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eu{f) in this case is an integer. In [51], Milnor gives an algorithm to compute

this number. With the same notation as above, for each 1 < i < g, choose

lifts H/ and bt of 0(a,-) jtnd fifii). Now compute the product of commutators

aib{a^lb^1 agbga~lb~l. Since this homeomorphism is a lift of the identity,

it is an integral translation. This amplitude of this translation does not depend

on the choices made and is the Euler number eu(f).
As an explicit example, also computed by Milnor, recall that any closed

orientable surface of genus g > 1 can be endowed with a riemannian metric

of constant negative curvature. Recall also that the Poincaré upper half space

TL can be equipped with a metric of curvature —1 whose group of orientation

preserving isometries is precisely PSL(2, R). Moreover, any complete simply

connected riemannian surface of curvature —1 is isometric to TL. Hence

there are embeddings f of the fundamental group Tg of a closed oriented

surface of genus g > 1 in PSL(2, R) such that the corresponding action of

T5 on TL is free, proper and cocompact. Since we know that PSL(2, R) is a

subgroup of Homeo+CS1), we can compute the corresponding Euler number

eu(fi). The result of the computation is 2g — 2. Note that each element of

4>(Tg) is hyperbolic since the action is free and cocompact so that the rotation

number of every element of (p(Fg) is 0. So we are in a situation in which

the topological invariant eu{<j)) is not 0 but the rotation number invariants are

trivial ; a situation different from the case where F Z.

6.3 Bounded cohomology and the Milnor-Wood inequality

It was observed very early that the Euler class of a homomorphism
(j>\ r —» Homeo+CS1) cannot be arbitrary. Milnor and Wood proved the

following [51, 71].

THEOREM 6.1 (Milnor-Wood). Let Tg be the fundamental group of a

closed oriented surface of genus g > 1 and f: Fg —» Homeo+CS1) be any
homomorphism. Then the Euler number satisfies \eu{(f))\ <2g — 2.

Proof We shall not give a complete proof since this result will follow
from later considerations but we prove a weaker version. Keeping the previous
notation, we know that eu(<p) is the translation number of the homeomorphism

d\b\dflbfl .agbgajlbfl. We also know that the translation number

function r is a quasi-homomorphism, i.e. there is some inequality of
the form \T{fxf1) — T{fl) — r{f2)\ < D for some D. We also know that

r(/ —t(/). So, if we evaluate r on this element, we get a bound
of the form \eu((fi)\ < (4g — 1 )D. This is not quite the bound given in the
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theorem but this explains the idea of the proof: to get the exact bound, one
should be a little bit more clever

In [17], Eisenbud, Hirsch and Neumann gave a much more precise result
that^we wouM like to mention here. Iff is an element of Homeo+(S1), define
m(f) inf(/(x)-x)jtnd m(/) sup(f(x)-x). Note that m(f) < r(f) < m(f)
and 0 < m(f) — m(f) < 1.

Theorem 6.2 (Eisenbud, Hirsch, Neumann). An element f of the group
Homeo+CS1) can be written as a product of g > 1 commutators if and only
if mff) <2g — I and 1-2g < m(f).

Any element of Homeo+CS1) has at least one lift / in Homeo+tS1) such
that — 1 < m(f) < m(f) < 1 so that it can be written as one commutator. It
follows that every element of Homeo+(S] can be written as a commutator.
We mentioned this fact earlier.

In [25], we put these inequalities in the context of bounded cohomology,
which was introduced by Gromov (see [30] for many geometrical motivations).
Consider again an abstract group F and let A Z or R. Then define a
bounded k-cochain as a bounded homogeneous map from Fk+l to A. This
defines a sub A-module of Ck(F,A) denoted by Ckb(F,A). It is clear that
the coboundary dk of a bounded k-cochain is a bounded (k + 1)-cochain
so that we can define the cohomology of this new differential complex, that
is called the bounded cohomology of F with coefficients in A and denoted
by #£(r,A). We have obvious maps from #£(r,A) to if*(r,A) obtained
by "forgetting" that a cocycle is bounded. In general these maps are neither
injective nor surjective. See [35, 36] for a detailed algebraic background on
this cohomology.

The degree 1 case is trivial. A cocycle is given by a bounded homomor-
phism from T to A and is therefore trivial. Hence Hlh(Y,A) 0 for any
group T.

The degree 2 case is the most interesting for us. Let us look first at
HfcZ,R). Consider a bounded 2-cocycle c on Z with values in R. Since we
know that H2(Z,R) 0, we know that c is the coboundary of a 1-cochain
of the form u(n\,n2) ~u(n\ — nf) for some function TL: Z —> R. The fact
that c is bounded means precisely that ü is a quasi-homomorphism from
Z to R. We know that this implies the existence of a real number r such
that ü(n) - nr is bounded. Now, if we define v(n) u{n) - nr, then the
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coboundary of the bounded 1-cochain v(nun2) v(n\ - n2) is c. We have

shown that Hb(Z,R) 0.

For a general group F, let us define QM(T) as being the vector space

of quasi-homomorphisms from T to R. Say that a quasi-homomorphism is

trivial if it differs from some homomorphism by a bounded amount. It follows

from the definitions and the previous argument that the kernel of the map from

H2(T, R) to H2(T, R) is precisely the quotient of QM(T) by the subspace

of trivial quasi-homomorphisms. This gives some intuition about the group

R).
Let us compute now some examples with coefficients in Z. Start with

Hl(Z, Z). Let c be a bounded integral 2-cocycle. We know that it is the

coboundary of a 1-cochain of the form u(n\,n2) — u(n\ — n2) for some

function w: Z —> Z. Again, we know that there is a real number t such that

u(n) - nr is bounded but if we define v(n) u(n) - nr the 1 -cochain v is

not integral unless r is an integer For each real number r, define cT to be

the coboundary of the integral 1-cochain vr(n\,n2) [(n\ —n2)r\ where []
denotes the integral part of a real number. It is clear that cT is bounded (by

1) and our previous computations show that every bounded integral 2-cocycle

in Z is cohomologous to some cT for some r. Moreover, it is clear that cTx

and cT2 define the same element in flf(Z, Z) if and only if r\ — r2 is an

integer. Summing up, we showed that Z/£(Z,Z) is isomorphic to R/Z. We

hope that the reader will recognize that the rotation number is showing up...
As a matter of fact, the argument that we presented is more general and

shows immediately that for any group T, the kernel of the map from H2b(T, Z)

to Hl(r, R) is precisely the quotient Hl(T, R)/Hl(T,Z). (Recall that //'(F^A)
is the set of homomorphisms from T to A.)

We now come to the construction of an invariant of a group action on the

circle that combines the rotation numbers and the Euler class. Let us look

again at the central extension

0 —* Z —» Homeo+(S1) —» Homeo+(S1) —> 1

and let us try to find some 2-cocycle representing its Euler class (see also [38]).
We know that we should choose a set theoretical section s to p. It turns out

that there is a natural choice of such a section. Indeed, let / G Homeo+(S1),
then among the elements in G Honîeo+(S1), there is only one, denoted

by cr(f), which is such that a(f)(0) lies in the interval [0,1[C R. This a
will be our preferred section. Let us try to evaluate the associated 2-cocycle
c on Homeo+(S1). By definition the associated inhomogeneous cocycle c is:

c{f\,fl)ct(/]/2)_10-(/i)ct(/2)
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The main (easy) observation is that the cocycle c is bounded. More precisely :

LEMMA 6.3. The 2-cocycle c takes only the two values 0 and 1.

Proof. By definition a(f2)(0) is in [0,1[. It follows that cr(f1)(a(f2)(0))
is in the interval [a(/i)(0), <j(/i)(0) + 1[ which is contained in [0,2[. We
know that <j{f\f2) and cr(fi)o(f2) are lifts of the same element f\f2 and that
cr(/i/2)(0) is in [0,1[. It follows that cr(/1/2)~1cr(/i)cr(/2) is the translation
by 0 or 1.

Hence, for this choice of section a, the associated 2-cocycle c is bounded
and integral. Thus, we have defined an element of //^(Homeo+CS1), Z) that
we call the bounded Euler class. It may seem that the definition depends on
the choice of the origin 0 on the line but the reader will easily check that a
modification of the origin would change the section a by a bounded amount
so that the bounded integral cohomology class is indeed well defined. If we
have a homomorphism <fi from a group T to Homeo+CS1) we can pull back
this bounded Euler class. We get an element in Hi(F, Z) that we still denote
by eu(f) and that we call the bounded Euler class of the homomorphism f. In
case T Z, it should now be clear that the corresponding bounded Euler class
in Hl(Z, Z) R/Z is exactly the rotation number of the homeomorphism

Hence we have proved the following:

Theorem 6.4 ([25]). There is a class eu in 7/f(Homeo+(S1), Z) such
that :

1) For every homomorphism <fi: F Homeo+(S1) the image of
4>*(eu) G Hl(T,Z) in H2(T, Z) under the canonical map is the Euler class.

2) If <j)\ Z —> Homeo+(S1) is a homomorphism then f*(eu) G //|(Z, Z)
R/Z is the rotation number of 0(1).

3) f*(eu) is a topological invariant, i.e. if and f2 are two homo-
morphisms from T to Homeo+(S1) which are conjugate by an orientation
preserving homeomorphism, then <j)*(eu) — f^ieu) in HlCr, Z

In other words, the bounded Euler class is a topological invariant which
combines the Euler class and the rotation number.

We now show that this new invariant for a group action is as powerful as

the rotation number was for a single homeomorphism. Let us begin by the
most interesting case.
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THEOREM 6.5 ([25]). Let <fitwo homomorphisms from a group F to

Homeo+CS1) such that all orbits are dense on the circle. Assume that the

bounded Euler classes are equal: f\{eu) eu). Then fii and </>2 are

conjugate by an orientation preserving homeomorphism.

Proof. This is very similar to the corresponding statement for rotation
numbers: compare with the proof of 5.9. Since f\{eu) fi\(eu) then in

particular the Euler classes in H2(T, Z) are equal, which means that <f\

and cj)2 define the same central extension T. In other words, there is a

central extension O^Z-^Ê^r^l and homomorphisms f>\ and

f2 from r to Homeo+(S1) such that fix and fix map the generator 1

of Z on the translation by 1 and such that the induced homomorphisms
from T/Z ~ T to H6meo+(S1)/Z Homeo+CS1) are </>i and </>2. The

assumption that the bounded classes agree means in fact that we can choose
those homomorphisms in such a way that for each i in R, the points
0i(7)02(7)_1(-t) are bounded independently of 7 in T. We now define
h(x) to be the upper bound of this bounded set. This map h is increasing,
commutes with integral translations, and conjugates fix and fi2. The jump
and plateau sets of h are open sets invariant under ffT) and (f)2(T)

respectively. By our assumption these open sets are empty so that h is a

homeomorphism which induces a conjugacy between fix and <p2. For more
details, see [25].

In case the group </>(r) does not have all its orbits dense, we saw in 5.6
that there are two possibilities : (ß(T) can have a finite orbit or <£(D can have

I an exceptional minimal set. In the second case, we also saw that there is a

r canonical way of "collapsing" the connected components of the complement of
the exceptional minimal set to construct another homomorphism f which has

I all its orbits dense: this is the associated "minimal" homomorphism (see 5.8).
1 Suppose now that </>(r) has a finite orbit consisting of k elements. Then,
I every element of (ß(T) must permute these k points cyclically so that we
5 get a homomorphism r: T —> Z/fcZ. It is clear that two finite orbits of f(T)
I have the same number of points and define the same r : we call this r the
j cyclic structure of the finite orbits. Conversely, consider a homomorphism
I r: r —Z/^Z and the corresponding action on the circle by rotations of
j order k. The bounded Euler class of this action is an element of T/f(r,Z) :

1 we call these elements the rational elements in H2b{T, Z). It is not difficult
,j to see that an element in tf£(r,Z) is rational if and only if its pull-back on

1

some finite index subgroup is trivial.
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Now, we can state the general result which is the exact analogue of what
has been done in 5.9 for the rotation number. We don't give the proof: it can be
found in [25] (in a slightly different terminology and with small mistakes...),
but the reader should now be in a condition to fill in the missing details by
himself.

THEOREM 6.6 ([25]). Let two homomorphisms from a group T to
Homeo+(S1). Assume that the bounded Euler classes f\(eu) fl(eu) are
equal to the same class c in //£(r,Z).

1) If c is a rational class, then fiÇT) and f>2(T) have finite orbits with
the same cyclic structure.

2) If c is not rational, then the associated minimal homomorphisms
and (j>2 are conjugate.

Conversely, if f\(T) and ^(F) have finite orbits of the same cyclic
structure or if they have no finite orbit and their associated minimal
homomorphisms are conjugate (by an orientation preserving homeomorphism),
then they have the same bounded Euler class.

Note in particular that the bounded Euler class of an action vanishes if
and only if there is a point on the circle which is fixed by all the elements
of the group.

6.4 Explicit bounds on the Euler class

Since we know that the bounded Euler class of an action contains almost
all the topological information, it is very natural to try to determine the part
of H%(T, Z) which corresponds to the bounded Euler classes of all actions
of r on the circle. In the case T Z, we know that 7/f(Z, Z) R/Z
and that every class corresponds to an action (by rotations). However, in the
case where T is the fundamental group of a closed oriented surface of genus
g > 1, the Milnor-Wood inequality shows that even the usual Euler class in
H2(T, Z) Z has to satisfy some inequality.

Given a bounded cochain c in Cf(r,R), we define its norm ||c|| as the

supremum of the absolute value of c(70,... ,7^). Then we define the "norm"
of a bounded cohomology class with real coefficients as the infimum of the

norms of cocycles that represent it. We should be aware of the fact that this

norm is not really a norm but is merely a semi-norm : a non zero class might


	6.3 BOUNDED COHOMOLOGY AND THE MILNOR-WOOD INEQUALITY

