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LATTICES OF COVARIANT QUADRATIC FORMS

by Wilhelm PLESKEN

1. INTRODUCTION

The problem of constructing integral lattices in Euclidean space with big
density for the associated sphere packing has attracted considerable attention
in the last years; cf. [CoS88]. Some of the lattices found in this context were
constructed as G-lattices for some finite group G; cf. [NeP95], [Neb95],
[Neb96a], [Neb96b], or [Ple98] for a survey. Other sources of constructions
were lattices associated with number fields or semi-simple algebras; cf.
[BaM94]. Rather than looking at just one bilinear form on a lattice, the
present investigation is geared towards the study of certain families of such
forms.

More precisely, a rather general and flexible setting for the Z-lattice
Bilzg(L) of all integral G-invariant bilinear forms on a ZG-lattice L is given:
one replaces the group ring ZG by a Z-order A with a positive involution
and the invariant bilinear forms by covariant ones, as defined in Chapter 2.
One learns from [Opg96] and [Opg01] that one should look at the dual lattice
L* at the same time. As pointed out by J.-P. Tignol, the endomorphism ring
Enda(L & L*) accommodates both the integral bilinear covariant forms on L
and on its dual L*. Even if the two orders A; with involutions and lattices
L; are completely different, it now becomes natural to consider that the two
lattices Bila,(L;) and Bily,(L,) of bilinear covariant forms on A;-lattices L;
are equivalent if the endomorphism rings Endy,(L; ® L}) are isomorphic; cf.
Chapter 2 for a more precise definition.

In this way the lattice of all integral bilinear forms on the Z-lattice 7
becomes equivalent to Bilzg(€D" M) for any absolutely irreducible ZG-lattice
M admitting a unimodular G-invariant bilinear form. However, the situation
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is more interesting if the endomorphism rings End,(L @ L*) are not maximal |
orders, for instance hereditary, to mention the next simplest case. In Chapter 4
a canonical process is described which associates with each BilA(L) a A-lattice
L such that Endp(L®L") is hereditary. At the same time one gets an invariant |
called the e-*-depth measuring how far away L, resp. Bilx(L), is from this
well behaved situation.

This process generalizes Watson’s process for constructing elementary
quadratic forms out of arbitrary integral quadratic forms: cf. [Wat62] (where
‘elementary’ means that the exponent of the discriminant group is square
free). Indeed, the present investigation can also be viewed as a generalization
of the study of a single positive definite integral bilinear form @, at least
if ¢ is primitive, i.e. surjective onto Z, namely by obtaining Z¢ as
Bilx(L). Equivalence then means that the exponents of the discriminant groups
(= biggest elementary divisors of the Gram matrices) are equal for the two
primitive forms considered. It should be noted that the general procedure
applied here is called the radical idealizer process and is quite common in
the general theory of orders.

In Chapter 3 the group of autoequivalences is studied without using
the underlying lattice L in any serious way other than via Endp(L & L*).
The notions depth and *-depth for Bily(L) measure how far Ends(L) and
EndA(L@® L") are away from being hereditary. The *-depth zero situations are
often classifiable. In the depth zero situation structural results on the outer
group of autoequivalences can be given. Even more restrictions for the outer
automorphism group in the *-depth zero case are given in Chapter 4.

Chapter 5 studies the special situation where inversion of nondegenerate
forms can be rescaled to become a Z-linear mapping of the nondegenerate
elements in Bily(L) into Bily(L*). Quebbemann’s definition of modular
lattices, cf. [Que95] and [Que97], is taken up to define Bily(L) to be modular
if there is a simultaneous modularity transformation for all positive definite
forms in Bily(L). Finally, in Chapter 6, some examples are studied, e. g. if
Enda(L) is a Z-order in the algebra Q**2. Examples of this nature have also
been studied by Bavard, cf. [Bav97], in a geometric manner in the context of
symplectic lattices.

Whenever something new is introduced, one should justify it by giving the
benefits for the old problems. So, for instance, the present investigations give
a better understanding of the normalizer of a finite unimodular group within
the full unimodular group (cf. discussion of N(L) following Definition 4.4).
The sort of insight one gets into the structure of the normalizer allows one
to compare normalizers in their actions on the Bily(L) even if the groups are
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of different degrees.

In this sense the examples at the end of the paper describe infinitely many
normalizers. The reader who wants to look at some other, more concrete,
examples might use the package') CARAT® handling low-dimensional crys-
tallographic groups; cf. [OPS98] or [PS00]. Here are some further applications
of the present investigations: they help to check when two finite unimodular
groups are conjugate in the full unimodular group by comparing the lattices of
invariant forms; they help to create models of such lattices in low dimensions
by passing to equivalent lattices of covariant forms; they help to find candi-
dates for lattices of covariant forms which contain interesting positive definite
bilinear forms, and to locate these forms inside the lattice of covariant forms.

It is a pleasure to acknowledge many inspiring discussions with G. Nebe.

2. COVARIANT FORMS AND EQUIVALENCE

Throughout the paper, A denotes a semi-simple Q-algebra with a positive
involution °, i.e. an antiautomorphism of order two of 4 such that A — Q:
a — tra q(aa®) is a positive definite quadratic form on A, where r.4/q
denotes the reduced trace of A. Together with A, fix a faithful finite
dimensional right A-module V. The basic data to start with are A, °,
and L, where L is a full Z-lattice in V = Lg := Q ®z L. Because of the
involution, V* := Homg(V, Q) becomes a right A-module again, which is
isomorphic to V. Inside V* one has L* := {p € V* | Ly C Z}, which can
be identified with Homgy(L,Z).

DEFINITION 2.1.
(i) A(L) :={a€ A| La CLandL*a CL*} is called the °-invariant
order of L in A.

(i) A Z-bilinear form ¢: L x L — 7Z 1is called covariant (with respect
to ©) if it satisfies

d(Va, W) = &(V,Wa®) for all V. WeL, acA,

where A is any °-invariant Z-order in A, contained in A(L) of finite index.

(ii1) The Z-lattice of all, resp. all symmetric or skew-symmetric, covariant
Z-bilinear forms on L is denoted by Bils(L), resp. Bﬂj\L(L) or Bil, (L).
Finally Bilj{,>0(L) denotes the set of positive definite elements in Bilj\L(L).

') This is available via internet http://wwwb.math.rwth-aachen.de/carat/index.html.
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Extending this notation for any commutative ring R containing Z, one can
consider covariant R-valued bilinear forms. They give rise to the R-modules
Bils, (Lg), resp. Bilj\LR (Lg) and BilXR (Lr), spanned by the above Z-lattices. If R
is contained in R, Bilj{R7>0(LR) denotes the set of positive definite elements in
Bilj{R (Lgr). One checks, that BﬂXR,>0(LR) 1S an open, nonempty cone in the real
vector space Bilj{R (Lr). Any nondegenerate element of Bil A(Lg) can be used
to recover the involution ° on A. To connect covariance with the more familiar
notion of a sesquilinear form — cf. [Scha85], p.- 236, [BaF96] —, one should
note that composition with the reduced trace of A yields a Z.-isomorphism
of the lattice of sesquilinear maps of L taking values in the inverse different
of A(L) onto Bils(L). Three typical examples will demonstrate the generality
of the concept:

EXAMPLE 2.2.

(i) Fix a positive definite symmetric matrix f € Q"™ ". Let A = Qnx»
with a® = fa"f~! for all a € A and let L = Z'*". There is a unique
positive definite rational multiple f; of f, which is integral and primitive,
i.e. the greatest common divisor of the entries of f; is 1. One checks that
Bilx(L) = Zfy and Biljt>o(L) = Nfo. If fo is unimodular, then A(L) = Z"*",
any other A(L)-lattice is of the form @kL, and BilA(@kL) ={x®f |
x € Zka}, where ® denotes the Kronecker product (of two matrices). Note
that Endaq,(P* L) = Zk**.

(i) Let G < GL,(Z) be a finite unimodular group. Set A := QG
the enveloping algebra of G, i.e. the subalgebra of Q™" spanned by the
matrices of G (clearly an epimorphic image of the group algebra QG) and
let L := Z'*". Obviously the standard involution g — ¢g~! for g € G of
QG induces a positive involution on QG. The order A(L) contains ZG, the
Z-span of the matrices of G as a suborder of finite index. Bil,(Z) consists of
all G-invariant bilinear forms. Bilj{R,>0(LR) is known as the Bravais manifold
of G. If there is no finite unimodular group H cbntaining G properly with
the same Bils(L), resp. Bil]\L(L), then G is called the strict Bravais group,
resp. the Bravais group; cf. [OPS98].

(ii1) Up to isomorphism there are three types of real simple algebras with
a definite involution, namely (R"*" ), (C"*" =") and (H"*",~"), where ~
denotes complex, resp. quaternionic, conjugation. A (right) module for such
K"*" can be taken to be K**" with endomorphism ring K*** according to
the three possibilities for K above. Then the R-space of covariant forms can
also be represented by K**°, where the symmetric forms correspond to the
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symmetric matrices in case K = R and to the Hermitian matrices in the
remaining two cases. According to the decomposition of Ag into such simple
components, one clearly has a decomposition of Bil 4,(Lr) Into components,
each of which can be described as such a K**° with suitable K and s as
~ above. In particular, this gives the Z-ranks of Bilx(L), BilX(L), and Bil, (L).

It is often helpful to identify Bily(L) = Bilaq)(L) with Homy(L,L*) =
Homy (L, L*) as Z-lattices. More precisely ¢ € Bilx(L) is identified with
7 € Hompg)(L,L*) by W(r(V)) := ¢V, W) for all V,W € L, where we
write A(L)-homomorphisms of right A(L)-modules on the left. As A(L) can
be replaced by any suborder A of A(L) of finite index (invariant under the
involution), we shall usually write A instead of A(L) in the sequel. In this
way, Bil,(L*) is also identified with Homy(L*, L) and one gets bilinear maps
Bilp(L) x Bilp(L*) — Enda(L*) and Bils(L*) x Bilp(L) — Enda(L), which
can be composed with the reduced traces of the endomorphism rings of Lg
and of Lo respectively, to obtain Z-valued bilinear maps. Of course the
latter become nondegenerate pairings if one tensors with the field of rational
numbers. Hence one gets a discriminant for Bils(L), which measures the
deviation of (Bils(L),Bilp(L*)) from being in perfect duality. Obviously, the
same can be done for Bilf (L) and Bil, (L).

DEFINITION 2.3. Let e stand for the empty symbol, +, or —. The
discriminant of the pair (Bilj(L), Bil{(L*)) is defined as

bl

discr (Bil§ (L), Bil§ (L") = \det (Te(ds1y))

1<ij<d

where (¢1,...,¢q), resp. (Y1,...,14), form Z-bases of Bil§(L), resp.
Bilj (L*), and Tr denotes the reduced trace of End 4(V*).

Clearly, the definitions are independent of the choice of bases and one
can even define a discriminant group, whose order is the discriminant. As
an easy exercise the reader may check that in the case of Example 2.2 (i)
the discriminant discr (BilX(L)),Bil/f(L*)) is equal to the exponent of the
discriminant group L*? /L of (L, ¢y), where L := {V € V| ¢o(L, V) C YA
with ¢q the bilinear form described by f;.

Another observation along the lines of the interplay between Bily(L),

BilA(L*), Enda(L), and Enda(L*) is the presence of all of these in
Endp(L & L¥).
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REMARK 2.4.

End4(V @ V*) = ( SIOALY) HomA(V*’V)>

Hom 4(V, V*) End 4(V*)
. ) . . ¢ Y "’ .
is a Q-algebra with involution s = s and a C;-graduation
End 4 (V) 0 5 0 Hom4(V*, V)
0 End 4(V*) Hom4(V, V*) 0 '
The involution is induced by the symmetric bilinear form v on V@ V* defined
by

v:(VeV)x VeV — Q: ((Vi,e1), (Va,02) — Vigs + Vagpy

With respect to this bilinear form one has (X @ Y)* = Y* @ X* for any two
full lattices X C V and Y C V*. In particular, Ends(L & L*) is invariant
under the involution.

The following proposition yields a better understanding of the discriminant.

PROPOSITION 2.5.
discr (Bila(L), Bila(L*)) - discr (Enda (L)) = |discr (Enda(L & L*))

where the discriminants are taken with respect to the reduced traces.

’

Proof. One has End(L & L*) =
End A (L) 0 0 Hom A(L* . L)
( 0 EndA(L*)> © (HomA(L, L) 0 ) '
Since the two summands are orthogonal to each other with respect to the
trace bilinear form, and since Ends(L) and Enda(L*) are antiisomorphic and
therefore have the same discriminant, the claim follows. []

Now the basic definition is well motivated.

DEFINITION 2.6. Let (B,°) be a Q-algebra with a positive involution,
and W a (faithful) B-module containing a full Z-lattice M. Let I'" be
some suborder of finite index in A(M). Finally let R be some subring
of R containing Z. We say that Bily(L) and Bilp(M) are R-equivalent
if there exists an R-module isomorphism w: Bily,(Lg) — Bilp,(Mg), called
an R-equivalence, which extends to an isomorphism €2 of R-algebras with
involution and C,-grading from End,,((L ® L*)g) onto Endr,(M & M*)g)
and which induces a bijection from BilXR,>O(LR) onto Bil{, ~oMg). If R=17
then one simply says equivalence instead of Z-equivalence.
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It is worthwhile to spell out the isomorphism of Enda,((L © L*)r) onto
Endr,((M & M*)g) in more detail. The equivalence w: Bilx(Lg) — Bilry, (Mg)
obviously induces an R-module isomorphism w': Bily,(L}) — Bilr,(Mp), for
one may assume R = R and Bily(Lg) is spanned by nondegenerate (resp.
invertible) elements ), and accordingly Bila,(Lg) by the 1. The relation
W~ = idy, translates into w’'(p 1= (w(x))~'. Obviously w and w’, taken
together, yield unique R-algebra isomorphisms wi: Enda,(Lg) — Endr, (Mg)
and w,: Enda,(L}) — Endr,((M}), which are related by wa(n) = (wi(n™)”
for all n € Endr,((L}). So one has the following

REMARK 2.7. In Definition 2.6 the R-algebra isomorphism
Q: Endp, (L ® L*)g) — Endr, (M & M*)z)

is uniquely determined by the equivalence w: Bila,(Lg) — Bils,(Mg).

Obviously the discriminant of the pair (Bils(L), Bila(L*)) and the discrim-
inant group of Bily(L) do not change when one passes to an equivalent lattice
of covariant forms. In the case of one-dimensional spaces of compatible forms,
the discriminant separates equivalence classes.

REMARK 2.8. In the situation of Definition 2.6 let Bil 4(V) and Bilg(WV)
be both one-dimensional. Then Bily(L) and Bily(M) are equivalent if and
only if

discr (Bilo (L), Bily (L™)) = discr (Bilp(M), Bilp(M™)) .

Proof. The missing direction follows from the following description of
Enda(L & L*). Let d := discr (Bily(L), Bilo(L*)) and Bilp(L) = Z¢. Then

. Zid, Zdd—! 7 7d
EndA(L@L):(Zl¢L Zi;b“>g<z Z>. O

From the discussion in Example 2.2 and the definition, it is reasonably
clear that Bilx(L) and Bilo(M) are R-equivalent if and only if End 4,(VR)

and Endg,(Wgr) are isomorphic. For Q-equivalence the statement is more
difficult to prove.

PROPOSITION 2.9. Let (B,°) be a Q-algebra with a positive involution,
W a faithful B-module containing a full Z-lattice M, and let T := A(M).
Then two lattices Bilx(L) and Bilr(M) of covariant forms are Q-equivalent
if and only if End 4(V) and Endg(WV) are isomorphic as Q-algebras.
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Proof. By Definition 2.6 equivalence of V and W implies that the
endomorphism rings are isomorphic. To prove the converse, we may assume
without loss of generality that A and B are simple. Then the endomorphism
rings are also simple. Fix an isomorphism w;: End 4(V) — Endi(VV). Then
wy: End4(V*) — EndpW*) : n — (wi(n™)” is also an 1somorphism
and (wr(¢")" = wi(¢) for all ¢ € End4(V). To shorten the notation,
set £ := End4(V) and & := End (V*). (Note, transposing induces an
antiisomorphism between £ and &£’.)

The next aim is to find a suitable map

w: Hom4(V,V*) — HomgW, W*)

as required in Definition 2.6. Clearly, Hom 4(V,V*) is a simple (£/,E)-bi-
module. The two isomorphisms w; and w, can be used to turn Homg(W, W*)
into a simple (£’, £)-bimodule as well. Then w lies in

H := Homg: g(Hom4(V, V*), Homp(WV, W*)),

which is a one-dimensional Z-module, where Z is the centre of £. To get
the right identification of Z with the centre of £, note that the centres of A
and £ can be identified via their action on V and that z — (z°)” therefore
gives the right identification of Z with Z(&).

Now some properties of H have to be investigated: For each h € H
define A" by h"(¢) := h(¢p™)" for all ¢ € Homu(V*,V). This defines a
Z-semilinear action of the cyclic group of order 2 on H. Indeed, one easily
checks: (h")" = h and (zh)"” = z°h™ for all z € Z and all h € H. Next, one
verifies that there exists a nonzero & € H with A" = h. Indeed, if ° fixes
Z pointwise, any h € H is fixed by 7, because the subspaces of symmetric
and skewsymmetric forms have different dimensions in this case. If °© does
not fix Z pointwise, the existence of an h € H with A" = h follows from a
straightforward analysis of semilinear C;-actions. In any case, the & € H with
h" = h form a one-dimensional Z- -subspace H of H, where Z is the °-fixed
subfield of Z. It is clear that any symmetric ¢ € Hom4(V, V*) = Bils(V) is
mapped onto a symmetric w(¢) by any w € H. The final point is that w can
be chosen in such a way that positive definite forms map onto positive definite
ones. This can easily be seen for the ground field R by the classification of
the simple R-algebras with positive involutions. The present case of rational
ground field can be reduced to the previous case, i.e. if & € H does not
respect positive definite forms, then there exists a z € Z with the right
sign combinations in the various archimedean completions of Z such that
zh maps positive forms onto positive ones. One ends up with a nonzero




LATTICES OF COVARIANT QUADRATIC FORMS 29

we H respecting positiveness, which is unique up to multiplication with
totally positive elements in Z.

Similarly one finds a suitable map w’: Hom4(V*,V) — HomgOW*, W)
as required in Definition 2.6. Finally, to make «w' unique, one requires
w’ (qﬁ_l):w(@_l for one (and hence for all) invertible ¢ € Hom4(V, V™).
Now it is a routine matter to check that (w;,w,,w,w’) defines an algebra
~ isomorphism Q of End4(V @ V*) onto Endg(W @ W*) with the required
- properties. [

‘ At the end of this basic chapter some comments might be in place: The

- reader should check as a little exercise that Bilp(L) (given as explicit bilinear
- forms or as maps from L to L*) determines Enda(L) (but not conversely of
- course) and Enda(L @ L*). One now may ask how much is determined by

- Bili(L).

| DEFINITION 2.10. Call L, V and Bily(L) exceptional, if End 4,(Vr) has
~ a simple component isomorphic to C or H.

REMARK 2.11. The following three conditions are equivalent.
(i) Bil, (L) can be recovered from Bilj{(L);
(i1) Enda(L) can be recovered from Bﬂj\L(L);

(ii1) L is not exceptional.

For instance the difference between the Bravais group and the strict Bravais
- group in Example 2.2 (ii) only occurs in the exceptional situation.

3. AUTOEQUIVALENCES AND INVARIANTS

| The basic notation is kept: (A,°), L C V, Bily(L) = Homu(L,L*).
~ Continuing Definition 2.6 in the direction ‘autoequivalences’, we fix the
- following notation.

5 DEFINITION 3.1. Let R be a subring of R containing Z. The group of
all R-equivalences w: Bily,(Lg) — Bilp(Lg) is denoted by Aut’(Bils,(Lg)).
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From the discussion following Definition 2.6, it is clear that one has a
monomorphism of Aut®(Bily(Lz)) into the group of all automorphisms of
Enda, (L ® L*)R) as a C,- -graded algebra with involution, and also into the
automorphism group of Endy,(Lg). It therefore makes sense to look at the
pointwise stabilizer of the centre of Endy, (Lg).

REMARK 3.2. Denote by Aut’ .(Bila,(Lg)) the biggest subgroup of
Aut®(Bila(Lg)) fixing the centre of Endy, (Lg)

(1) Aut;(Bils,(Lg)) is a normal subgroup of Aut®(Bily,(Lg)) of finite index
with the factor group Aut®(Bily, (Lg))/ Aut?(Bily,(Lg)) acting faithfully on the
centre of Endy,(Lg).

(i) Aut;(Bilp,(Lg)) is isomorphic to the group of inner automorphisms of
Endy,(Lg) in case R is a field.

(iii) If R is not a field, let O be its field of fractions. Then Aut® - (Bily,(Lg))
is isomorphic to a subgroup of Aut’ .(Bilp,(Lp)).

Proof. (i) Finite dimensional semisimple commutative algebras have finite
automorphism groups. The same applies to R-orders in such algebras.

(i1) This follows from the Skolem-Noether Theorem.

(111) Obvious.  []

PROPOSITION 3.3.  The group Aut®(Bils(L)) acts properly discontinuously
on Bily _o(Lg).

Proof. That Aut’(Bily(L)) acts on Bil >0(LR) follows from the defi-
nition of equivalence. By Remark 3.2 it sufﬁces to show that Aut (Bils(L))
acts properly discontinuously. But this follows from the well known fact that
GL,(Z) acts properly discontinuously on the cone of positive definite sym-
metric matrices of degree n. [

In fact, the action is even discontinuous on BilJr >0(LR) modulo the action
of R>o by multiplication and, apart from some margmal exceptions, it is also
faithful. One interesting issue is the structure and size of Out; (Bils(L)), to
be defined now.

DEFINITION 3.4.

(i) The subgroup of Aut{(Bils(L)) corresponding to the inner automor-
phisms of End, (L) will be denoted by Inn(Bil,(L)) and referred to as the group
of inner automorphisms of Bily(L). (Clearly Inn(Bily(L)) = Inn(End, (L)) =
(Endx (L))" /Z(Enda(L)*).)
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(i1) Similarly,
Out{(Bilx(L)) := Aut;(Bils(L)) / Inn(Bila (L))
- will be the outer central group of equivalences of Bilx(L), and

Out’(Bil, (L)) := Aut®(Bil(L))/ Inn(Bil (L))

the outer group of equivalences of Bilp(L).
Aut®(Bil(L))
Out®(Bil(L)) Aut;(Bil(L))

} Out; (Bil(L))
Inn(Bil(L))

PROPOSITION 3.5. The group Out®(Bils(L)) is well defined and embeds
into Out(End, (L)) := Aut(Enda(L))/ Inn(Enda(L)). In particular, it is finite.

Proof. Clearly, conjugation by w € Aut’(Bilp(L)) of an inner auto-
morphism induced by some ¢ € End(L)* results in the inner automor-
phism induced by w;(y) in the notation of the discussion of Definition 2.6.
Hence Out®(Bils(L)) is well defined. The finiteness follows from the Jordan-
Zassenhaus Theorem, which implies that Out(I) is finite for any Z-order I'
in a semisimple Q-algebra, cf. [CuR87] (55.19). L]

Obviously Out;(Bils(L)) is an interesting invariant for the equivalence class
of Bily(L). Further on in this chapter, it will be proved that it is an Abelian
group in case Enda(L) is hereditary. But some notions from the theory of
orders first have to be recalled, in order to define some invariants measuring
the distance from this favourable situation.

Recall from [BeZ85] that the arithmetical radical arad(I") of a Z-order T’
in a semisimple Q-algebra B is defined as the ideal which localizes to
the radical of I', at the primes dividing the discriminant of I', and to the
localization I', of the order itself at the other primes. The left idealizer or
left order T\ of the arithmetical radical arad(I") is the biggest Z-order in B

~ in which arad(T") is a left ideal, in particular T'® arad(T") C arad(I"). It is well
known, cf. [Rei75], that T is hereditary if and only if I' = I'® . Likewise the
two-sided idealizer of arad(I') is the biggest Z-order in B having arad(I') as
a two-sided ideal. It is denoted by TU?. A slight modification of the argument
in [Rei75] characterizing hereditary orders by the property I' = T'® also shows
- that T is hereditary if and only if I" = I'"? | Besides, if T is invariant under
an involution of B, so is T". Define the left, respectively two-sided, idealizer
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sequence of T' by I'p:=T" and Ty :=T¥, resp. Ty := I, for i > 0.
The length of either of these sequences 1S the smallest i with I'; = i1

DEFINITION 3.6.

(1) The e-depth of Bily(L) is defined as the length of the left idealizer
sequence of End,(L).

(ii) The e-x-depth of Bily(L) is defined as the length of the two-sided
idealizer sequence of End,(L & L*).

Clearly, e-depth and e-*-depth are well defined and compatible with equiva-
lence. As for the definition of e-*-depth, note that all members of the two-sided
idealizer sequence of Endy(L@L*) are both C, -graded and invariant under the
involution of End 4(V @ V*). However, it does not seem that they are neces-
sarily endomorphism rings of lattices M @ M* with the M’s constructed from
L in a canonical way. That is why we shall focus here mainly on the e-x-depth,
resp. e-depth, zero case. The general discussion will be resumed in the next
section; cf. 4.8 and 4.10. Already the case of one-dimensional Bilo(L) shows
that even if the e-depth is zero, the e-x-depth can be arbitrarily large, since the
discriminant of (Bila(L), Bil(L*)) can be arbitrarily big. However, it seems that
for every isomorphism type of End4(V) the equivalence classes of e-*-depth 0
lattices Bils(L) of covariant integral forms can be classified, provided one re-
stricts the number of primes involved in the discriminant. Here is an example,
whose verification is left to the reader as an exercise in combinatorics.

EXAMPLE 3.7. Let End 4(V) = Q?>*?. Assume that Bils (L) is of e-x-depth
zero and that the discriminant of the pair (BilA(L), Bil(L*)) is a power of a
prime p. Then there are nine equivalence classes of such lattices and the
endomorphism rings satisfy End(L®L*) =2 X(E) with E one of the matrices

0 0 0 O 0 0 1 1 0 0 0 1 0 0 01
0 0 0 O 0 0 1 1 1 0 1 1 I 0 1 1
0O0o0O0)”{oo0o0o0f”{oo0o0 1/°l0 0 0 1
0 0 0O 0 0 0O 0 0 0O 0 -1 0 0
0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 1 1 0 1 1 I 0 1 2
000 1})°21t0 0 0 1)°10 0 0 1
0 0 0 O 0 -1 0 0 0 -1 0 0
0 0 1 1 0O 0 1 2
1 0 1 2 I 0 2 2
0 -1 0 1)1 0 -1 01
-1 -1 0 0 -1 -1 0 O
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and X((my)) := {(xy) € Q" | x; € pmiZY) for any (my) € Z"".

In all cases L = L, @& L, with irreducible A-lattices Ly, L satisfying
pL, < L, < Ly < L¥ < p7'L;, where the dual lattice is taken with
respect to the positive definite generator of Bils(L;). The individual cases are
characterized by a chain of inclusions which can be read off from the rows
of the matrices, like L = L, = L = L} in the first case, L; = L, < LY =14
'~ in the second case, pLf < L, < L; = L} < L§ in the third case, or
pl? = I, < Ly = L} < L} in the fourth case. Moreover, the second, the
. fourth, and the last three cases might have outer automorphisms.

To proceed to the promised structure theorem on Out;(Bily(L) for the
depth 0 case, the following lemma is needed, which is implicit in [Neb9g]
and which certainly does not depend on the big Picard group machinery of
[CuR87], Chapter 55.

LEMMA 3.8. Let T be a hereditary order in a simple Q-algebra B,
which has Schur index s and degree d (over its centre). Then Out,(I') is
Abelian. Moreover, if n is the number of primes in the centre Z(I') dividing the
discriminant of T with respect to the centre, then Out,(I') can be embedded
into an extension of the class group CIU(Z()) by (Cs)".

Proof. Define N(I) := {b € B* | bTb~! = I'}. Then Out,(I) =
N(@)/(T*,Z(B)*). Let W be an irreducible 3-module. Then N(I') acts on the
I'-sublattices in VY. For every prime p in the centre of I', the I', -sublattices
in the completion WV, form a chain by inclusion, on which N(I') acts by
shifting the lattices up and down. Clearly the intersection of all the kernels
of these shifts at the various primes is I'*. Hence Out,(I') is Abelian.

More precisely, let Sh()V) be the group of all permutations of the
["-sublattices of ¥V which fixes all lattices in W, for almost all primes p in
the centre of I" and induces shifts at the remaining finitely many completions.
Then Sh(WWV) is the direct sum of the Sh()V,), each of which is infinite cyclic.
Moreover Sh(W) acts regularly on the set of all nonzero I'-lattices in W.
The above argument shows that N(I')/I™* embeds into Sh(J/). But so does
the group F of all fractional ideals of Z(B), resulting in a subgroup F of
Sh(W). The cokernel of this embedding is isomorphic to a subgroup of a
direct product of n cyclic groups, the order of each one of which divides sd.
It is well known that Z(B)* maps into F with cokernel the class group of
Z(I") and kernel the torsion subgroup of Z(3), which lies in I'* anyhow.
Now by the above description of Out(I'), it can be viewed as a subgroup of
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Sh(W)/X, where X is the image of Z(B)* in Sh(W). But Sh(W)/X is also
an extension of F/X = CI(Z(I)) by Sh(W)/F. [

As a consequence one gets the following

THEOREM 3.9. Let Bilp(L) be of depth 0, then Out;(Bils(L)) is
Abelian. [

It is worthwhile to extract more precise statements from Lemma 3.8.
They will be used and extended in the forthcoming chapter in the study of
Out(Bilp(L)) when the e-x-depth of Bily(L) is zero.

DEFINITION 3.10. Let I' be a hereditary Z-order in a simple Q-algebra
B and let p be a prime ideal in the centre Z(I') of T'. The p-local shift index
s(I', p) of T is defined as follows : For any irreducible A, -lattice L define m(L)
by p™® :=[L: Lyu], Where Ly, is the unique maximal T-sublattice of L.
The chain ---L; > L;y--- of irreducible lattices in a simple B,-module W
yields a periodic sequence ...,m(L;),m(L.y1),... because of m(L) = m(pL).
The index of the group of all “central” shifts generated by multiplication with
p in the group of all shifts of the chain respecting m(L) is called s(I,P).

Obviously, s(I',p) is equal to the p-local Schur index of B if I'y is a
maximal order. In particular it is almost always equal to 1. With the definition
of the local shift index at hand, the refined statement of Lemma 3.8, which
was actually proved, should read as stated with (C,;)" replaced by @p Cer,p) -

4. EXTRINSIC NOTIONS: USING THE UNDERLYING LATTICE

Up to now, the lattices Bily(L) of covariant forms have only been
investigated by themselves without much reference to the underlying lattice L.
In this section L will be taken more seriously into account. Unless confusion
can arise L will also denote the underlying Z-lattice of L, which is usually
considered as a A-lattice.

To start with, we discuss the determinant function and its behaviour under
equivalence.
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DEFINITION 4.1.
det: Bily(L) — Z : ¢ — det(¢pp)

is called the determinant function on Bily(L), where B is some lattice basis
for L over Z and ¢p is the Gram matrix of ¢ with respect to B.

Clearly, choosing some Z-basis for Bily(L) turns the determinant into
a homogeneous polynomial in Z[X;,...,X4] of degree n = dimz(L) in
d = dimgz(Bils(L)) variables. A connection of the factorization properties
in Q[X,,...,X,] with the structure of V' is indicated in the rather obvious
- Remark 4.2 below. Those in Z[Xj,...,X;] have not yet been investigated.
There sometimes seem to be changes in the factorization behaviour when one
restricts from Bily(L) to Bil}(L); cf. Chapter 5.

| REMARK 4.2. Let 1 = e; + ...+ e, be the decomposition of 1 € A
~into central primitive idempotents of A, and fix some isomorphism
1 € Hom4(V,V*). There is a constant a = a(y,L) € Q depending on
- % such that, for all ¢ € Bils(L), one has

h
det(¢) = a - | [(detrea (id:))™®,
i=1

where the ¢; and 7); denote the restrictions of ¢, resp. ¥, to Ve;, resp. to
V*e;, deteq is the reduced determinant of End 4(Ve;), and finally m(7) is the
- degree of the matrix algebras which are the simple components of C®q Ae;.

If w: Bily(L) — Bilp(M) 1s an equivalence, only the constant a in the
above formula changes to some other constant b = b(w'(v)), M), and the
exponents m(i) change to the degrees m(i)’ of the corresponding simple
- components of C ®q Be;. One has

h
det(w(@®)) = b - | [(detrea (i)™,

i=1
since deteq (Vi) = detreq (W' (1))w(¢;)), cf. discussion of Definition 2.6.
As an instructive example, which comes up as a step in the proof of

- Remark 4.2, the reader may want to relate the above formula to the well
- known determinant formula for the Kronecker product of two matrices.
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DEFINITION 4.3. Let (B,°), W, M, and R be as in Definition 2.6.

(1) Call L and M form-R-equivalent, or simply form-equivalent in
case R = Z, if there is an R-module isomorphism 7: Mr — Lr which
induces an R-equivalence w: Bilp,(Lg) — Bilp,(Mg) : ¢ —w(¢)= T¢ with
TO(W1, Wa) = ¢(WiT, Wor) for all Wi, Wy € Mg. In this case (L,Bily(L))
and (M, Bilr(M)) are also called R-equivalent and the R-equivalence w is
said to be induced.

(i) We denote by N(Lg) the group of all 7 € Autg(Lg) inducing
autoequivalences of Bily(Lg).

(iif) The group of all induced autoequivalences of Bila,(Lg) is denoted
Aut(BilAR(LR)) ; 1ts elements are also called automorphisms of Bily(Lg).

The connection with the earlier concepts is easily seen: for the determinant
functions, one has det(¢) = det(w(¢)) for all ¢ € Bilo(L) if the equivalence
w: Bily(L) — Bilp(M) is induced, i.e. the constant and the exponents in
the formula of Remark 4.2 do not change any more. In other words, the
associated polynomials in Z[X,...,X,;] are Z-equivalent, or even equal
if one chooses appropriately the bases of the lattices of forms. Clearly,
Inn(Bilx (L)) < Aut(Bils(L)) < Aut?(Bilo(L)) with all indices finite.

To get a full picture of the situation, one more group has to be introduced,
namely the kernel of the epimorphism of N(L) onto Aut(Bilo (L)), which is
U(L) defined as follows. |

DEFINITION 4.4. ~

(1) U(Lg) is the image of the group U(A(L)g) = {u € A(L)g | uu® = 1}
in Autg(Lg) defined by its natural linear action on Lg.

(i1) The exact sequence

I — U(L) — N(L) — Aut(Bily(L)) — 1

is called the basic exact sequence.

Obviously U(L) is finite. If the Q-algebra spanned by U(L) is all of the
image A of A in Endqg(V), then N(L) is the normalizer of (the strict Bravais
group) U(L) in Autz(L); cf. [BNZ73]. In general one only has that N(V) is
the normalizer of U(V) in Autg()). The structure of N(V) is easily worked
out: it is dominated by the pair of semisimple subalgebras A and End A(V)
of Endg()), which are centralizers of each other. In fact, if one restricts to the
pointwise stabilizer N,()) of the common centre of these two algebras, then
N,(V) is the central product of End 4(V)* and a group U (V) amalgamated over
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their common centre, where U()) is the image of {u € A* | uu® € Z(A)} in
A. Note that the index N(V) : N,(V) is finite. As a point of general notation,
Inn(I") will always denote the group of automorphisms of a ring I" induced
- by conjugating with units in ', and Out(I") := Aut(I')/ Inn(T').

PROPOSITION 4.5.

() N(L) acts on Bily(L) with kernel U(L).

| (ii) N(L) acts on End(L) via conjugation also with kernel U(L). In
particular, Aut(Bily(L)) embeds into Aut(Endp(L)).

(i) N(L) acts on A(L) by conjugation with kernel Ends(L)*. The induced

automorphisms respect the involution °©.

(iv) Denote the kernel of the conjugation action of N(L) on Z(Endp(L)) =
Z(AL)) (or on Z(A) = Z(Enda(V))) by NL). Then N,(L) is a normal
subgroup of finite index in N(L) containing (Enda(L)*, U(L)), which is also
of finite index.

(v) (Ends(L)*, U(L)) is a central product of Endx(L) and U(L) amalga-
mated over Z(L) := Endx(L) N U(L).

(vi) The image of the conjugation action of N,(L) on A(L) induces a finite
index subgroup Aut, [(A(L),°) of Aut,(A(L),°). The latter is also the image
of the conjugation action of {u € U(A,°) | u'A(L)u = A(L)}.

(vii) The image of the conjugation action of N,(L) on Enda(L) induces a
subgroup Aut, (Ends(L)) of Aut,(Ends(L)). The latter is also the image of
{p € End4(V)* | ¢! Enda(L)¢ = Enda(L)}

(viii) The group N (L)/Z(L) is a subdirect product of Aut,;(A(L),°) and
Aut, ((Enda(L)), amalgamated over the common finite factor group

Aut, 1 (A(L), )/ Inn(A(L), °) = Aut, ;(Enda(L))/ Inn(End, (L))
= NZ(L)/<EndA(L)*, U(L)> .

N(L)
N.(L)

EndA (L) *
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Proof. Most of the statements can be verified in a straightforward way
in the order in which they are listed, by using the preceding discussion
of N,(V). The various finiteness statements follow from Proposition 3.5. [

Here 1s the main consequence for Aut(Bily(L)) :

COROLLARY 4.6. Inn(Bilx(L)) < Aut(Bilo(L)), and
Out(Bils (L)) := Aut(Bila(L))/ Inn(Bils (L))
embeds into Out(Enda (L)) and into Out(A(L),°). In particular, Out(Bily(L))

is finite.

It is worthwhile to extract the following slightly more technical consequence
as well.

COROLLARY 4.7. Denote by Aut,(Bily(L)) the group of automorphisms
of Bilx(L) induced by N,(L). Then
Inn(Bily (L)) < Aut,(Bils (L)) < Aut(Bily (L)),

Aut(Bils(L))/ Aut,(Bilx(L)) is isomorphic to a subgroup of the (obvzously)
finite group Aut(Z(A(L)), and

Out,(Bilo(L)) := Aut,(Bila(L))/ Inn(Bils (L))
embeds into the finite groups Out,(Enda(L)) and Out,(A(L),°).

The next topics are the lattice versions of e-depth and e-x-depth, cf.
Definition 3.6. Recall the notation introduced before Definition 3.6.

DEFINITION 4.8.

() Let LY be defined as (Enda(L))PL.

(i) Define L@ := L and L® := (LE~D)D which yields an increasing
sequence of full lattices in V :

L = 1O < 158 < L@ <.
(iii) The length of this sequence, i.e. the first i with L = L+D ig called
the depth of L, resp. of Bily(L).

As a subtle point, note that End, (L") might contain (End, (L))" properly.
In particular, L is of depth O if and only if End(L) is hereditary, which is
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also equivalent to Bily(L) having e-depth zero. For these situations the Picard
group techniques mentioned above can easily be applied. But before going
into the details of the depth-zero case, a general remark on the smoothing
process must be made.

 REMARK 4.9. N(L®) acts on LD i.e. N(L") is conjugate to a subgroup
of N(LUTDY under GL(V).

‘ Proof. Clearly, the conjugation action by elements in N(L®) preserves
arad(End, (L®)) and therefore also the idealizer (Endp(L?)®. But LI+D =
(Endp(LO)OLO . [

Continuing the discussion of e-x-depth of the last section, the notion of
x-depth will be defined. Ideally one is tempted to imitate Definition 4.8 along
the following lines: define LUP as the lattice in V' containing L with the
~property Endy(L & L*)"(L & L*) = LD @ M for some A-lattice M in V
~containing L*; define L' := L and LY := (L= - which yields an
increasing sequence of full lattices in V:

L=1Y<iM<®<...y

and define the *-depth of L, resp. Bils(L), to be the length of this sequence,
i.e. the first i with L' = LU+,

To prove that everything is well defined, one needs a statement ensuring
that this process really terminates. This boils down to: End (L™ & (L)*)
 contains Bndp(L & L*) properly up to conjugation, unless Enda(L & L) is
. hereditary. I have not been able to prove this statement, though the argument
~ below for the soundness of the less satisfactory definition, points somewhat
" in the right direction.

DEFINITION 4.10.
(i) Define sequences L = L < LM < LIH . of lattices in V' and
L0 — px < 1 < 1*21 0 a5 follows:

L[i—i—l] @L*[i—{—l] — Fgrl)(L[i] D L*[i])

with T; := Enda(L @ L*1) N Enda (L*1H)* & (L"),
(ii) Define the *-depth of L, resp. Bilx(L), to be the length of these
sequences, i.e. the first i with L = LU+1 and L0 = L+
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Here is a verification that the definition makes sense.

LEMMA 4.11.
(i) T @ (L)) decomposes as indicated in Definition 4.10 (i).

(ii) For the order T; one has Ty C I't € ..., so that the *-depth is well
defined, namely as the first i with T hereditary.

(iii) Let s be the x-depth of L, then Enda (LI @ (LI1Y*) s hereditary, i. e.
the x-depth of L is zero.

Proof. (i) Since the two idempotents mapping L& L* onto L, resp. L*,
lie in any of I7, the result follows.

(i) By definition T{"” C Enda (L1 @ L*l+11) . Moreover T'¥ is invariant
under the involution; by Remark 2.4, it is therefore also contained in
End, (L1*1)* @ (LFH11)*). Hence I} C T¥M C T4

(i) I's is hereditary; hence Endr,((L! @ L*I)) @ (L*I)* @ (1)) ¢ A
is hereditary. But A(LI"!) contains this order and is therefore also hereditary,
which makes Endx(L'¥! @ (LI¥))*) hereditary. [

Various comments should be made. The notions of *-depth zero and
e-x-depth zero are the same. This paper will mainly concentrate on the
*-depth zero case, for which the two approaches yield the same answer.
The first approach would in general be superior to the second one, because
it defines a directed graph on the set of isomorphism classes of lattices in V
with an arrow pointing from L to L (in the first meaning).

This would have the nice property that one has no cycles except for
the one with *-depth 0, and the depth of any lattice could be read off
from the graph. In the second setting this is no longer possible. One has
only an assignment to a x-depth zero lattice for any lattice without the
intermediate steps. Example 2.2 (i) and Remark 2.8 show that one can produce
situations where the x-depth is arbitrarily high with the depth being zero
already.

It should be noted that this result implies a classical theorem by Watson,
cf. [Wat62], which has been rediscovered by various people; and it puts
the Watson process into the proper general framework. Strictly speaking, the
assumption of positive definiteness is too strong, but it is retained here because
it is the general hypothesis of the present paper. Various generalizations have
been discarded, though they could have also been listed here.
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COROLLARY (Watson). Let L :=Z"*" and ¢: L x L — Z be a (positive
definite) Z-bilinear form on L. Then there exists a full Z-lattice M in
V= Q®gz L which is Aut(L, ¢)-invariant and satisfies M C M* C k=M for
some square-free divisor k of det(L, ), where the reciprocal lattice M* is
taken with respect to some rational multiple of ¢.

Proof. ¢ induces an involution on A := Q"*" containing A := A(L) as
an invariant Z-order. Denote the *-depth of L by s and set M := LI!. Clearly,
Aut(L, ¢) = U(L), and M is U(L)-invariant. Since I' := End\(M & M*) is
hereditary, the same applies to A(M) (= Endr(M @ M*)). By the general
properties of hereditary orders (as chain orders), the claim follows, since M*
is an absolutely irreducible A-lattice isomorphic to M*. [

Having a canonical procedure for constructing *-depth zero lattices from
ones of arbitrary x-depth such that the statements of Remark 4.9 carry over,
it becomes an interesting question to look into the structure of Out,(Bily(L))
in this case. Of course, it is no loss of generality if one restricts to the case
of simple algebras 4. Here is a first statement, whose hypothesis is often
satisfied.

THEOREM 4.12. Let L be of x-depth zero and assume that the centre
Z(A) is a totally real number field. Then Out, (Bily(L)) is of exponent
dividing 2.

Proof.  Because of Proposition 4.5 (vi) and Corollary 4.7, one has to

prove the following: for u € l7(A) NN(A(L)) the square u?> induces an inner
automorphism of A(L). Let uu® = z for some element z € Z(A). Then 2

and z~'u” induce the same automorphism. But z='u? lies is U(A), since

z° = z. Each prime of Z(A) is mapped onto itself by the involution °.
Hence, at the completion of the whole situation at any prime p of Z(A),
the element z~'u* again lies in a unitary group and cannot induce a shift on
the irreducible lattices in the sense of the proof of Lemma 3.8. It therefore
lies in any completion of A(L) and hence in A(L). Since A(L) is invariant
under the involution, also the inverse of 7z !u? lies in A(L) and the claim

follows. []

Here is a x-depth zero example, where the hypothesis of Theorem 4.12 is
violated and Out,(Bils(L)) is of order 3.
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EXAMPLE 4.13. Let G := (a,b,c|d’,b% a® = b? 3, [a,cl, [b, cl) be the
group (C7: C3) x C3 and let A be the residue class order of ZG modulo the
ideal generated by a—1 and ¢—1. Then A =2 K33 with K = Q[v/—3,/—7]
(of class number 1, cf. [PoZ89]) and

A

I%

R R
I R
I 1

XN XX

where R = Z[”1+2\/‘_3, ‘1+2*/“_7] = Zg is the maximal Z-order in K and
I is the product of the two prime ideals I; and I, above 7 in K, i.e.
7R = I?. The natural involution of QG induces the involution © of A of
interest. Finally, L := A, is chosen as the regular A-lattice, i.e. with respect
to the above description of A, one has L = (R,R,R)® (I,R,R) ® (I,I,R).
One easily checks that the group automorphism a — a, b — bc, ¢ — ¢
maps A onto itself and things can be arranged so that (R,R,R) is mapped
onto (I,R,I;"), and (I;,R,I;") onto (I;,I,I;',I;"). Since, clearly, L =
(R,R,R) & (II,R,Iz_l) < (11,1112_1,12_1), this reveals an element of order 3 in
Aut,(Bils(L))/ Inn(Bil,(L)). In fact, Out(Bil,(L)) is of order 12.

The general situation for the x-depth zero case is as follows with the
notation of Definition 3.10.

THEOREM 4.14.  Let L be of *-depth zero and assume (w.lo.g.) that A

is simple. Then Out,(Bily(L)) is Abelian and embeds into an extension of the
class group CUZ(A(L))) of the centre Z(A) by a group of the form

Do D Cuww,

peS {p.poteN
with S the set of prime ideals p of Z(A) with p = p° and S(A(L), p) even,
and N the set of pairs {p,p°} of prime ideals with p # p°.

Proof. That Out(Bily(L)) is Abelian was already shown in Theorem 3.9.
As in the proof of Theorem 4.12, let u € ﬁ(A) N N(A(L)). At each prime p
of Z(A), u induces a shift of period a(p) | s(A(L), p), as explained in Lemma
3.8 and Definition 3.10. Let uu® = z for some element z € Z(A). At the real
primes p = p°, both u and u°® shift by the same index, and hence the induced
shift generates at most a subgroup of order 2 of Cyryyy. If p # p°, the
induced shifts at p and p° are opposite to each other and of the same order
modulo local central shifts. Since the situation is global, the class group of
the centre has to be taken into account, as in the proof of Lemma 3.8. [
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5. INVERSION AND MODULARITY

Since Bilj‘l(V) C Hom(V,V*), the inverse ¢~! of a nondegenerate
¢ € Bil,(V) is well defined and lies in Bil;(V*). By Cramer’s rule
inversion is a rational map from Bi]jZ(V) to Bilj‘l(V*), more precisely
there is a homogeneous polynomial map P: Bilj(V) —¥ Bilj(V*) such
that ¢’¢p = det(¢) - idy. Viewing this as an identity of matrices with
polynomial entries, one might cancel out the greatest common divisor of
all occurring entries and get new polynomial maps p: Bilj(V) — Bi]jZ(V*)
and d: Bilj(V) — Q with ¢¢ = d(¢) - idy. The properties of the map p
have not been studied in this generality. The aim here is to investigate the
simplest case, where p is homogeneous of degree 1, i.e. a Q-linear map ¢,
as it is called in the sequel. Of course, the same analysis can be done with
Bil (V). The question whether such a ¢ is an equivalence, will be treated
later in this section.

DEFINITION 5.1. Let R be one of Z or Q. Then Bils,(Lg) is called
special if there is an R-linear map ¢: Bily,(Lg) — Bily,(L}) and a quadratic
form g: Bily,(Lg) — R such that for any nondegenerate ¢ € Bily,(Lg) one
has ¢‘¢ = q(¢) id;, . Analogous definitions hold for Bilj\LR (L)

EXAMPLE 5.2.

(1) One-dimensional lattices of covariant forms are special for trivial
reasons.

(11) If Bil4(V) is two-dimensional, then it is special. This is because
Bil 4(V) can be viewed as a free Z(A)-module and for two-dimensional
algebras 55 one has a canonical automorphism « of B such that b* = n(b)b=!
for all b € B*, where n: B — F is the norm map with respect to the regular
representation. (Note that Z(A) = End 4(V) in the present situation.)

(1) If Bilj\(V) is two-dimensional then it is special. This is because
Bil%,(V) can be viewed as a free Z(A)*T-module, where

ZAT ={p e ZA) | ¢° = ¢}
Here are some more interesting examples.

PROPOSITION 5.3. Let R®qEnd4(V) 2 K2%2 with K e {R,C,H}. Then
Bilj{t(V) is special. In the first two cases also Bil A(V) is special.

T
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Proof.: Define £ := End 4(V) = (eAe)***, where e = ¢° is a primitive
°-invariant idempotent of .4 and k is defined by V = (e A)*. In particular,
the positive involution ° on A induces a positive involution * on &,
(aij)" = (afj ' such that Bilj(V) can be identified with the subspace £+
of the symmetric elements in the algebra (£,°) with involution. It suffices to
prove that there exists a Q-vector space automorphism of £T, also denoted
by ¢, and a Q-valued quadratic form on £, also denoted by ¢, such that
P o =q(P)l¢.

(i) Let R®q & =2 R?*2, Then & is a quaternion algebra over Q. Denote
its canonical involution by w’ and its reduced norm by n. Clearly, n is a
quadratic form and w’(¢) ¢ = n(¢)1 holds for all elements ¢ € £. With
L= wl’ g+ and g :=njg+ one gets the desired formula.

(i) Let R®o& = C**?. Then & is a quaternion algebra over the imaginary
quadratic number field Z := Z(A). Denote its canonical involution by o
and 1ts reduced norm by n. The involution ° induces the nontrivial Galois
automorphism of (Z/Q), and therefore one checks quite easily, using [Scha85]
Theorem 11.2 (ii) of Chapter 8, that the norm n maps £ into Q. Now one
argues as in (i).

(iii) Let R®q & =2 H**?, Then & =2 D?*2, where D is a positive definite
quaternion algebra over Q (with canonical involution w’). Indeed, £ carries
an involution of the first kind and hence cannot be of index 4. Since ° is a
positive involution one sees from the proof of Theorem 13.3 of Chapter 8 in

[Scha85] that x = f~'X"f for all x € £, where f =F € £* and (x) = (%)
tr

for all (x;) € D¥? =g If (x;j) € € is symmetric with respect to ~" one
checks

X111 X12 i .
() = | — with x; = x; for i =1,2
X12  X22

X22  TX12 X111 X120\ ) 1
and il _ = (X2 x11 — X12%12) l¢g .

—X12 X1 X12 X22
This is the desired formula for f = 1¢. In the general case, note that x € £T
if and only if fx is symmetric with respect to ~" and apply the above formula
to fx.

(iv) The remaining two cases for Bil 4()) are treated similarly, like (i)
and (ii) with &1 replaced by £. [

The question immediately arises, whether the map ¢ of Definition 5.1
is or can be extended to an equivalence of Bil 4(V) onto Bil 4(V*). This is
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clearly the case for two-dimensional End 4()). It may fail for two-dimensional
BiljZ(V) with four-dimensional commutative End 4()) for the simple reason
that the nontrivial automorphism of the real quadratic subfield does not
necessarily extend to the whole of End 4(V). For R®q End 4(V) = R>*? one
gets a nice canonical answer, cf. Proposition 5.4 below. For R®qEnd4(V) =
C>*2 the answer is still positive, but the proof is computational and we omit
it. Finally, for R ®q End 4(V) = H>*? the map ¢ no longer extends to an
equivalence.

PROPOSITION 5.4. Let R ®qg End4(V) =2 R?*%. Then any nonzero
Y € Bil(V*) defines an equivalence Bil4(V) — Bil4(V*) : @ — Yo’
which restricts to a map .: Bilj(V) — Bilj(V*) with the properties de-
scribed in Proposition 5.3.

Proof. If V is a simple .A-module, obviously any nonzero element of
Bil ,(V*) is invertible if viewed as an .4-homomorphism from V* to V.
Otherwise, V =2 V@V, for some simple A-module V). Any A-isomorphism
Vo — Vg gives rise to an invertible element of Bil4(V), which therefore
consists of 0 and invertible elements, since it is one-dimensional. One easily
checks that any nonzero 1) € Bil ,(V*) leads to an equivalence, whose
associated isomorphism End4(V @ V*) — End AV* @ V) is induced by
conjugation with diag(—t~' ). Finally, for any ¢ € Bilj(V) one has
P(YpYp™) = q(p)idy with q(¢) := n(1p¢), where n is the reduced norm map
of the quaternion algebra End4(V*). This is so, since (YY) = —(Pap)?
and ¢t lies in End4(V*) and is of trace zero by tr(¢y) = tr((py)") =

r(=p¢) = —tr(¢yp). [

The next result normalizes ¢ and interprets it in the integral environment
of Bil(L).

THEOREM 5.5. Let R ®q End4(V) 2 K?X2 with K e {R,C,H}.

(1) There is a unique Aut(Bily(L))-invariant quadratic form q: BilX(L) — 7
such that the gcd(q(p)) for ¢ € Bilj\r(L) is 1, and q(¢) > 0 for
O € Bil;\F(L) positive definite.

(i1) There is a unique constant ¢ € 7, satisfying det(¢p) = cq(p)™ with
m=2""dimqgV for all ¢ € Bilf(L). (Clearly ¢ > 1. )

(i) There is a unique Aut(Bilx (L)) -monomorphism - Bilj\L(L) — BillJ{(L*)
mapping positive definite forms on positive definite ones such that the
image of . is not contained in pBilj\L(L*) for any integer p > 2.
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(iv) There is a unique constant cy € Z with ¢*¢ = coq(¢)id, for all
¢ € Bilj{(L). Moreover ¢ divides cjj, where n = dimgV. (In fact
det(¢") = cgc™q(®)™ for all ¢ € BilS(L).)

(v) Aut(Bily (L)) < OBil} (L), q) is a subgroup of finite index.

Proof. Let Bilf(L) = (¢1,¢2,...,04)z (with d = 3, 4, resp. 6 for
K = R, C, resp. H). Choose the isomorphism ¢ of Proposition 5.3 by
multiplying with a suitable positive rational number such that Bilj\'(L) 1S
mapped into BilX(L*) but not into a proper multiple of Bilj{(L*). After
rescaling g of Proposition 5.3 appropriately, one gets a quadratic form
q € Z[xy,...,x4] with

d d
O xit) O xid) = qars ..., xa) idy -
i=1 i=1

Since Z[x,...,x4] is a unique factorization domain, one obtains a constant ¢
and a quadratic form ¢ as required in (i) and (iv). Also by taking determinants,
the unique factorization property yields det(¢) = cq(¢) with a unique integer
¢ dividing cj. Since det(g¢p) = det(g)? det(¢) = det(¢) for g € N(L), one
sees that g is Aut(BilX'(L))—invariant, at least up to sign. And since the
action respects positive definiteness, one gets invariance. One clearly has
(gp) = g~ "¢* for all g € N(L) and all ¢ € Bilj‘\F (L) of nonzero determinant.
But since all other elements of BilX(L) are rational linear combinations of
these, one obtains the equation for all ¢ € Bﬂj{(L).

To prove (v) we first note that, by a standard Lie group argument, the
group S of norm 1 units of End 4(R®q V) is mapped onto the 1-component
of O(Bilgg,(R ®q V),q). Also it is well known that the subgroup T of
norm 1 elements of Endy(L)* (which is clearly of finite index in N(L)) has
finite covolume in §. This implies that Aut(Bilj{(L)) 1s of finite covolume in
OBiljg (R ®q V),q) and therefore of finite index in O(Bil} (L), ).

It follows from (v) and the fact that the signature of g is (1,d — 1) that
Aut(Bil} (L)) acts absolutely irreducibly on Bil}(L). This again implies that
the invariant quadratic form g is unique up to rational multiples, i.e. unique
with the properties specified in (i). It also implies the uniqueness of ¢ in (iii).
The uniqueness of the constants ¢y and ¢ now follows from the considerations
at the beginning of the proof. []

The corresponding results for the other examples given in Example 5.2
are left as exercises to the reader, who should note however that the action
of O(Bilj{(L),q) on Bilj{(L) need not be absolutely irreducible any more.
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The next topic it to set the concepts of this chapter into relation with
modular lattices as introduced by Quebbemann in [Que95]; cf. also [SSch98]
and [P1e98] for surveys.

DEFINITION 35.6.

(1) ¢ € Bilj\L(L) is said to be k-modular, for k € Z, if (L}, k@) is isometric
to (L,¢), where L¥ = {l €V | ¢(I,L) C Z}. (Note the Gram matrix of ¢ on
L* is inverse to the Gram matrix on L if one chooses the bases dual to each
other.)

(i) Bily(L) is called modular if Bil7(L) is special by the maps
L: Bilj{(L) — Bilp(L*) and gq: Bilj{(L) — 7., cf. Definition 5.1, such that
¢ 1s (the restriction to Bilj((L) of) an induced equivalence; cf. Definition 4.3.

Clearly, if Bilf(L) is modular, each nondegenerate ¢ & Bilf(L) is
coq(¢)-modular with ¢y as in Theorem 5.5, and the isometries are all given by
the same map. Some examples of two-dimensional modular lattices of covariant
forms have already been investigated in the literature, cf. e. g. [Neb98b] where
even the Hermite function was discussed for some examples or [Neb96a], where
the extremal 3-modular lattice in dimension 24 was discovered. Here the main
issue concerns the cases with R ®g End 4(V) =2 R?*? or C2*2, since H2*2
cannot occur. Example 6.6 (i) provides an example where Bilj{(L) 1s special
without being modular. It should be emphasized that induced equivalence
between Bily(L) and Bil,(L*) is not an uncommon phenomenon. For instance
it occurs whenever L and L* are A-isomorphic. That the induced equivalence
1S ¢, 1s rather rare.

PROPOSITION 5.7 Let R®qEnd 4(V) = R**? and assume Bil (L) = Za),
and Bil, (L*) = Zapy with )11, = e -id; for some natural number e.

(1) If e =1 then Bilx(L) is modular. with . induced by .

(i1) If ¢1 and s do not have the same elementary divisors, then BilX(L)
is not modular.

(iii) If "™ £ det(1h,)? then Bilf (L) is not modular.

Proof. (i) This follows along the lines of Proposition 5.4. That Bil(L)
i1s mapped onto Bily(L*) follows from the fact that det(vn) = +1.
(i1) This is because induced equivalence respects elementary divisors.

(ii1) This can be derived from (ii) by taking determinants. It can also be
obtained from the observation that 1» induces e - .. []
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EXAMPLE 5.8.

(i) Of the four irreducible Bravais groups of degree 8 whose commuting
algebra is a nonsplit rational quaternion algebra (ramified at 2 and 3), cf.
[Sou94], the e of Proposition 5.7 is 1, 2, 3 and 6. In all cases Bilj((L)
is modular and ¢y is equal to 1. In [Neb99] the Hermite function on the
fundamental domains for these cases is plotted.

(i1) In Example 2.2 (ii), choose f; to be m-modular for some natural
number m. Then BilX (L@ L) (in the notation of Example 2.2 (ii)) is modular,
where the e of Proposition 5.7 is equal to m, as is cp.

To test whether Bilj{(L) is modular, one can simply compute the images
of a Z-basis of Bilj\L(L) under ¢ as described in Theorem 5.5 and find a
simultaneous isometry of L to L* (with respect to all of the forms, resp. their
images). For this there is a powerful algorithm with implementation available,
cf. [PIS97]. Instead of a whole basis, it is sometimes enough to look at one
sufficiently general form; details on this will be given in a subsequent paper,
as well as some examples with R ®q End 4(V) & C?*2. One such example,
involving the Leech lattice with End 4()) a non-split quaternion algebra. over
Q[/—7], is sketched in the last chapter of [Ple96].

6. SOME THREE-DIMENSIONAL LATTICES OF COVARIANT FORMS

This chapter is devoted to some examples in the case where End4()) 2
Q**% and where the depth of Bily(L) is 0. The typical questions we try to
answer are: how to relate the various invariants ? are outer automorphisms
possible ? are modular lattices possible ? how does the automorphism group
of Bil{ (L) compare to the orthogonal group of (Bilf(L),q) ? The simplest
case is End,(L) = Z**?, where all these questions can be answered.

THEOREM 6.1. Let Bndy(L) = Z**?. Then L = Ly @® Ly for some
irreducible A-lattice Ly. Let ¢q be the positive definite generator of Bilj{(Lo).
Then c, co, and q, introduced in Theorem 5.5, are as follows.

(1) With respect to a suitable basis of Bilj{(L), the quadratic form q of
Theorem 5.5 becomes xy — z°.

(i) ¢ = det(¢p)>.
(ii1) co is the exponent of Lg/Lo, i.e. the biggest elementary divisor of a
Gram matrix of ¢q.
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(iv) Inn(Bill (L)) = Aut(Bil} (L)).
‘ (v) Aut(B11+(L)) is of index 2 in O(B11+(L) q). More precisely, it is equal
to the kernel of —0 intersected with O(B11+(L)) where 0 is the spinor
norm of O(Bll (V),q) ([Scha85], p.336).
(vi) The nondegenerate ¢ € B11+(L) are modular if and only zf Qo IS
co-modular. In this case such a ¢ is coq(¢)-modular.
(vii) The e-x-depth of Bilp(L) is given by [35], where r is maximal with
p" | co for some prime number p.

Proof. Choose a basis for Ly. This yields a Gram matrix A of ¢o. With

respect to a suitable basis of L, one gets (g 8), (g 2 ), (2 ’8) as Gram matrices
for the obvious basis of Bil(L). Since det((}) ®A) = det(AY*(xy —2°)"
and ((15) @A) =@y —7'(2, ) ®A™!, the claims (i) to (iv) follow.

(V) 18 stralghtforward with [Mac81]. (vi) and (vii) are obvious. ]
The general case of depth 0 is more involved:

PROPOSITION 6.2. Assume € = Q**? and L, resp. Bilj{(L), is of depth 0.
Let d :=p;---px be the product of the different primes at which Ends(L) is
not maximal.

(i) There are unique natural numbers s,t such that the quadratic form g
on Bilj\L(L) described in Theorem 5.5 becomes sxy — tz> with respect
to any basis (¢,,x) of Bili(L) such that ¢,v € Bilf (L) with
L = Rady(L) ® Rady(L) and X is zero on both direct sum;q_zands. The
product st divides d.

(i1) The constant ¢ of Theorem 5.5 is given by

¢ = det(¢p) det(¢p)s™™,

where 2m - dimg(V), @ is the scalar product on Rady,(L) induced
by ¢, and 1 the scalar product on Rady(L) induced by .

Note that, providing k > 0, there are 2¥~! such bases up to interchanging
¢ and v and up to Endx(L) operation.

Proof. Let L = L, & L, with absolutely irreducible A-lattices L;, L,.
One may assume dL; < L, < L;. Note this implies that L] can
be considered to sit inside Li with L} < L} < d7'L}. As a re-
sult, Homu(L;,L;) = djHomy(L,,L}) for some divisor d; of d, and
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Homy (L, L) = dy Homyp(L;,L;) for some divisor d, of d. Introducing a
basis for L, as with Ly in Theorem 6.1, identifies L; =: L, with Z!*";
and choosing a basis for L, identifies L, with Z'*™T, where T € Z™*"
represents the change of bases. Denote the m X m-unit matrix by I = I,,. The
computation for Theorem 6.1 can be transformed as follows:

I 0\ (XA ZA\ (I 0\" [ xA zd; AT
0 T)\ZA yA)\O0 T) ~— \zd['TA yd;'d;'TAT" |’

with x = x',z = d17/,y = didyy’. The parameter choice (1,0,0), (0,1,0),
(0,0,1) for (x,y,z) yields a typical basis for BilX(L) as described above.
Taking determinants yields

det(T)? det(A) (== — (= 2)m
et(7)” det(A) id; (dl) ;
and hence (i) and (ii) with s = dig~',t = dpg~' relatively prime, where
g = gcd(dy,dy), if one uses det@) = det(A). That s, do not depend on
the particular decomposition of L follows from analyzing the determinant

of g. [

1

Working through the various cases for determining ¢y in Theorem 5.5
1s left as an exercise. Before analyzing Aut(Bilj{(L)) one needs to look
at the automorphism groups of the quadratic forms involved. Note that the
automorphism groups of kxy —z> for k € N square free are analyzed in quite
some detail in [Mac81]. In the present context two extra details are needed.

LEMMA 6.3. Let s,t € N be square free and relatively prime, and
let k := st.
(i) The diagonal matrix diag(t,t,1) transforms O(Z'*3 sxy — tz%) onto
O(Z1X3,kxy _ Zz)_
(i1) There is an exact sequence of groups:

<—12><ﬁ(kZZ ;) — O™ oy =) = D — 1,

where Dy < Q*/ (Q*)? is generated by the cosets of the divisors d of
k (including —1).

Proof. (i) Denote the quadratic forms sxy —#z> and kxy—z? by g and ¢’
respectively. On L = Z'*3 they define integral bilinear forms b and &', e.g.
b(li, 1) = q(ly + L) — q(ly) — q(lp) for [;,1, € L. Clearly, O(L, q) also acts on
the reciprocal lattice Lf of L with respect to b, and O(L,q’) also acts on
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the reciprocal lattice L't of L with respect to b'. Hence diag(t,t,1), which
maps L onto tL* NL and g onto tg’', conjugates O(L,q) into O(L, q'). For
the reverse inclusion one argues similarly for ¢ odd with (L'* NL and one
has to work with L "t N L, taking the even sublattice, for ¢ even.

(i) Define Ly := {(° ) | a,b,c € Z} and consider the determinant det as
i a quadratic form on Ly for any natural number d. Then (L, det) is isometric
i to (2, kxy—2z*). One easily checks that (kZZ ;)* acts on L; by X — gXg"
' forall X €L and g€ ( kZZ ;)* Clearly this action respects the determinant,
whence the exactness of the left half of the sequence is established. Note, for
k=1, the full claim was already proved in Theorem 6.1. Clearly L; < L;
" and the stabilizer S, of L; in O(L;, det) is generated by —id;, and the image
| of </<z Z) . As in Theorem 6.1 denote the spinor norm of O(Q'*3 xy — z%)
. by 6. Then —6 restricted to O(L,det) will be the homomorphism on the
right of the exact sequence. Clearly the image of ( kZZ ;)* is in the kernel of
© —0. To complete the proof, it is enough to show, by induction on the number
- d(k) of prime divisors of k, that O(Ly,det) contains S; of index 240 and is
- generated by an S; and elements (Atkin-Lehner involutions) mapped by —0
~onto p(Q*)? for the primes p dividing k.
The statement follows for d(k) = 1, i.e. k = p prime, as follows: the
~orbit of L; under O(L,,det) consists of L; and L;,, where in general

 Lig = {(d?“ ;b) | a,b,c € Z}. This is because L; must be mapped onto an

~ isometric lattice contained in Lg and containing L,. The isometry fixing L,
and mapping L; onto L;, is the reflection by the vector diag(—1,p) € L,,

which can also be realized by extending the operation via 2 X 2-matrices to
1

p( 2 (])) This settles the case d(k) = 1. Now assume the statement proved
for O(Ly,det) for all proper divisors d of k. Let k = pk’ for some prime
divisor p of k. Obviously the orbit of L; under the action of O(Ly,det) is
of length p + 1, as is the orbit under ( k’ZZ ;)* Hence, the stabilizer of L;
- 1n O(Ly,det) is an extension of S; by an elementary Abelian 2-group of
rank d(k) —1 = d(k’). An argument similar to the one above shows that this
stabilizer is of index at most 2 in O(Ly,det). That it is of index exactly 2
can then be seen via the element of O(L,,det) with spinor norm —p. (In

[Que96] the precise element is given, cf. also [Mac81].)

Note, the elementary Abelian 2-group O(Ly,det)/S; acts regularly on the
set {Li4 | d divides k}. In terms of the affine building belonging to the
p-adic completion of the group, all L; ; with ptd | k belong to one vertex
~ of the attached tree and all other L, ; belong to a different vertex, which is
not of the same type as the first vertex. Finally L,, resp. all L; with p | d,
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belong to the edge connecting the two vertices. [
Now Proposition 6.2 can be completed :

PROPOSITION 6.4. Under the hypothesis and notation of Proposition 6.2
the index of Aut(Bilj{(L)) in O(BilI(L),q) is 21+a [+ 1), where p runs
through all prime divisors of % and a is at most equal to the number of
prime divisors of st. Moreover, Aut(Bilj{(L))/ Inn(Bilj{(L)) s an elementary
2-group of rank a.

Proof. This is an immediate consequence of Proposition 6.2 and
Lemma 6.3. [

The question arises, whether there are examples for which the minimal
possible index of Aut(Bil; (L)) in O(Bil} (L), q) according to Proposition 6.4
is attained, i.e. a = 0 and d = s¢. This is already possible in the group case;
cf. Example 2.2 (ii).

PROPOSITION 6.5.  For a prime number p let c(p) = p—1 if p is odd and
c(2) = 2. Then, for any sequence of prime numbers py < p, < --- < p;, there
are examples with dimg)V = 2Hl  ¢(pi), where A is an image of a finite
group algebra and End (V) =2 Q?*?, where Aut(B11+(L)) is of (minimal)
index 2 in O(B11+(L) q)- If pi =3 (mod 4) for all i with p; #+ 2, then L
can be chosen so that each ¢ € B11+(L) is coq(@)-modular.

Proof.  First construct a finite C-irreducible subgroup G(p) of GL»(Q)
as follows: for p =2 take the automorphism group of the quadratic lattice
(which is a dihedral group of order 8); for p odd take the Frobenius group of
order p(p — 1) in its action on the permutation module factored by the fixed
points, which is then identified with Q'*?®)  Take the span of —I.; with
this group to obtain G(p) < GL,»(Q) of order 2p(p — 1). The G(p)-lattices
in Q' are described in [NeP95a] p.29: up to multiples they come in a
chain Lo(p) > Li(p) > -+ > Le) = pLo(p) > - - -, where L;(p) is of index p
in Lo(p). There exists an element »n in the normalizer of G(p) in GL,»(Q)
mapping L;(p) onto L; . /2(p). Choosing L = Li(p) ® Litcq) ,2(p) and taking
the G(p)-invariant symmetric bilinear forms for BilX(L) gives the desired
result for the case d = p. The case i =0 for p =2, resp. i = ”—;—3 for p=3
(mod 4), gives modularity. The general case of composite d is obtained from
the above by taking tensor products.  []

R S e —
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One should note that in the above proof one gets modular lattices by
choosing L = L; @ L,—; without having the big Aut(Bilj{(L), if ¢ is not

| chosen as above. The same holds for the composite case. By now it should be
! clear that the existence of outer automorphisms and modularity of the lattices
- are different phenomena.

To end up, some explicit examples of *-depth zero will be given, where

' Endy(L) & (2°%). One easily checks that the unit group is generated by

zZ
a,b,c and that the outer automorphism is induced by d with

~1 3 1 0 1 0 (0 3
e (3 ) me (P 0) e (1 0) a0 ).

" Note that defining relations for the inner, resp. outer, automorphism group are
- provided by a?, b?, &%, (ab)® and b*, 2, 4, (€d), (@h)°® respectively. The
~ fundamental domains in the hyperbolic plane identified with BﬂXR,>o(V) /Rso,
- where Ry acts by multiplication, are triangles with vertices P, C;, (; in
~ the first case, where C; and C, are cusps, and P, C|,M 1in the second case.
- The angles can be read off from the presentation. According to Example 3.7

there are seven possibilities for the equivalence type of Bily(L), parametrized
by the exponent matrices of Enda(L & L*) given there. Only in four cases
can one have outer automorphisms.

EXAMPLE 6.6.
(1) Take the fourth possibility in the list of Example 3.7. Then L = L, ® L,

~with Lf = L; and L} = 3L,, where the reciprocal lattices are taken with

respect to a generator ¢; of Bils(L;), and L, < L; is necessarily of index

3"/2 in L; with n:= dim(L;). (Note: n must be even.) Representing Bilj[(L)

by Gram matrices one gets Bilj{(L) = {(3;‘ ;;(2) | o, 8,7 € Z}, where F;

- and F, are unimodular (Gram matrices for L; and L,) and XF L Ixr — 3F,.

Obviously one has no outer isomorphism if F; and F, are not equivalent.
In this case BilX(L) 1s not modular, though ¢ is bijective, but it is not an

~ equivalence. In any case, the vertices of the fundamental domain in this case
are given by the (o, 3,7) € {(2,2,1), (1,0,0), (0,0,1)} corresponding to

P,Cy, C,, the determinant is (3 — 3+?)" and a nice realization of this setup
is for n = 12, where one can find the 3-scaled version of the unimodular
lattice Df“z as a sublattice of the standard lattice of index 3°. Things can be
so chosen that the 2-fold cover of the Mathieu group M, acts. In Bilj\L,>O(L)
one has two orbits of primitive M, -perfect lattices, one unimodular with
minimum 2 and one of determinant 5'* with minimum 4. Obviously one can
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produce many more examples in higher dimensions. One can show that there
is no realization of this situation for n < 12.

If one has an outer automorphism, there seems to be the possibility that
Bilj{(L) 1s modular. The vertices of the fundamental domain in this case
are given by the («,f,v) € {(2,2,1), (1,0,0), (1,1,0)} corresponding to
P,Cy,M. For the case F| = F, I have computed some examples: F; = I,
Eg, Ays (Leech lattice). In the first case the vertex P represents the root
lattice Eg, which is the only perfect lattice here. In the other two cases my
choice of X (there might be more than one!) yielded a 6-modular form as
the only perfect form; the coordinates were (3,3, 1), the minima were 6 and
12 respectively.

(i1) Take the eighth possibility in the list of Example 3.7. Then L = L $L,
with 3L; < L, = 3L§* < Ly = 3L,, where the reciprocal lattices are taken with
respect to a generator ¢; of Bila(L;).

Again representing BilX(L) by Gram matrices with respect to suitably

311: g%) | o, B,y € Z}, where F are the

Gram matrices for (L;, ¢;) and F =3F~!. The determinant is Baf —y)".
Obviously one has an outer isomorphism if and only if F and F are
Z -equivalent, i.e. if (Lj, ¢;) is 3-modular. Many such examples, with and
without outer automorphisms and also for other exponents different from 3
of L’f/Ll, have been investigated in [Bav97], because in this case Bil, (L)
is spanned by unimodular symplectic forms. By Proposition 5.7 Bilj{(L)

1s modular. Here are some examples with outer automorphisms: F = A,,

A 2
Ar, ® Eg, K, (the Coxeter-Todd lattice), and [£S¢(3) [ C3]o¢ of [Neb96b];
one gets one relative extremal lattice with coordinates (o, (3,7v) = (1,1,1).
They are 2-modular with minima 2, 4, 4, and 6 respectively. However,

2(3)
F = [SL,(9) ® SL,(9).2]i¢, which is also 3-modular with minimum 4 of
00,3

chosen bases one gets Bilj{(L) = {(

dimension 16 (like A; ® Ey), yields the 11-modular form with minimum 12
and coordinates («, 3,7) = (3,3,4) as extremal lattice. Finally, F = Ny
(the extremal 3-modular lattice of dimension 24 of [Neb95]; or [Neb98b],
Theorem 5.1 for an alternative construction) yields a 23-modular lattice as
extremal with minimum 24 = 4 -6 and coordinates (o, 3,7v) = (4,4,5). It
would be interesting to investigate the density function on the fundamental
domain theoretically.
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