in the interval [x_,x+] which is therefore the

unique fixed point of 7-17o- Hence we have yj}(y) > 7_1(y) for all y > x+
and 7 ^ 7o. This proves our last claim.

Again, we fix some 70 in T+ with a repulsive fixed point xo. For each

7 g r+ we define 0(7) G N to be the smallest integer k such that 7 =< 7o •

If 7-1 G r+, we let 0(7) —0(7_1) and finally we define <S>(id) 0. This
defines a map O : F —> Z. Then we can copy from the proof of Holder's
theorem: O is a quasi-homomorphism and the limit 7(7) lim^oo <d>(-f)/n
exists and defines a group homomorphism 0 : T — R.

It follows in particular that the first commutator group [T, T] is contained in
the kernel of 4> The final observation is that this kernel acts freely on the line.
Otherwise, we saw that Ker(<f>) would contain some element 7 with a repulsive
fixed point and we have already observed that this implies the existence of
some integer k such that 70 •< 0k which in turn implies that 7(7) > 1 jk / 0,
a contradiction. Using Holder's theorem, we conclude that [T, T] is abelian.

We know the structure of free actions (of abelian groups) on the line : they
are semi-conjugate to translation groups. More precisely, we know that there
is a map h: R —> R and an injective homomorphism : [T, T] —* R which
are such that for every 7 e [T,T] and x G R, one has: h(j(x)) h(x) + -tpij).
If the image t>([r. I j) is non discrete, this map h is unique up to post-
composition by an affine map. So assume first that ^([T, F]) is non discrete.
Note that [T, T] is a normal subgroup of T. It follows that for every 7
in T, the map h 07 coincides with h up to some affine map. This means
precisely that h realizes a semi-conjugacy between T and some group of affine
transformations of R and shows that F is indeed isomorphic to a subgroup
of Aff(R). To finish the proof, we still have to show that -0([F, F]> cannot be
discrete, i.e. isomorphic to Z. In this case, inner conjugacies by an element
7er have to preserve the generator 1 of Z (the unique generator which is
bigger that the identity in our ordering). This means that Z (~ [T,r]) lies
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in the center of T. This is not possible since for every fixed point x of an

element 7 of T, its orbit under Z would consist of fixed points of 7.

Holder's theorem essentially characterizes translation groups as groups
acting on the line with no fixed points. Solodov's theorem essentially
characterizes groups of affine transformations as groups acting on the line

with at most one fixed point. It is very tempting to try to prove a similar
characterization of groups of projective transformations as groups acting on
the circle with at most two fixed points... Unfortunately, this is not the case

N. Kovacevic recently constructed a nice counter-example in [44].

THEOREM 6.13 (Kovacevic). There exists a finitely generated subgroup of
Homeo+CS1) such that every element different from the identity has at most

two fixed points, such that all orbits are dense, and which is not conjugate
to a subgroup of PSL(2, R).

Nevertheless, there is a very important characterization of groups which are

conjugate to subgroups of PSL(2,R). This characterization is due to Casson-

Jungreis and Gabai [15, 24], following earlier work of Tukia. We would have

liked to include a discussion and a proof of this result, but that would be too

long and we have to limit ourselves to a statement Consider a sequence yn

of elements of Homeo+CS1). Let us say that yn has the convergence property
if it contains a subsequence ynk which satisfies one of the following two

properties :

• ynk is equicontinuous ;

• there exist two points x,y on the circle such that %k (resp. y~l)
converges to a constant map on each compact interval in S1 \ {x} (resp.

inS1^}).
A subgroup r of Homeo+(S1) is called a convergence group if every

sequence of elements of T has the convergence property.

Theorem 6.14 (Casson-Jungreis, Gabai). A subgroup of Homeo+(S1) is

conjugate to a subgroup of PSL(2,R) if and only if it is a convergence group.

The reader should at least be able to prove the easy part of the theorem :

subgroups of PSL(2, R) are convergence groups

We revert now to groups acting on the circle. We state a general criterion

which characterizes the bounded classes coming from some action.
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THEOREM 6.15 ([25]). Let T be a countable group and c a class in

Hl(T, Z). Then there exists a homomorphism f: F —> Homeo_j_(S1) such that
(j)*(eu) c if and only if c can be represented by a cocycle which takes only
the values 0 and 1.

Proof Of course, the necessary condition is clear from 6.3 and the main

difficulty will be to construct some action from a cocycle taking two values.

Let c be a 2 -cocycle on the group T taking only the values 0 and 1. We

saw that a central extension and a section lead to a 2-cocycle. The process
can be reversed and we can construct a central extension F in the following
way from a 2-cocycle c. As a set, F is the product ZxT and we define a

multiplication • by:

(ni,7i) • («2,72) (ni + H2 + C(7i,72),7I72)

where, asjisual, c denotes the inhomogeneous cocycle associated to c. The
fact that f is a group is a restatement of the fact that c is a cocycle. The
projection F —» F is a group homomorphism.

Assume first that the cocycle c is non degenerate, i.e. that c(id, 7)
c(yfid) 0 for every 7 in F fiwhere id denotes the identity element in T).
Then the identity element of F is (0, id) and the map n G Z (n, id) g
is also a group homomorphism. Hence, we have a central extension

0— Z—>f—> T—fl.
The fact that c takes non negative values means that the subset P of F

consisting of elements of the form (n,j) with n > 0 is a semi-group, i.e. is
stable under the product •. Moreover, since c takes the values 0 and 1, the
inverse of (n,7) is (—«,7 l) or (—n — 1,7-1). It follows that every element
of F belongs to P or to its inverse. In other words, if one defines 71 ^ 72
if 727!

~ g P we get a totsd pre-order on f which is left invariant. Denote
by t the element (1 fid) in F. Note that for every 7 in F we have 7 ^ t'y.

The end of the proof mimics 6.8 : One constructs a map v : f —> R such
that 71 ^ 72 if and only if v(ji) < v(y2) and such that vfiyt) v(j) + 1

for every 7 G F. We may even choose v in such a way that the action of
T on itself by left translations defines an action^ on v(f) C R which extends
to its closure. Then we extend this action of f to R using affine maps in
the connected components of the complement of this closure. Finally, since t
acts on R by the translation by 1, we get an action of the quotient group F
on the circle R/Z. This construction was carried out in such a way that it is
clear that the bounded Euler class of this action is precisely the class of the
cocycle c.
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Finally, we have to deal with the case of degenerate cocycles c. Note that
the fact that c is a cocycle can be expressed by the identity:

c(7i, 72) + c(7I72,73) C(72, 73) + c(7i, 7273).

It follows that there exists an integer 0 or 1 such that for every 7 in
r we have c( 1,7) c(7,1) u. The fact that c is degenerate means that
v 1

• Then we can define c'1 —c.Thisis a new cocycle which is non
degenerate and takes only the values 0 and 1. By the previous construction,
we get an action of T on the circle corresponding to the bounded class of
c'. Reversing the orientation of the circle, we get finally an action of T on
the circle whose bounded Euler class is the class of c.

6.6 Some examples

Recall that a group T is called perfect if every element is a product
of commutators. It is uniformly perfect if there is an integer k such that
every element is a product of at most k commutators. For such a uniformly
perfect group, every quasi-homomorphism from F to R is bounded (since
it is bounded on a single commutator) so that the canonical map from
Hl(T,R) to H2(T, R) is injective. Moreover the map from Hf/T, Z) to
H%(T,Rj is also injective since there is no homomorphism from F to

R. In such a situation, the usual Euler class in H2(T,Z) determines the
bounded Euler class, and therefore most of the topological dynamics of a

group action.

An example of such a group is SL(n, Z) which is uniformly perfect for
n >3and which, moreover is such that H2(SL(n, Z), Z) 0 (for >3) [52],

As a corollary, we get immediately that n > 3, any action of SL(«,Z)
on the circle has a fixed point. This will be strengthened later in 7.1. Some
other matrix groups have this property: see for instance [5, 14],

Consider the case of the Thompson group G. We can show that every
element in G is a product of two commutators (see [28]) and that H2(G, Z)
is isomorphic to Z. Using the Milnor-Wood inequality we can show that in
H2(G, Z) only the elements —1,0,+1 have a norm less than or equal to
1/2. Hence we deduce that any non-trivial action of the Thompson group
G on the circle is semi-conjugate to the canonical action given by its
embedding in PL+(SI) or to the reverse embedding obtained by conjugating
by an orientation reversing homeomorphism of the circle (see [28] for more
details).
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