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372 ‘ E. GHYS

Now, we can state the general result which is the exact analogue of what
has been done in 5.9 for the rotation number. We don’t give the proof: it can be
found in [25] (in a slightly different terminology and with small mistakes...),
but the reader should now be in a condition to fill in the missing details by
himself.

THEOREM 6.6 ([25]). Let ¢1,¢2 two homomorphisms from a group T to
Homeo  (SY). Assume that the bounded Euler classes ¢1(eu) = ¢5(eu) are
equal to the same class ¢ in HX(T',Z).

1) If ¢ is a rational class, then ¢(I') and ¢>(I') have finite orbits with
the same cyclic structure.

2) If ¢ is not rational, then the associated minimal homomorphisms ¢,
and ¢, are conjugate.

Conversely, if ¢1(I') and ¢o(I') have finite orbits of the same cyclic
Structure or if they have no finite orbit and their associated minimal
homomorphisms are conjugate (by an orientation preserving homeomorphism),
then they have the same bounded Euler class.

Note in particular that the bounded Euler class of an action vanishes if
and only if there is a point on the circle which is fixed by all the elements
of the group.

6.4 EXPLICIT BOUNDS ON THE EULER CLASS

Since we know that the bounded Euler class of an action contains almost
all the topological information, it is very natural to try to determine the part
of Hg(l“, Z) which corresponds to the bounded Euler classes of all actions
of T on the circle. In the case T = Z, we know that HXZ,Z) = R/Z
and that every class corresponds to an action (by rotations). However, in the
case where I' is the fundamental group of a closed oriented surface of genus
g > 1, the Milnor-Wood inequality shows that even the usual Euler class in
H*(T',Z) = Z has to satisfy some inequality.

E Given a bounded cochain ¢ in C{(T',R), we define its norm ||c|| as the
supremum of the absolute value of c(vy,...,%). Then we define the “norm”
of a bounded cohomology class with real coefficients as the infimum of the
norms of cocycles that represent it. We should be aware of the fact that this
norm is not really a norm but is merely a semi-norm: a non zero class might
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have zero norm... Consider the case of the bounded Euler class, seen in the
real bounded cohomology.

THEOREM 6.7. The image of the bounded Euler class eu in the real
bounded cohomology H,%(HomeoJr(Sl),R) has norm 1/2.

Proof. This is the abstract version of the Milnor-Wood inequality. Note
that a constant 2-cocycle is the coboundary of a constant 1-cochain. We
found a representative of the Euler class taking only two values 0 and 1.
If we subtract from this cocycle the constant cocycle taking the value
1/2, we get a cohomologous bounded (real) cocycle taking values =+1 f2.
This shows that the norm of the image of eu in Hg(Homeo+(Sl),R)
is at most 1/2. The opposite inequality follows from Milnor’s compu-
tation of the Euler number for an embedding of the fundamental group
I, of a closed oriented surface as a discrete cocompact subgroup of
PSL(2,R) that we mentioned in 6.1. If the norm were strictly less than
1/2, then this number would be strictly less than 2g — 2. See [25] for more
explanations. [

6.5 ACTIONS ON THE REAL LINE AND ORDERINGS

Our main concern is to study actions on the circle but there is a preliminary
question which deals with actions on the line. Of course, if a group acts on
the line, we can always add a point at infinity to produce an action on the
circle (with a common fixed point). In other words studying actions on the
line is equivalent to studying actions on the circle with vanishing bounded
Euler class. This is the reason why we begin by general remarks on groups
acting on the line.

Observe first that the dynamics of a single orientation preserving homeo-
morphism A of R are very easy to describe. Let F = Fix(h) be the set of
fixed points. Each interval of the complement of F is h-invariant and the
action of A on this interval is conjugate to a translation (positive or negative,
according to the sign of h(x) — x on this interval).

We say that a group I' is left orderable if there exists a fotal ordering < on
I' which is invariant under left translations (i.e. v; = v, implies yvy; < vy2).
We write v; < 72 if 71 =12 and v; # 2. An obvious necessary condition
for a group to be left orderable is that it be torsion free (i.e. there is no non
trivial element of finite order).

The following theorem is well known but we weren’t able to find its origin
in the literature.
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