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of T since, once again, I' commutes with 6.

We observe that this new group of homeomorphisms of a circle satisfies
(MINIMALITY) and (STRONG EXPANSIVITY). Minimality is obviously inherited
from the same property of I" on S!. As for (STRONG EXPANSIVITY), it suffices
to observe that any compact interval contained in [x, 8(x)[ is contractible, by
definition. This means that any compact interval in S!" is contractible and
this implies (STRONG EXPANSIVITY).

We have now proved that if (MINIMALITY) and (EXPANSIVITY) are both
satisfied, then the group T" must contain a free non abelian subgroup.

Now, let us look more closely at (EXPANSIVITY) and observe that the
negation of this property is nothing more than the equicontinuity property
of the group I'. If a group I' acts equicontinuously, then its closure in
Homeo, (S') is a compact group by Ascoli’s theorem. We analyzed compact
subgroups of Homeo, (S!) in 4.1: they turned out to be abelian and conjugate
to groups of rotations.

We have shown that if (MINIMALITY) holds then T is either abelian
or contains a free non abelian subgroup; in other words, we have proved
Corollary 5.15.

Proving Theorem 5.14 in full generality is now an easy matter. Let " be
any subgroup of Homeo, (S') and let us use the structure theorem 5.6-5.8. If
I' is minimal, we have already proved the theorem. If T" has a finite orbit, there
is a I'-invariant probability which is a finite sum of Dirac masses. Finally,
if there is an exceptional minimal set, the I'-action is semi-conjugate to a
minimal action. Applying our proof to this minimal action, we deduce that
I' contains a non abelian free subgroup unless the restriction of the action of
I' to the exceptional minimal set is abelian and is semi-conjugate to a group
of rotations. In this case, one finds a I'-invariant measure whose support is
the exceptional minimal set. This is the end of the proof of Theorem 5.14.

6. BOUNDED EULER CLASS

6.1 GROUP COHOMOLOGY

| Let us begin this section with some algebra. Let I" be any group. Let us
§ consider the (semi)-simplicial set EI" whose vertices are the elements of I
and for which n-simplices are all (n + 1)-tuples of elements of I". The ith
face of the simplex (yp,...,w) is (Y0, --+»i-..n) where the term -, is
i omitted. Note that the set ET" does not depend on the group structure of I.
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As a matter of fact, ET" is contractible since it is the full simplex over the
set I'. However, there is a simplicial free action of I" on ET induced by left
translations of I" on itself. Hence once could think of the quotient BI" of ET
by this action as a space whose fundamental group is I' and with vanishing
higher homotopy groups. One would like to define the cohomology of the
group I' as the cohomology of this quotient space BI'. We should be careful
with BI" since it has only one vertex (a group acts transitively on itself!).

However, guided by this idea, it is natural to define a k-cochain of T with
values in some abelian group A as a map ¢: I'*t! — A which is homogeneous,
i.e. such that c(yyo,yv1,--., %) = ¢(y0,71,--.,7) identically. The set of
these cochains is an abelian group denoted by CK¥(T",A). We have a natural
coboundary dj from C*T,A) to C*(T",A) defined by

k
dkC(')’O, <. 7,7k+1) - Z(—l)iC(’Y(), s 7:)/\i> R af)/k) .
i=0

Of course, we have dy.y10d; = 0 and we define the cohomology group H*(T, A)
as being the quotient of cocycles (i.e. the kernel of dj) by coboundaries (i.e.
the image of dy_;). If A is moreover a ring, then there is a natural cup
product from H*(I',A) x HYI',A) to H*YI',A). We refer to [11] for an
excellent account of this theory of group cohomology. Note that for any
homomorphism ¢ from a group I' to another group I, there is an induced
homomorphism ¢*: HYT', A) — H*T, A).

A homogeneous map c: I"*! — A can be written in a unique way in
the form c(v,...,%) = c(v, 171,71— T, ... 7’)’;:_11%) for a unique function
¢: T — A. Conversely, given a map ¢ there is a unique homogeneous map
c satisfying this relation. One says that ¢ is the inhomogeneous cochain
associated to c. In other words, the space C*(I',A) is canonically 1somorphic
to the A-module of all maps I* — A.

In degree 1, a cochain is a homogeneous map c¢: I? — A and the
corresponding inhomogeneous cochain is a map ¢: I' — A. It is interesting
to check that ¢ is a cocycle if and only if ¢ is a homomorphism. Moreover
O-cochains are constant maps from I' to A and their coboundary is therefore
0. It follows that for any group T', the cohomology H (T, A) is identified with
the set of homomorphisms from T to A.

In degree 2, the interpretation is quite interesting. Consider a central
extension of I" by A :
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This means that I" contains a subgroup isomorphic to A contained in its center
and that the quotient by this subgroup is isomorphic to T". Suppose that the
projection p has a section s which is a homomorphism from I' to I" such
that p os = Idr. Then it follows that T is isomorphic to the direct product
I' x A by the homomorphism sending (y,a) to s(v)i(a). Hence, in order to
measure the non triviality of an extension we try to find the “obstruction” to
finding a section s. This is done in the following way. Choose a set theoretical
section s from T to T'; this is possible since p is onto. If +; and -, are
two elements of I', consider ¢(yi,72) = s(vi72)” 's(y1)s(72). This element
projects on the identity element of I" under p since p is a homomorphism;
it 1s therefore an element of the image of i and can be identified with an
element of A. This defines amap ¢: I — A. Let c: I — A be the associated
homogeneous cochain. One checks that ¢ is a cocycle. Of course, the section
s is not unique but another choice s’ has the form s'(v) = s(7)i(u(vy)) for
some function u: I' — A. If one computes the cocycle ¢’ associated to this
new choice of a section s’, one finds that ¢’ — ¢ is the coboundary of the
1 -cochain associated to the map u. It follows that the cohomology class
of ¢ in H*(T',A) is well defined, i.e. does not depend on the choice of a
section. This cohomology class is called the Euler class of the extension under
consideration.
It is not difficult to check the following properties of the Euler class.

1) Two central extensions 1:1 and fz of A by I' are isomorphic by some
isomorphism which is the identity on the central subgroup A and inducing
the identity on the quotient I' if and only if they have the same Euler class
in HX(T,A).

2) Any class in H*(T,A) corresponds to a central extension.

In short, H*(T",A) parametrizes isomorphism classes of central extensions
of A by T.

Before coming back to the dynamics of groups acting on the circle, let us
consider a few simple examples.

If I' = Z, it is clear that every extension admits a section which is a
homomorphism: it suffices to choose arbitrarily s(1) in p~'(1) and to define
s(n) = s(1)" for n € Z. Hence, if ' = Z or more generally if " is a free
group, we have H*(T',A) = 0.

Let I'y be the fundamental group of a closed oriented surface of genus
g > 1. It has a presentation of the form

[y ={ay,bi,...,a4,b, | alblal_lb1 L. .agbga;lbg‘1 =1).
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Now consider the group l:g defined by the presentation

~

'y, = <z,a1,b1,...,ag,bg

—1;—1 —1—1
arbia; by .. .agbgag bg =z, za;=az, b= b,-z> .

The central subgroup A generated by z turns out to be infinite cyclic so that
[’y defines a central extension of I'y by Z, hence an Euler class in HZ(Fg, 7).
It is a fact that Hz(l“g,Z) 1s isomorphic with Z and that the element that
we have just constructed is a generator of this cohomology group. We shall
not prove this here but we note that this is related to the fact that a closed
oriented surface of genus g > 1 has a contractible universal cover and that
the cohomology of I'y can therefore be identified with the cohomology of
the compact oriented surface of genus g (see [11] for more details).

6.2 THE EULER CLASS OF A GROUP ACTION ON THE CIRCLE

We have already met a central extension related to groups of homeomor-
phisms
0 —7Z — H6ﬁ€o+(Sl) £, Homeo+(Sl) - 1,

The cohomology group H?(Homeo, (S!),Z) has been computed. It is isomor-
phic to Z and a generator is the Euler class of this central extension [50].

Consider now a homomorphism ¢ from some group I' to Homeo,(S!).
Then, we can pull back the previous extension by ¢. In other words, we
consider the set of (v,f) € I' x Homeo,(S') such that ¢(y) = p(f). This
1S a group r equipped with a canonical projection onto I whose kernel is
1somorphic to Z, i.e. I is a central extension of T by Z. In case ¢ is
injective, T is just the pre-image of ¢(I') under p, which is the group of lifts
of ¢(I'). The Euler class of this central extension of I' is called the Euler class
of the homomorphism ¢ and denoted by eu(¢) € H*(I',Z). It is obviously
a dynamical invariant in the sense that two conjugate homomorphisms ¢;
and ¢, have the same Euler class in H*(T',Z). Note that it follows from the
definition that eu(¢) is zero if and only if the homomorphism ¢ lifts to a
homomorphism ¢: I' — Homeo, (S') such that ¢ = p o ¢.

A few examples are in order. In the case of a single homeomorphism, i.e.
when I = Z, we saw that H*(Z,Z) = 0. Hence the Euler class vanishes and
our new invariant is very poor indeed: in particular, it does not detect the
rotation number. A similar phenomenon occurs when I' is free.

If T'y is the fundamental group of a closed oriented surface of genus
g > 1, we know that HZ(FQ,Z) is isomorphic to Z so that the Euler class
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eu(¢) in this case is an integer. In [S1], Milnor gives an algorithm to compute
this number. With the same notation as above, for each 1 <1 < g, choose
lifts a; and E of qb(al) and ¢(b;). Now compute the product of commutators
alblal 1b b agbga lb“1 Since this homeomorphism is a lift of the identity,
it is an 1ntegra1 translatlon This amplitude of this translation does not depend
on the choices made and is the Euler number eu(¢).

As an explicit example, also computed by Milnor, recall that any closed
orientable surface of genus g > 1 can be endowed with a riemannian metric
of constant negative curvature. Recall also that the Poincaré upper half space
H can be equipped with a metric of curvature —1 whose group of orientation
preserving isometries is precisely PSL(2, R). Moreover, any complete simply
connected riemannian surface of curvature —1 is isometric to . Hence
there are embeddings ¢ of the fundamental group I'y of a closed oriented
surface of genus ¢ > 1 in PSL(2,R) such that the corresponding action of
I', on H is free, proper and cocompact. Since we know that PSL(2,R) 1s a
subgroup of Homeo, (S'), we can compute the corresponding Euler number
eu(¢). The result of the computation is 2g — 2. Note that each element of
¢(T'y) is hyperbolic since the action is free and cocompact so that the rotation
number of every element of ¢(I'y) is 0. So we are in a situation in which
the topological invariant eu(¢) is not O but the rotation number invariants are
trivial ; a situation different from the case where I' = Z.

6.3 BOUNDED COHOMOLOGY AND THE MILNOR-WOOD INEQUALITY

It was observed very early that the Euler class of a homomorphism
¢: I' — Homeo,(S') cannot be arbitrary. Milnor and Wood proved the
following [51, 71].

THEOREM 6.1 (Milnor-Wood). Let I'y be the fundamental group of a
closed oriented surface of genus g > 1 and ¢: 1y — Homeo_(S') be any
homomorphism. Then the Euler number satisfies |eu(¢p)| < 2g — 2.

Proof. We shall not give a complete proof since this result will follow
from later considerations but we prove a weaker version. Keeping the previous
notation, we know that eu(qﬁ) is the translation number of the homeomor-
phism a1b1a1 b_ agb a_lb ' We also know that the translation num-
ber function 7 is a quasi- homonorphlsm i.e. there is some inequality of
the form |fr(f1f2)—7(f1)—'r(f2)} <D for some D. We also know that

~1 o
7(f ) = —7(f). So, if we evaluate 7 on this element, we get a bound
of the form |eu(¢p)| < (4g — 1)D. This is not quite the bound given in the
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theorem but this explains the idea of the proof: to get the exact bound, one
should be a little bit more clever! [

In [17], Eisenbud, Hirsch and Neumann gave a much more precise result
that we would like to mention here. If f 1s an element of HomeoJr (Sl) define

m(f) = mf(f(x) x) and 7(f) = sup(f(x)—x). Note that m(f) < r(f) < m(f)
and 0 < m(f) — m(f) < 1.

THEOREM 6.2 (Eisenbud, Hirsch, Neumann). An element f of the group
Homeo+(Sl) can be written as a product of g > 1 commutators if and only

zj”m(f)<29—1 and 1—Zg<m(f)

Any element of Homeo+(S ) has at least one lift f in Homeo,(S') such
that —1 < m( f) < m(f) <1 so that it can be written as one commutator. It
follows that every element of Homeo, (S') can be written as a commutator.
We mentioned this fact earlier.

In [25], we put these inequalities in the context of bounded cohomology,
which was introduced by Gromov (see [30] for many geometrical motivations).
Consider again an abstract group I' and let A = Z or R. Then define a
bounded k-cochain as a bounded homogeneous map from I'**' to A. This
defines a sub A-module of CKT,A) denoted by C’g(F,A). It is clear that
the coboundary dy of a bounded k-cochain is a bounded (k + 1)-cochain
so that we can define the cohomology of this new differential complex, that
is called the bounded cohomology of T with coefficients in A and denoted
by Hj(I',A). We have obvious maps from HI,A) to HT,A) obtained
by “forgetting” that a cocycle is bounded. In general these maps are neither
injective nor surjective. See [35, 36] for a detailed algebraic background on
this cohomology.

The degree 1 case is trivial. A cocycle is given by a bounded homomor-
phism from I"' to A and is therefore trivial. Hence H;(F,A) = 0 for any
group I'.

The degree 2 case is the most interesting for us. Let us look first at
Hg(Z, R). Consider a bounded 2-cocycle ¢ on Z with values in R. Since we
know that H*(Z,R) = 0, we know that ¢ is the coboundary of a 1-cochain
of the form u(ni,n;) = u(n; — ny) for some function #: Z — R. The fact
that ¢ is bounded means precisely that % is a quasi-homomorphism from
Z to R. We know that this implies the existence of a real number T such
that u(n) — nT is bounded. Now, if we define T(n) = u(n) — nr, then the
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coboundary of the bounded 1-cochain v(ny, ny) = B(ny — np) is c¢. We have
shown that H2(Z,R) = 0.

For a general group T, let us define QM(T) as being the vector space
of quasi-homomorphisms from I' to R. Say that a quasi-homomorphism is
trivial if it differs from some homomorphism by a bounded amount. It follows
from the definitions and the previous argument that the kernel of the map from
HXI,R) to HXT,R) is precisely the quotient of OM(T) by the subspace
of trivial quasi-homomorphisms. This gives some intuition about the group
HAT,R).

Let us compute now some examples with coefficients in Z. Start with
H%(Z,Z). Iet ¢ be a bounded integral 2-cocycle. We know that it is the
coboundary of a 1-cochain of the form wu(ni,ny) = u(ny — np) for some
function #: Z — Z. Again, we know that there is a real number 7 such that
#(n) — nt is bounded but if we define T(n) = u(n) — n7 the 1-cochain v is
not integral unless 7 is an integer ! For each real number 7, define ¢, to be
the coboundary of the integral 1-cochain v,(ny,n2) = [(n1 — ny)T] where []
denotes the integral part of a real number. It is clear that ¢, is bounded (by
1) and our previous computations show that every bounded integral 2-cocycle
in Z is cohomologous to some ¢, for some 7. Moreover, it is clear that ¢,
and c,, define the same element in H%(Z,Z) if and only if 7 — 7 1is an
integer. Summing up, we showed that H}(Z,Z) is isomorphic to R/Z. We
hope that the reader will recognize that the rotation number is showing up...

As a matter of fact, the argument that we presented is more general and
shows immediately that for any group I', the kernel of the map from H:(T,Z)
to H2(T', R) is precisely the quotient H'(T', R)/H'(T', Z). (Recall that H NT, A)
is the set of homomorphisms from I" to A.)

We now come to the construction of an invariant of a group action on the
circle that combines the rotation numbers and the Euler class. Let us look
again at the central extension

0 —s Z — Homeo.(S') — Homeo,(S') — 1

and let us try to find some 2-cocycle representing its Euler class (see also [38]).
We know that we should choose a set theoretical section s to p. It turns out
that there is a natural choice of such a section. Indeed, let f € Homeo (S'),
then among the elements in p~I(f) € H5ﬁ€0+(81), there is only one, denoted
by o(f), which is such that o(f)(0) lies in the interval [0, 1[C R. This o
will be our preferred section. Let us try to evaluate the associated 2-cocycle
¢ on Homeo_ (S!). By definition the associated inhomogeneous cocycle T is:

c(fi,f) = o(fif) " o(fi)o(f).
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The main (easy) observation is that the cocycle ¢ is bounded. More precisely :

LEMMA 6.3. The 2-cocycle c takes only the two values 0 and 1.

Proof. By definition o(£,)(0) is in [0, 1[. It follows that o(f;)(c(£)(0))
is in the interval [o(f;)(0), o(f)(0) + 1[ which is contained in [0,2]. We
know that o(fif;) and o(fi)o(f,) are lifts of the same element fif> and that
o(f1f2)(0) is in [0, 1[. It follows that o(fif2) "'o(fi)o(f) is the translation
by Oor 1. [J

Hence, for this choice of section o, the associated 2-cocycle ¢ is bounded
and integral. Thus, we have defined an element of H?(Homeo. (S'),Z) that
we call the bounded Euler class. It may seem that the definition depends on
the choice of the origin 0 on the line but the reader will easily check that a
modification of the origin would change the section o by a bounded amount
so that the bounded integral cohomology class is indeed well defined. If we
have a homomorphism ¢ from a group I" to Homeo, (S!) we can pull back
this bounded Euler class. We get an element in Hg(l", 7)) that we still denote
by eu(¢) and that we call the bounded Euler class of the homomorphism ¢. In
case I' = Z, it should now be clear that the corresponding bounded Euler class
in H,%(Z, Z) = R/Z is exactly the rotation number of the homeomorphism
¢(1). Hence we have proved the following :

THEOREM 6.4 ([25]). There is a class eu in H,f(HomeoJr(Sl),Z) such
that :

1) For every homomorphism ¢: T — Homeo,(S') the image of
o*(eu) € Hg(l’, Z) in H*(I',Z) under the canonical map is the Euler class.

2) If ¢: Z — Homeo(S") is a homomorphism then ¢*(eu) € HX(Z,Z) =
R/Z is the rotation number of ¢(1).

3) ¢*(ew) is a topological invariant, i.e. if ¢1 and ¢, are two homo-
morphisms from T to Homeo,(S') which are conjugate by an orientation
preserving homeomorphism, then ¢} (eu) = ¢3(eu) in HX(T,Z).

In other words, the bounded Euler class is a topological invariant which
combines the Euler class and the rotation number.

We now show that this new invariant for a group action is as powerful as
the rotation number was for a single homeomorphism. Let us begin by the
most interesting case.
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THEOREM 6.5 ([25]). Let ¢1,¢o two homomorphisms from a group 1" to
Homeo (S!) such that all orbits are dense on the circle. Assume that the
bounded Euler classes are equal: ¢i(eu) = ¢5(eu). Then ¢ and ¢, are
conjugate by an orientation preserving homeomorphism.

Proof. This is very similar to the corresponding statement for rotation
numbers: compare with the proof of 5.9. Since ¢j(eu) = ¢5(eu) then in
particular the Euler classes in H?*(I',Z) are equal, which means that ¢,
and ¢, define the same central extension . In other words, there is a
central extension 0 — Z — I 5T — 1 and homomorphisms gbl and
qbz from T to Homeo. (S') such that ¢1 and gbl map the generator 1
of Z on the translation by 1 and such that the induced homomorphisms
from T/Z ~ T to Homeo,(S')/Z ~ Homeo.(S!) are ¢; and ¢,. The
assumption that the bounded classes agree means in fact that we can choose
those homomorphisms in such a way that for each x in R, the points
1M Pa(F)1(x) are bounded independently of 5 in I'. We now define
Z(x) to be the upper bound of this bounded set. This map R is increasing,
commutes with integral translations, and conjugates 51 and %2. The jump
and plateau sets of h are open sets invariant under ;51 (IN“) and &Fz(f)
respectively. By our assumption these open sets are empty so that his a
homeomorphism which induces a conjugacy between ¢; and ¢,. For more
details, see [25]. [

In case the group ¢(I") does not have all its orbits dense, we saw in 5.6
that there are two possibilities: ¢(I") can have a finite orbit or ¢(I") can have
an exceptional minimal set. In the second case, we also saw that there is a
canonical way of “collapsing” the connected components of the complement of
the exceptional minimal set to construct another homomorphism ¢ which has
all its orbits dense: this is the associated “minimal” homomorphism (see 5.8).

Suppose now that ¢(I') has a finite orbit consisting of k elements. Then,
every element of ¢(I') must permute these k points cyclically so that we
get a homomorphism r: I' — Z/kZ. Tt is clear that two finite orbits of ¢(I)
have the same number of points and define the same r: we call this r the
cyclic structure of the finite orbits. Conversely, consider a homomorphism
r:I' — Z/kZ and the corresponding action on the circle by rotations of
order k. The bounded Euler class of this action is an element of Hg(r, Z):
we call these elements the rational elements in H,f(F, 7). It is not difficult

to see that an element in H,f(F, Z) is rational if and only if its pull-back on
some finite index subgroup is trivial.
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Now, we can state the general result which is the exact analogue of what
has been done in 5.9 for the rotation number. We don’t give the proof: it can be
found in [25] (in a slightly different terminology and with small mistakes...),
but the reader should now be in a condition to fill in the missing details by
himself.

THEOREM 6.6 ([25]). Let ¢1,¢2 two homomorphisms from a group T to
Homeo  (SY). Assume that the bounded Euler classes ¢1(eu) = ¢5(eu) are
equal to the same class ¢ in HX(T',Z).

1) If ¢ is a rational class, then ¢(I') and ¢>(I') have finite orbits with
the same cyclic structure.

2) If ¢ is not rational, then the associated minimal homomorphisms ¢,
and ¢, are conjugate.

Conversely, if ¢1(I') and ¢o(I') have finite orbits of the same cyclic
Structure or if they have no finite orbit and their associated minimal
homomorphisms are conjugate (by an orientation preserving homeomorphism),
then they have the same bounded Euler class.

Note in particular that the bounded Euler class of an action vanishes if
and only if there is a point on the circle which is fixed by all the elements
of the group.

6.4 EXPLICIT BOUNDS ON THE EULER CLASS

Since we know that the bounded Euler class of an action contains almost
all the topological information, it is very natural to try to determine the part
of Hg(l“, Z) which corresponds to the bounded Euler classes of all actions
of T on the circle. In the case T = Z, we know that HXZ,Z) = R/Z
and that every class corresponds to an action (by rotations). However, in the
case where I' is the fundamental group of a closed oriented surface of genus
g > 1, the Milnor-Wood inequality shows that even the usual Euler class in
H*(T',Z) = Z has to satisfy some inequality.

E Given a bounded cochain ¢ in C{(T',R), we define its norm ||c|| as the
supremum of the absolute value of c(vy,...,%). Then we define the “norm”
of a bounded cohomology class with real coefficients as the infimum of the
norms of cocycles that represent it. We should be aware of the fact that this
norm is not really a norm but is merely a semi-norm: a non zero class might
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have zero norm... Consider the case of the bounded Euler class, seen in the
real bounded cohomology.

THEOREM 6.7. The image of the bounded Euler class eu in the real
bounded cohomology H,%(HomeoJr(Sl),R) has norm 1/2.

Proof. This is the abstract version of the Milnor-Wood inequality. Note
that a constant 2-cocycle is the coboundary of a constant 1-cochain. We
found a representative of the Euler class taking only two values 0 and 1.
If we subtract from this cocycle the constant cocycle taking the value
1/2, we get a cohomologous bounded (real) cocycle taking values =+1 f2.
This shows that the norm of the image of eu in Hg(Homeo+(Sl),R)
is at most 1/2. The opposite inequality follows from Milnor’s compu-
tation of the Euler number for an embedding of the fundamental group
I, of a closed oriented surface as a discrete cocompact subgroup of
PSL(2,R) that we mentioned in 6.1. If the norm were strictly less than
1/2, then this number would be strictly less than 2g — 2. See [25] for more
explanations. [

6.5 ACTIONS ON THE REAL LINE AND ORDERINGS

Our main concern is to study actions on the circle but there is a preliminary
question which deals with actions on the line. Of course, if a group acts on
the line, we can always add a point at infinity to produce an action on the
circle (with a common fixed point). In other words studying actions on the
line is equivalent to studying actions on the circle with vanishing bounded
Euler class. This is the reason why we begin by general remarks on groups
acting on the line.

Observe first that the dynamics of a single orientation preserving homeo-
morphism A of R are very easy to describe. Let F = Fix(h) be the set of
fixed points. Each interval of the complement of F is h-invariant and the
action of A on this interval is conjugate to a translation (positive or negative,
according to the sign of h(x) — x on this interval).

We say that a group I' is left orderable if there exists a fotal ordering < on
I' which is invariant under left translations (i.e. v; = v, implies yvy; < vy2).
We write v; < 72 if 71 =12 and v; # 2. An obvious necessary condition
for a group to be left orderable is that it be torsion free (i.e. there is no non
trivial element of finite order).

The following theorem is well known but we weren’t able to find its origin
in the literature.
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THEOREM 6.8. Let T' be a countable group. Then the following are
equivalent :

1) T' acts faithfully on the real line by orientation preserving homeomor-
phisms.

2) I' is left orderable.

Proof. Suppose that I" acts faithfully on the line by orientation preserving
homeomorphisms, i.e. that there exists an injective homomorphism ¢ from
I' into the group Homeo (R) of orientation preserving homeomorphisms of
the real line. Assume first that there is a point x; in R with trivial stabilizer.
Then we can define a left invariant total ordering by defining v, < v, if
d(y1)(x0) < () (xg). If there is no such point x, choose a sequence of
points (x;);exy Which is dense in the line. Now define Y1 27 if vy =5 orif

the first i for which ¢(v1)(x:;) # ¢(12)(x;) is such that ¢(1)(x) < ¢(v2)(x;).
This defines a left invariant total order on T.

Conversely, let < be a left invariant total order on the countable group I.
Enumerate the elements of T, i.e., choose a bijection i € N+ v, € I'. We are
going to construct inductively an increasing injection v of (I, <) in R, ).
Define wv(vo) arbitrarily and suppose that v(yp), ... , V(7;) have been defined.
If iy is smaller (resp. bigger) than all ~y,...,v; then define v(7Yi+1) as
any real number smaller (resp. bigger) than min(v(vy),. .. (7)) — 1 (resp.
max(v(Y), - - -, v(7;)) + 1). Otherwise, there is a pair of integers 0 < o, B8 < i
such that v, < 41 < 3 and such that there is no v (0 <j <i) between
Yo and yg. Then we define v(viy1) as (v(va) +v(y5))/2. Let X C R be the
closure of v(I").

By our construction, it is easy to verify that X is unbounded and that
any connected component ]a,b[ of the complement of X is such that a
and b are in v(I'). The group T' acts on itself by left translations so
that every element v of I' induces an increasing bijection #(v) of w(I).
We claim that ¢(y) extends continuously to X. Otherwise, there would
exist a point x = lim,v(y;,) = lim,v(y; ) for an increasing sequence of
elements ;, and a decreasing sequence ; and such that lim, v(yy,) <
lim,, v(yy;,). Then a = lim,v(yy;) and b = lim,, v(yy,,) would be the
endpoints of some connected component of the complement of X. By
our previous observation, a and b would be the image by v of two
distinct elements of I'. On multiplying these two elements on the left
by 7!, this would produce two distinct elements ~_ and ¥+ such that
v(y;,) < v(y-) < v(y+) <wv(y,) and this contradicts the fact that the two
sequences have the same limit x.
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Therefore we have produced a homeomorphism ¢(vy) of X . We now extend
¢(7) to the whole line R in such a way that ¢(v) is affine on each interval
of the complement of X. It is now clear that ¢ is an injective homomorphism
from I to the group of orientation preserving homeomorphisms of the real
line. [

Theorem 6.8 produces many examples of actions on the real line. For
instance, suppose I' is a countable group containing a nested sequence of
subgroups ' =Ty D Iy D --- D I; D ... (finite or infinite) such that the
intersection of this family reduces to the trivial element and that each T}
is a normal subgroup in the previous one I';_;. Assume that each quotient
Q; = T;/Ti_y is left orderable and denote by =; such a left order on Q;.
Let us construct a left order < on I'. Consider two distinct elements -y,
in T and let i be the first integer such that vy'~' is not in I';. Then !+
is in T;_; and determines an element [y~ !7'] of Q;. Then define v <~/ if
[Y~'~4'] =; 1. This is a left invariant total order on T .

As an example, note that a countable torsion free abelian group A embeds
in the tensor product A ® Q which is a Q-vector space whose dimension is
at most countable and therefore embeds in R. Hence, countable torsion free
abelian groups are orderable. Let us say that a group I' is solvable (resp.
residually solvable) if there is a finite (resp. infinite) decreasing sequence of
subgroups as in the previous paragraph such that the quotient groups Q; are
abelian. We have now proved:

PROPOSITION 6.9. Let I" be a countable group which is (residually)
solvable with torsion free abelian quotients. Then T acts faithfully on the
real line by orientation preserving homeomorphisms.

There are many examples of such groups: free groups or fundamental
groups of closed orientable surfaces for instance have these properties [46].
Observe that the left orderings that we produced by the previous argument
are in fact left and right invariant orderings. If we go back to the proof of
Theorem 6.8 we can check that for bi-invariant ordered groups, the actions on
the line ¢: I' — Homeo (R) produced by the proof are very peculiar: they
are such that for every non trivial v € I', we have either ¢(v)(x) < x for
all x € R or ¢(y)(x) > x for all x. In other words the graphs of ¢() don’t
cross the diagonal. However, there will be elements whose graphs touch the
diagonals, unless of course the action is free, which is almost never the case
because of the following well known theorem of Holder.
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THEOREM 6.10 (Holder). If a group acts freely on the real line by
homeomorphisms, it is abelian. More precisely, such a group embeds as
a subgroup of R and the action is semi-conjugate to a group of translations.
In the same way, a group acting freely on the circle is abelian, embeds in
SO(2), and is semi-conjugate to a group of rotations.

Proof. Let ¢: T — Homeo  (R) be a homomorphism such that for all y
different from the identity the homeomorphism ¢(y) has no fixed point. If
7,7 are elements of T', write v =2 if $(y)(0) < ¢(+')(0) (which implies
P(7)(x) < d(y")(x) for all x since the action 1s free). This defines a left and
right invariant ordering < which is archimedean, i.e. such that for any pair of
non trivial elements ~,~" for which id < v and id < 7', there is a positive
integer n such that 7/ < ~". Indeed, the sequence ¢(7)"(0) is increasing and
has to tend to oo since otherwise its limit would be a fixed point of @(v);
hence for n sufficiently large we have ¢(v/)(0) < ?(v™")(0).

Then we show that any group T’ equipped with a bi-invariant total
archimedean ordering embeds in R and is therefore abelian. Fix a non trivial
element vy such that id < ~, and for each v € I', define ®(y) as the smallest
integer k € Z such that v < 7%. We have

D(y)—1 D(y)

This defines a map ®: I’ — Z which satisfies
DY)+ P(Y) — 1 < D(vy') < D(y) + D(y')

so that @ is a quasi-homomorphism. As we have already observed, ¢(v) =
lim,,_, ., ®(v")/n exists and defines a quasi-homomorphism ¢: I' — R which
is homogeneous (i.e. ¢(y") = no(v)) and which is increasing (i.e. v < +/
implies ¢(y) < ¢(y')). Note that ¢(vp) = 1.

We claim that ¢ is a group homomorphism. Indeed, consider two elements
7,7" in T and assume for instance that vy =< 4'~. It follows easily by
induction that for every positive integer n, we have e e N (0 L
Evaluating @ on this inequality, we get

DY) + D(Y") — 1 < (7)) < O(y") + D(y™) .

Dividing by n and taking the limit, we obtain
PN+ (V) < 6(vy) < 9(9) + B(v)

so that ¢ is indeed a homomorphism.
We still have to show that ¢ is injective. For any -y such that id < v we
know, since the ordering is archimedean, that there is some positive integer k
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such that vy < +*. It follows that 1 < k¢(y) so that ¢(7) is non trivial. This
proves the injectivity of ¢.

Observe that the non decreasing embedding ¢ of I" in R is unique up to
a multiplicative constant. Indeed, if ¢’ is another one, we have by definition
(D(™)— 1) (70) < ¢'(4") < D(v)P' (o). Dividing by n and taking the limit,
we get ¢' = ¢'(70)-¢.

We now show that the action of I' is semi-conjugate to a group of
translations. If T' is isomorphic to Z, it acts freely and properly on the line
so that it is indeed conjugate to the group of integral translations. Otherwise,
&) is dense in R. Let x be any point in R and define

h(x) = sup{p(y) € R | ¥(0) < x}.

Clearly, & is non decreasing and satisfies A(y(x)) = h(x) + ¢(vy) identically.
The continuity of & is easy and follows from the density of the group ¢(I):
if & were not continuous, the interior of R\ A(R) would be a non empty
open set invariant by all translations in ¢(I").

The proof for groups acting on the circle follows easily: if I" is a group
acting freely on the circle, its inverse image in Homeo. (S') acts freely on
the line. [

The following is an elementary corollary of the previous theorem.

PROPOSITION 6.11. Let 1" be a torsion group (i.e. such that every element
in T has finite order). Then any homomorphism from T to Homeo, (S') has
abelian image.

Proof. We know the structure of elements of finite order of Homeo, (S!) :
they are conjugate to rotations of finite order. It follows that an element having
a fixed point and of finite order in Homeo_ (S') is the identity. In other words,

a torsion group acting faithfully on the circle acts freely. The result follows
from 6.10. [

There is another very interesting example of a group which admits a
left and right invariant total ordering: the group PL_ ([0, 1]) of orientation
preserving piecewise linear homeomorphisms of the interval [0, 1]. Indeed,
let v,+" be two distinct elements of PL_ ([0, 1]) and consider the largest real
number x € [0, 1] such that v and ' coincide on the interval [0,x]. Then
for € > 0 small enough, we have either ~(¢) < 7/'(t) for ¢ € Jx,x + €] or
¥(t) > +'(¢) for t € Ix,x + €]. Say that v <+ in the first case and +' < « in
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the second case. This defines a total ordering on PL, ([0, 1]) and it is clearly
left and right invariant. We can induce this ordering on countable subgroups
of PL, ([0, 1]), for instance the subgroup of elements with rational slopes and
apply the general construction that we described above. We get an action of
this rational group on the line which is very different from the given action
of PL([0,1]) on ]0,1[: the corresponding graphs don’t cross the diagonal.

Remark that an affine bijection of the line x — ax-b has at most one fixed
point (if it is not the identity). Solodov proved that this property essentially
characterizes groups of affine transformations.

THEOREM 6.12 (Solodov). Let T be a non abelian subgroup of
Homeo (R) such that every element (different from the identity) has at most
one fixed point. Then T is isomorphic to a subgroup of the affine group
At (R) of the real line, and the action of T on the line is semi-conjugate
to the corresponding affine action.

Solodov did not publish a proof but mentions his result in [62] and
explained it to the author of these notes in 1991. Later T. Barbot needed this
theorem for his study of Anosov flows and published a proof in [3]. More
recently, N. Kovacevi¢ published an independent proof in [43]. See also the
recent preprint [20] for a detailed proof.

Proof. Let I' be a subgroup of Homeo, (R) such that every element
(different from the identity) has at most one fixed point. If no non trivial
element has a fixed point, Holder’s Theorem 6.10 implies that T is abelian
(and that the action is semi-conjugate to a group of translations). If there is a
point x which is fixed by the full group T", then one can restrict the action
to the two components of R\ {x} on which we can use Holder’s theorem
again: this would imply that I" is abelian. :

We claim that T contains an element -y with a repulsive fixed point x,
i.e. such that ~(y) >y for every y > x and v(y) <y for every y < x. Indeed
choose some non trivial v in I' fixing some xo. If xy is not repulsive for
Y and for -y, !, this means that x, is a parabolic fixed point, i.e. replacing
Yo by its inverse, we have 7o(y) >y for all y # xq. Conjugating Yo by some
element which does not fix xy, we get an element v fixing some x; and
such that ~(y) > y for y # x;. Assume for instance x; < x; and consider
the element v = vy, L Obviously, one has v(xp) < xo and ~y(x;) > x; and
since we know that  has at most one fixed point, v must have a repulsive
fixed point between xy and x; as we claimed.
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Now, we can try to mimic the proof of Holder’s theorem. Consider two
elements v and v of I'. Write v < +/ if there is some x € R such that
v(y) < 4/(y) for all y > x. Clearly, our assumptions imply that this defines
a total ordering on I' which is left and right-invariant. Denote by I't the
subset of elements of I'\ {id} such that id < .

The next claim is a weak form of the archimedean property. Fix some g
in T with a repulsive fixed point xy, and let v be any other element of Tt .
Then there exists some positive integer k such that vy =< ~&. Indeed, choose
some real numbers x_,x; such that x_ < xop < x,. For k big enough, one
has E(x_) < y(x_) and ~(x;) > y(xy) since xo is repulsive. It follows

B that v~ !4f has a fixed point in the interval [x_,x,] which is therefore the

unique fixed point of y~!~&. Hence we have ~£(y) > v~ !(y) for all y > x
and v < ~&. This proves our last claim.

Again, we fix some ~ in I'" with a repulsive fixed point xq. For each
v €T we define ®(y) € N to be the smallest integer k such that v < v,
B If v T, we let D(y) = —B(y~!) and finally we define ®(id) = 0. This
| defines a map ®: ' — Z. Then we can copy from the proof of Holder’s
B theorem: @ is a quasi-homomorphism and the limit d(y) = lim,—, 00 D(v") /1
exists and defines a group homomorphism ¢: I' — R.

It follows in particular that the first commutator group [I', I'] is contained in
the kernel of ¢. The final observation is that this kernel acts freely on the line.
Otherwise, we saw that Ker(¢) would contain some element -y with a repulsive
| fixed point and we have already observed that this implies the existence of
@ some integer k such that vy < +* which in turn implies that ¢() > 1 /k#£0,
| a contradiction. Using Holder’s theorem, we conclude that [I',T'] is abelian.
We know the structure of free actions (of abelian groups) on the line: they
| are semi-conjugate to translation groups. More precisely, we know that there

B is amap 2: R — R and an injective homomorphism : [I',T] — R which

are such that for every v € [I',I'] and x € R, one has: h(y(x)) = h(x)+ (7).
| If the image ([I',T']) is non discrete, this map & is unique up to post-
| composition by an affine map. So assume first that ([T, T']) is non discrete.
Note that [I',I] is a normal subgroup of I'. It follows that for every -y
i in T", the map h o+ coincides with 2 up to some affine map. This means
precisely that 4 realizes a semi-conjugacy between I" and some group of affine
transformations of R and shows that I" is indeed isomorphic to a subgroup
of Aff(R). To finish the proof, we still have to show that Y([I',T']) cannot be
discrete, i.e. isomorphic to Z. In this case, inner conjugacies by an element
B 7 <T have to preserve the generator 1 of Z (the unique generator which is
| bigger that the identity in our ordering). This means that Z (=~ [I',T]) lies




380 : v E. GHYS

in the center of I". This is not possible since for every fixed point x of an
element v of I', its orbit under Z would consist of fixed points of +. L]

Holder’s theorem essentially characterizes translation groups as groups
acting on the line with no fixed points. Solodov’s theorem essentially
characterizes groups of affine transformations as groups acting on the line
with at most one fixed point. It is very tempting to try to prove a similar
characterization of groups of projective transformations as groups acting on
the circle with at most two fixed points... Unfortunately, this is not the case !
N. Kovacevi¢ recently constructed a nice counter-example in [44].

THEOREM 6.13 (Kovalevié). There exists a finitely generated subgroup of
Homeo (S!) such that every element different from the identity has at most
two fixed points, such that all orbits are dense, and which is not conjugate
to a subgroup of PSL(2,R).

Nevertheless, there is a very important characterization of groups which are
conjugate to subgroups of PSL(2,R). This characterization is due to Casson-
Jungreis and Gabai [15, 24], following earlier work of Tukia. We would have
liked to include a discussion and a proof of this result, but that would be too
long and we have to limit ourselves to a statement! Consider a sequence 7,
of elements of Homeo_ (S!). Let us say that -y, has the convergence property
if it contains a subsequence -y, which satisfies one of the following two
properties :

* 7, 1S equicontinuous;
e there exist two points x,y on the circle such that -, (resp. 7, h
converges to a constant map on each compact interval in S'\ {x} (resp.

in 8\ {y}).

A subgroup T' of Homeo, (S!) is called a convergence group if every
sequence of elements of I' has the convergence property.

THEOREM 6.14 (Casson-Jungreis, Gabai). A subgroup of Homeo (S!) is
conjugate to a subgroup of PSL(2,R) if and only if it is a convergence group.

The reader should at least be able to prove the easy part of the theorem:
subgroups of PSL(2,R) are convergence groups !

We revert now to groups acting on the circle. We state a general criterion
which characterizes the bounded classes coming from some action.
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THEOREM 6.15 ([25]). Let T" be a countable group and c¢ a class in
HX(T',Z). Then there exists a homomorphism ¢: I — Homeo(S') such that
¢*(eu) = c if and only if ¢ can be represented by a cocycle which takes only
the values 0 and 1.

Proof. Of course, the necessary condition is clear from 6.3 and the main
difficulty will be to construct some action from a cocycle taking two values.
Let ¢ be a 2-cocycle on the group I' taking only the values 0 and 1. We
saw that a central extension and a section lead to a 2-cocycle. The process
can be reversed and we can construct a central extension I' in the following
way from a 2-cocycle c¢. As a set, T is the product Z x I' and we define a
multiplication e by:

(n1,71) o (N2, 72) = (n) + ny + (1, 72), V172)

where, as usual, ¢ denotes the inhomogeneous cocycle associated to c¢. The
fact that T is a group is a restatement of the fact that ¢ is a cocycle. The
projection I >Tisa group homomorphism.

Assume first that the cocycle ¢ is non degenerate, i.e. that ¢(id,~y) =
c(v,id) =0 for every ~v in I (where id denotes the identity element in ).
Then the identity element of T is (0,id) and the map n € Z +— (n,id) € r
is also a group homomorphism. Hence, we have a central extension

~

0 Z r r l.

The fact that ¢ takes non negative values means that the subset P of T
consisting of elements of the form (n,v) with n >0 is a semi-group, Le. is
stable under the product e. Moreover, since ¢ takes the values 0 and 1, the
inverse of (n,7) is (—n,y~!") or (—n—1,4~1). It follows that every element
of T belongs to P or to its inverse. In other words, if one defines 4; < 7,
if 2917 €P we get a total pre-order on ' which is left invariant. Denote
by t the element (1,id) in T'. Note that for every 7 in I we have v 2 ty.

The end of the proof mimics 6.8: One constructs a map v: I — R such
that v < %, if and only if v(¥;) < v(¥,) and such that v(yt) = v(v) + 1
for every 7 € I. We may even choose v in such a way that the action of
T on itself by left translations defines an action on v(I') C R which extends
to its closure. Then we extend this action of T" to R using affine maps in
the connected components of the complement of this closure. Finally, since t
acts on R by the translation by 1, we get an action of the quotient group I
on the circle R/Z. This construction was carried out in such a way that it is

clear that the bounded Euler class of this action is precisely the class of the
cocycle c.
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Finally, we have to deal with the case of degenerate cocycles c. Note that
the fact that ¢ is a cocycle can be expressed by the identity :

(1, 72) + (2, 713) = €72, 73) + (71, 1273) -

It follows that there exists an integer v = 0 or 1 such that for every v in
I' we have ¢(1,v) = ¢(y,1) = v. The fact that ¢ is degenerate means that.
v =1. Then we can define ¢/ =1 — ¢. This is a new cocycle which is non
degenerate and takes only the values 0 and 1. By the previous construction,
we get an action of I" on the circle corresponding to the bounded class of
c’. Reversing the orientation of the circle, we get finally an action of T" on
the circle whose bounded Euler class is the class of ¢. []

6.6 SOME EXAMPLES

Recall that a group I is called perfect if every element is a product
of commutators. It is uniformly perfect if there is an integer k such that
every element is a product of at most k¥ commutators. For such a uniformly
perfect group, every quasi-homomorphism from I' to R is bounded (since
it is bounded on a single commutator) so that the canonical map from
H;T,R) to HXT,R) is injective. Moreover the map from HZ(,Z) to
Hy(I',R) is also injective since there is no homomorphism from T to
R. In such a situation, the usual Euler class in H*(I',Z) determines the
bounded Euler class, and therefore most of the topological dynamics of a
group action.

An example of such a group is SL(n,Z) which is uniformly perfect for
n > 3 and which, moreover is such that H*(SL(n, Z),7) =0 (for n > 3) [52].
As a corollary, we get immediately that for n > 3, any action of Sl(n,Z)
on the circle has a fixed point. This will be strengthened later in 7.1. Some
other matrix groups have this property: see for instance [5, 14].

Consider the case of the Thompson group G. We can show that every
element in G is a product of two commutators (see [28]) and that H*(G,Z)
is isomorphic to Z. Using the Milnor-Wood inequality we can show that in
H*(G,Z) only the elements —1,0,+1 have a norm less than or equal to
1/2. Hence we deduce that any non-trivial action of the Thompson group
G on the circle is semi-conjugate to the canomical action given by its
embedding in PL,(S') or to the reverse embedding obtained by conjugating
by an orientation reversing homeomorphism of the circle (see [28] for more
details).
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Another situation where the bounded cohomology is easy to compute is
the case of amenable groups. Let I' be topological group (which will be
frequently a discrete countable group) and denote by CS(I“) the real vec-
tor space of bounded continuous functions on I' with real values. We say
that I" is amenable if there is a linear operator m: Cg(l“) — R called a
“mean” such that m is non negative on non negative elements, is equal
to 1 on the constant function 1 and is invariant under left translations
by elements of I'. See the book [29] for a good description of the the-
ory of these groups. Of course, compact groups are amenable: it suf-
fices to define m as the integral over the Haar measure. Abelian groups
are amenable. A closed subgroup of a locally compact amenable group
is amenable and an increasing union of amenable groups is amenable.
The category of amenable groups is also stable under extensions. In par-
ticular, solvable groups are amenable. The following is due to Johnson
(see [39]).

THEOREM 6.16 (Johnson). If T" is an amenable group then its real bounded
cohomology groups HY(T,R) are trivial for all k > 0.

Proof. Strictly speaking, we only defined cohomology and bounded
cohomology for discrete groups... but of course we could have done it for a
general topological group. Since in any case we don’t need this fact for non
discrete groups, we assume I is a discrete amenable group equipped with
a mean m. Let c: I*f! — R be a bounded k-cochain. Then we can define
m(c): T — R by taking the mean value with respect to the first variable. This
linear operator : C’,j(F, R) — C’g_l(I‘, R) is an algebraic homotopy between
the identity and O, i.e. we have di_im &+ md; = id. It implies immediately
that a bounded cocycle is a bounded coboundary.  []

Let I" be an amenable subgroup of Homeo_ (S') and let T be the group of
lifts in Homeo_(S') : this is also an amenable group since it is an extension
of the amenable group Z by the amenable group I'. The translation number
map 7: I — R is a quasi-homomorphism and is a homomorphism on one
generator subgroups; the vanishing of bounded cohomology therefore implies
that it is a homomorphism. The rotation number is a homomorphism when
restricted to an amenable group.

If I' is an amenable group, the group H,%(F, Z) can easily be determined.
Indeed, we know that H,%(F, R) = 0 and that the kernel of the map from
H*T,Z) to H*T,R) is the quotient group H'(I',R)/HY(T,Z). We have
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therefore proved the following :

PROPOSITION 6.17. Let T be an amenable group and ¢: T — Homeo_ (S!)
a homomorphism. Then the rotation number map po¢: " — R/Z is a
homomorphism. If the image of this homomorphism is finite, then ¢(') has
a finite orbit of the same cyclic structure. Otherwise, ¢ is semi-conjugate to
the rotation group p o ¢(I).

Note that there is another approach to the proof of this proposition, using
invariant probability measures. Indeed, let T' be an amenable group acting on
the circle by some homomorphism ¢: " — Homeo, (SY). If u: S' > R is a
continuous function, we can consider the mean value of the bounded function
v € I' = u(p(y)(0)). This gives a linear functional on the space of continuous
functions u on the circle, equal to 1 on the function 1, i.e. this mean value has
the form fsl udy for some probability measure 4 on the circle. Of course this
probability measure is invariant under ¢(I"). Assume now that 1+ has some
non trivial atom, ie. that some point x has some positive mass u({x}) > 0.
Then there is a finite number of atoms of the same mass so that we get a finite
orbit for ¢(I'). If there is no atom, then there is a degree 1 map of the circle
to itself which sends the measure p to the Lebesgue measure since in this
case the measure of an interval depends continuously on its endpoints. This
map collapses each component of the complement of the support of p to a
point. This provides a semi-conjugacy of ¢ with a group of homeomorphisms
preserving the Lebesgue measure, ie. a rotation group. This gives another
proof of Proposition 6.17.

Invariant probability measures also provide another definition of translation
and rotation numbers. Let f be any element of Homeo, (S!). The qualitative
description of the topological dynamics of f that we gave in 5.9 enables us
to describe explicitly the probability measures ;1 on S' which are invariant
by f.

If the rotation number of f vanishes, the invariant probability measures are
characterized by the fact that their support is contained in the fixed point set
Fix(f) of f. Indeed we know that the action of f on a connected component
of the complement of Fix(f) is conjugate to the translation by 1 on R and
cannot preserve any non trivial finite measure.

If the rotation number is rational, invariant probability measures are
concentrated on the set of periodic points.
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If the rotation number is irrational and the orbits are dense, we know
that f is conjugate to an irrational rotation. In this case, there is a unique
invariant probability measure which is the image of the Lebesgue measure by
the topological conjugacy (see [41]). If the orbits are not dense, there is an
exceptional minimal set K C S' and the support of any invariant probability
has to coincide with K since we know that the connected components of
S! — K are wandering intervals. In this case also there is a unique invariant
probability p which is the unique probability which maps to the Lebesgue
measure by the degree 1 semi-conjugacy with a rotation.

Let f be an element of Homeo, (S') and p a probability measure on §1
which is invariant by the corresponding homeomorphism of the circle f = p(f).
The function f(x) —x 18 Z-periodic and therefore defines a function on R/Z
that we can integrate with respect to . It should be clear to the reader by
now that the result is nothing more than the translation number 7(f). Suppose
now that f and § are two clements of Homeo, (S!) such that p(f) and ()
preserve the same measure 1. Note that fgv(x) —x = (f(ﬁx) —gx)+ (g(x) —x)
and integrate with respect to n. We get that T(]‘NZD = T(f) +7(g). So we have
proved the following:

PROPOSITION 6.18.  Let . be a probability measure on the circle. Denote by
Homeo (S!, 1) the subgroup of Homeo, (S') consisting of homeomorphisms
preserving . Then the rotation number p : Homeo,(S', 1) — R/Z is a
homomorphism.

Of course, in many situations the groups Hg(I‘, R) can be infinite
dimensional. For instance, this is the case of a free non abelian group, of
the fundamental group of a closed orientable surface of genus ¢ > 1 [4] and
more generally of non elementary Gromov hyperbolic groups [19]. This is
not a surprise since there are many homomorphisms from a free group for
instance to Homeo (S') and their bounded Euler classes are usually distinct.

In some cases, the bounded Euler class of a specific action on the circle
might be useful to understand the structure of the group. Suppose for example
that a group I' is such that H!(T",R) = H*(T",R) = 0 and that we are given a
homomorphism ¢: I' — Homeo_ (S!). Then the image of the bounded Euler
class eu(¢) in H*(',Z) vanishes so that there is a (usually non bounded)
quasi-homomorphism %: I' — R such that the bounded Euler cocycle ¢*(c)
is the coboundary of the 1-cochain Py, "0). Modifying 1) by a bounded
amount, we can assume that ¢ is a homomorphism on one generator groups.
With this condition, 1 is uniquely defined since we assumed that there 1S no
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homomorphism from I" to R. Of course, for any v in I', the projection of
¥(v) in R/Z is nothing more than the rotation number of @(v). Summing
up, with these algebraic conditions on the group T, any action of T on the
circle determines canonically a quasi-homomorphism : T' — R which is a
lift of the rotation number map.

A specific example is the modular group PSL(2,Z). As a group, it
is isomorphic to the free product of two cyclic groups: PSL(2,Z) ~

2/27 % Z./3Z (see for instance [61]). Of course there is no non-trivial

homomorphism from this group to R since it is generated by two elements of
finite order. In the same way, its second real cohomology group is trivial
(this follows for instance from the Mayer-Vietoris exact sequence since
finite groups have trivial cohomology over the reals). We deduce that every
action of PSL(2,Z) on the circle yields a well defined quasi-homomorphism
¥: PSL(2,Z) — R lifting the rotation number. If we start with the canonical
action of PSL(2,Z) on the circle RP!, the rotation numbers are not interesting :
the only elliptic elements in PSL(2,Z) have order 2 and 3 so that the rotation
number of elements in PSL(2,Z) are 0,1/2,1/3,2/3 € R/Z. However the
quasi-homomorphism ¥: PSL(2,Z) — R that we get is very interesting
and has been studied in many different contexts: it is called the Rademacher
JSunction. The explicit formula giving ¥ as a function of the entries of a matrix
in PSL(2,Z) involves the so called Dedekind sums which are important in
number theory. We refer to [4] for a description of W and a bibliography on
this very nice subject.

7. HIGHER RANK LATTICES

In this section, we study the problem of determining which lattices in
semi-simple groups can act on the circle. .

Let G be any Lie group and & be its Lie algebra. The real rank of G is
the maximal dimension of an abelian subalgebra 2 such that for every a € 2
the linear operator ad(a): & — & is diagonalizable over R. For instance, the
real rank of SL(n,R) is n— 1: its Lie algebra consists of traceless matrices
and contains the abelian diagonal traceless matrices. A lattice in a Lie group
G is a discrete subgroup I' such that the quotient G/I" has finite measure
with respect to a right invariant Haar measure. A lattice in a semi-simple
group 18 called reducible if we can find two normal subgroups Gi,G, in G,
connected and non trivial, which generate G, whose intersection is contained
in the (discrete) center of G, and such that (G; NT).(G, NT") has finite index



	6. BOUNDED EULER CLASS
	6.1 Group cohomology
	6.2 The Euler class of a group action on the circle
	6.3 BOUNDED COHOMOLOGY AND THE MILNOR-WOOD INEQUALITY
	6.4 EXPLICIT BOUNDS ON THE EULER CLASS
	6.5 Actions on the real line and orderings
	6.6 SOME EXAMPLES


