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LATTICES OF COVARIANT QUADRATIC FORMS

by Wilhelm Plesken

1. Introduction

The problem of constructing integral lattices in Euclidean space with big
density for the associated sphere packing has attracted considerable attention
in the last years; cf. [C0S88]. Some of the lattices found in this context were
constructed as G-lattices for some finite group G; cf. [NeP95], [Neb95],
[Neb96a], [Neb96b], or [Ple98] for a survey. Other sources of constructions
were lattices associated with number fields or semi-simple algebras; cf.
[BaM94], Rather than looking at just one bilinear form on a lattice, the
present investigation is geared towards the study of certain families of such
forms.

More precisely, a rather general and flexible setting for the Z-lattice
Bilzc(F) of all integral G-invariant bilinear forms on a ZG-lattice L is given:
one replaces the group ring ZG by a Z-order A with a positive involution
and the invariant bilinear forms by covariant ones, as defined in Chapter 2.
One learns from [Opg96] and [OpgOl] that one should look at the dual lattice
L* at the same time. As pointed out by J.-P. Tignol, the endomorphism ring
EndA(L©L*) accommodates both the integral bilinear covariant forms on L
and on its dual L*. Even if the two orders A, with involutions and lattices
Li are completely different, it now becomes natural to consider that the two
lattices BilAl(Li) and BilA2(L2j of bilinear covariant forms on A,-lattices L,
are equivalent if the endomorphism rings EndAf(L; © are isomorphic; cf.
Chapter 2 for a more precise definition.

In this way the lattice of all integral bilinear forms on the Z-lattice Z"
becomes equivalent to BilZG(®"M) for any absolutely irreducible ZG-lattice
M admitting a unimodular G-invariant bilinear form. However, the situation
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is more interesting if the endomorphism rings EndA(L0L*) are not maximal
orders, for instance hereditary, to mention the next simplest case. In Chapter 4
a. canonical process is described which associates with each BilA(L) a A-lattice
L such that EndA(L0L is hereditary. At the same time one gets an invariant
called the e-*-depth measuring how far away L, resp. BilA(L), is from this
well behaved situation.

This process generalizes Watson's process for constructing elementary
quadratic forms out of arbitrary integral quadratic forms; cf. [Wat62] (where
elementary means that the exponent of the discriminant group is square

free). Indeed, the present investigation can also be viewed as a generalization
of the study of a single positive definite integral bilinear form 0, at least
if </> is primitive, i.e. surjective onto Z, namely by obtaining Z<\> as
BilA(L). Equivalence then means that the exponents of the discriminant groups

biggest elementary divisors of the Gram matrices) are equal for the two
primitive forms considered. It should be noted that the general procedure
applied here is called the radical idealizer process and is quite common in
the general theory of orders.

In Chapter 3 the group of autoequivalences is studied without using
the underlying lattice L in any serious way other than via EndA(L 0 L*).
The notions depth and *-depth for BilA(L) measure how far EndA(L) and
EndA(L0L*) are away from being hereditary. The *-depth zero situations are
often classifiable. In the depth zero situation structural results on the outer
group of autoequivalences can be given. Even more restrictions for the outer
automorphism group in the *-depth zero case are given in Chapter 4.

Chapter 5 studies the special situation where inversion of nondegenerate
forms can be rescaled to become a Z-linear mapping of the nondegenerate
elements in BilA(L) into BilA(L*). Quebbemann's definition of modular
lattices, cf. [Que95] and [Que97], is taken up to define BilA(L) to be modular
if there is a simultaneous modularity transformation for all p.ositive definite
forms in BilA(L). Finally, in Chapter 6, some examples are studied, e.g. if
EndA(L) is a Z-order in the algebra Q2x2. Examples of this nature have also
been studied by Bavard, cf. [Bav97], in a geometric manner in the context of
symplectic lattices.

Whenever something new is introduced, one should justify it by giving the
benefits for the old problems. So, for instance, the present investigations give
a better understanding of the normalizer of a finite unimodular group within
the full unimodular group (cf. discussion of N(L) following Definition 4.4).
The sort of insight one gets into the structure of the normalizer allows one
to compare normalizers in their actions on the BilA(L) even if the groups are
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of different degrees.

In this sense the examples at the end of the paper describe infinitely many

normalizers. The reader who wants to look at some other, more concrete,

examples might use the package1) CARAT® handling low-dimensional crys-

tallographic groups; cf. [OPS98] or [PSOO]. Here are some further applications

of the present investigations : they help to check when two finite unimodular

groups are conjugate in the full unimodular group by comparing the lattices of
invariant forms ; they help to create models of such lattices in low dimensions

by passing to equivalent lattices of covariant forms; they help to find candidates

for lattices of covariant forms which contain interesting positive definite

bilinear forms, and to locate these forms inside the lattice of covariant forms.

It is a pleasure to acknowledge many inspiring discussions with G. Nebe.

2. Covariant forms and equivalence

Throughout the paper, A denotes a semi-simple Q-algebra with a positive
involution °, i. e. an antiautomorphism of order two of A such that A —» Q :

a I—> trA/Q(aa°) is a positive definite quadratic form on A, where trA/Q
denotes the reduced trace of A. Together with A, fix a faithful finite
dimensional right .4-module V. The basic data to start with are A, °,
and L, where L is a full Z-lattice in V Lq := Q ®zT. Because of the

involution, V* := HoniQ(V, Q) becomes a right A-module again, which is

isomorphic to V. Inside V* one has L* := {cp G V* | Lip C Z}, which can
be identified with Homz(T, Z).

Definition 2.1.

(i) A(L) := {a G A \ La Ç L and L*a Ç P} is called the °-invariant
order of L in A.

(ii) A Z-bilinear form cß: L x L Z is called covariant (with respect
to °) if it satisfies

4(Va, W) <P(V, Wa°) for all V, W G L, a G A

where A is any °-invariant Z-order in A, contained in A(L) of finite index.

(iii) The Z-lattice of all, resp. all symmetric or skew-symmetric, covariant
Z-bilinear forms on L is denoted by BilA(L), resp. Bil+(L) or Bil-(L).
Finally Bil+>0(L) denotes the set of positive definite elements in Bil+(L).

1

This is available via internet http://wwwb.math.rwth-aachen.de/carat/index.html.
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Extending this notation for any commutative ring R containing Z, one can
consider covariant R-valued bilinear forms. They give rise to the R-modules
BiU*(£/?), resp. Bil^(L^) and Bil^(LA), spanned by the above Z-lattices. If R
is contained in R, Bil^>0(LR) denotes the set of positive definite elements in

One checks, that Bil^R >0(LR) is an open, nonempty cone in the real
vector space Bil+R(LR). Any nondegenerate element of Bü^(Lq) can be used
to recover the involution ° on A. To connect covariance with the more familiar
notion of a sesquilinear form - cf. [Scha85], p. 236, [BaF96] -, one should
note that composition with the reduced trace of A yields a Z-isomorphism
of the lattice of sesquilinear maps of L taking values in the inverse different
of A(L) onto BilA(L). Three typical examples will demonstrate the generality
of the concept :

Example 2.2.

(i) Fix a positive definite symmetric matrix / G QnXn. Let A QnXn
with a° fatrf~l for all a e A and let L ZlXn. There is a unique
positive definite rational multiple /o of /, which is integral and primitive,
i. e. the greatest common divisor of the entries of /0 is 1. One checks that
BiUCL) Z/o and Bil^ >0(L) N/o. If /o is unimodular, then A(L) ZnXn,

any other A(L)-lattice is of the form ®^L, and BilA(®*L) {x®f0 |

x G Zkxk}, where 0 denotes the Kronecker product (of two matrices). Note
that FndA(A)(®^L) Zkxk.

(ii) Let G < GLn{Z) be a finite unimodular group. Set A \= QG
the enveloping algebra of G, i.e. the subalgebra of QnXn spanned by the
matrices of G (clearly an epimorphic image of the group algebra QG) and
let L := Zlxn. Obviously the standard involution g g~l for g G G of
QG induces a positive involution on QG. The order A(L) contains ZG, the
Z-span of the matrices of G as a suborder of finite index. BilA(L) consists of
all G-invariant bilinear forms. Bil+R >0(LR) is known as the Bravais manifold
of G. If there is no finite unimodular group H containing G properly with
the same BilA(L), resp. Bil^(L), then G is called the strict Bravais group,
resp. the Bravais groups cf. [OPS98].

(iü) Up to isomorphism there are three types of real simple algebras with
a definite involution, namely (R"xVr), (CnXn~tr), and (JlnXri~tr), where ~
denotes complex, resp. quaternionic, conjugation. A (right) module for such
Knxn can be taken to be KSXn with endomorphism ring Ksxs according to
the three possibilities for K above. Then the R-space of covariant forms can
also be represented by Ksxs, where the symmetric forms correspond to the
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symmetric matrices in case K R and to the Hermitian matrices in the

remaining two cases. According to the decomposition of Ar into such simple

components, one clearly has a decomposition of Bü^r(Lr) into components,
each of which can be described as such a Ksxs with suitable K and s as

above. In particular, this gives the Z-ranks of BilA(L), Bil^(L), and Bil^(L).

It is often helpful to identify BilA(L) BilA(L)(L) with HomA(L, L*)
HomA(L)(L, L*) as Z-lattices. More precisely <p G BilA(L) is identified with

t G HomA(L)(L,L*) by W(r(V)) := <ß(V,W) for all V,W G L, where we
write A(L) -homomorphisms of right A(L)-modules on the left. As A(L) can

be replaced by any suborder A of A(L) of finite index (invariant under the

involution), we shall usually write A instead of A(L) in the sequel. In this

way, BilA(L*) is also identified with HomA(L*,L) and one gets bilinear maps
BilA(L) x BilA(L*) - EndA(L*) and BilA(L*) x BilA(L) - EndA(L), which
can be composed with the reduced traces of the endomorphism rings of Lq
and of Lq respectively, to obtain Z-valued bilinear maps. Of course the

latter become nondegenerate pairings if one tensors with the field of rational
numbers. Hence one gets a discriminant for BilA(L), which measures the
deviation of (BilA(L), BilA(L*)) from being in perfect duality. Obviously, the

same can be done for Bil^(L) and Bil^(L).

Definition 2.3. Let e stand for the empty symbol, +, or -. The
discriminant of the pair (BilA(L), BilA(L*)) is defined as

discr (BilA(L), BilA(L*)) := det(Tr(^))1<;-<ij<d

where resp. (ip\,...,ipd),formZ-bases of Bil^(L), resp.
Bil^(L*), and Tr denotes the reduced trace of End^V*).

Clearly, the definitions are independent of the choice of bases and one
can even define a discriminant group, whose order is the discriminant. As
an easy exercise the reader may check that in the case of Example 2.2 (i)
the discriminant discr (Bil+(L)),Bil+(L*)) is equal to the exponent of the
discriminant group ZX°/L of (L, 0O), where ZX° := G V | <p0(L, V) ç Z}
with <f>othe bilinear form described by /o.

Another observation along the lines of the interplay between BilA(L),
BilA(L*), EndA(L), and EndA(L*) is the presence of all of these in
EndA(L © L*).
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Remark 2.4.

EncU(V © V*)
/ EncU(V) Honu(V*,V)
VHonu(V,V*) En<U(V*)

is a Q-algebra with involution ^ ^ i-> J© and a C2-graduation
<f> r) J y C

/End^(V) 0 \(0Homu(V*,V)
V 0 End^CV) y \Homi(V,V*) 0

The involution is induced by the symmetric bilinear form v on V© V* defined

by

i/: (V©V*)x(V©V*)-Q: ((V1}Vl),(V2,^)) n Vm + V2<px

With respect to this bilinear form one has (.X © Y)# 7*©F for any two
full lattices X C V and Y C V*. In particular, EndA(L 0 L*) is invariant
under the involution.

The following proposition yields a better understanding of the discriminant.

Proposition 2.5.

discr (BilA(L), BilA(L*)) • discr (EndA(L))2 |discr (EndA(L 0 L*)) |

where the discriminants are taken with respect to the reduced traces.

Proof. One has EndA(L0L*)
EndA(L) 0 \ f 0 HomA(L*,L)N

0 EndA(L*) J VHomA(L,L*) 0

Since the two summands are orthogonal to each other with respect to the

trace bilinear form, and since EndA(L) and EndA(L*) are antiisomorphic and

therefore have the same discriminant, the claim follows.

Now the basic definition is well motivated.

Definition 2.6. Let (#, °) be a Q-algebra with a positive involution,
and W a (faithful) B -module containing a full Z -lattice M. Let Y be

some suborder of finite index in A(M). Finally let R be some subring
of R containing Z. We say that BilA(L) and Bilr(M) are R-equivalent
if there exists an R-module isomorphism to: BilA/?(LA) —> BilAy?(M^), called

an R-equivalence, which extends to an isomorphism Q of R-algebras with
involution and C2-grading from EndA/?((L 0 L*)r) onto EndrÄ((M 0 M*)Ä)
and which induces a bijection from Bil^ >0(Lr) onto Bil^ >0(MR). If R Z
then one simply says equivalence instead of Z-equivalence.
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It is worthwhile to spell out the isomorphism of EndA^((7, 0 L*)r) onto

Endr*((M®M*)r) in more detail. The equivalence u: Bila(Lr) —» Bilr^(MA)

obviously induces an R -module isomorphism u/: B\\Ar(L*k) - for

one may assume R — R and BÜa(Tr) is spanned by nondegenerate (resp.

invertible) elements i/j, and accordingly BÜar(Tr) by the f>~1. The relation

idLR translates into uj'(ip~[)= Obviously to and lü', taken

together, yield unique R-algebra isomorphisms uj\ : EndA^(TA) —> Endr^M/?)
and cj2: EndAR(Lf) - Endr^((M^), which are related by w^frf)

for all r] e Endr*((L£). So one has the following

Remark 2.7. In Definition 2.6 the R-algebra isomorphism

a : EndA,((L © L*)R) -» Endr,((M 0 M*)R)

is uniquely determined by the equivalence uo: BilAr(Lr) Büaä(Mr).

Obviously the discriminant of the pair (BÜa(T), BÜa(T*)) and the discriminant

group of BilA(T) do not change when one passes to an equivalent lattice

of covariant forms. In the case of one-dimensional spaces of compatible forms,
the discriminant separates equivalence classes.

Remark 2.8. In the situation of Definition 2.6 let Bil^(V) and Bifg(W)
be both one-dimensional. Then BÜa(T) and BilA(M) are equivalent if and

only if
discr(BilA(L),BilA(L*)) discr (Bilr(M), Bilr(M*)).

Proof. The missing direction follows from the following description of
EndA(L®L*). Let d discr (BilA(L),BilA(T*)) and BilA(L) Zf. Then

—M">(zz)-
From the discussion in Example 2.2 and the definition, it is reasonably

clear that BilA(L) and BilA(M) are R-equivalent if and only if End^O/fo)
and End#R(WR) are isomorphic. For Q-equivalence the statement is more
difficult to prove.

PROPOSITION 2.9. Let (#, °) be a Q-algebra with a positive involution,
W a faithful B-module containing a full Z-lattice M, and let T A(M).
Then two lattices BilA(L) and Bilr(M) of covariant forms are Q-equivalent
if and only if End^(V) and End#(W) are isomorphic as Q-algebras.
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Proof. By Definition 2.6 equivalence of V and W implies that the
endomorphism rings are isomorphic. To prove the converse, we may assume
without loss of generality that A and B are simple. Then the endomorphism
rings are also simple. Fix an isomorphism uj\: End^(V) —> End#(>V). Then
co2: End^(V*) —» End#(W*) : 77 ^ {uo\(j}tr))tr is also an isomorphism
and {wa((>tr))tr ^i(C) f°r all C E End^(V). To shorten the notation,
set 8 := End^(V) and 8' := End^(V*). (Note, transposing induces an
antiisomorphism between 8 and 8'.)

The next aim is to find a suitable map

u : Honu(V, V*) -> Hom#(W, W*)

as required in Definition 2.6. Clearly, Homu(V,V*) is a simple (£',£)-bi-
module. The two isomorphisms u 1 and u2 can be used to turn W*)
into a simple (£', ^)-bimodule as well. Then cj lies in

H := Rom(£^£)(RomA(V, V*), Homß(W, W*»,
which is a one-dimensional Z-module, where Z is the centre of 8 To get
the right identification of Z with the centre of 8', note that the centres of A
and 8 can be identified via their action on V and that z ^ (z°)tr therefore
gives the right identification of Z with Z{8').

Now some properties of H have to be investigated: For each h G H
define htr by htr(cj)) := h{f>tr)tr for all f G Honu(V*,V). This defines a
Z-semilinear action of the cyclic group of order 2 on H. Indeed, one easily
checks : (htr)tr h and (.zh)tr z°htr for all z G Z and all h G H. Next, one
verifies that there exists a nonzero h e H with htr h. Indeed, if 0 fixes
Z pointwise, any h G H is fixed by tr, because the subspaces of symmetric
and skewsymmetric forms have different dimensions in this case. If 0 does
not fix Z pointwise, the existence of an h G H with htr h follows from a

straightforward analysis of semilinear C2 -actions. In any case, the h G H with
htr h form a one-dimensional Z-subspace H of H, where Z is the 0-fixed
subfield of Z. It is clear that any symmetric f G Homu(V, V*) BilA(V) is

mapped onto a symmetric tu(</>) by any u G H. The final point is that u can
be chosen in such a way that positive definite forms map onto positive definite
ones. This can easily be seen for the ground field R by the classification of
the simple R-algebras with positive involutions. The present case of rational
ground field can be reduced to the previous case, i.e. if h & H does not
respect positive definite forms, then there exists a z G Z with the right
sign combinations in the various archimedean completions of Z such that
zh maps positive forms onto positive ones. One ends up with a nonzero
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üü G H respecting positiveness, which is unique up to multiplication with

totally positive elements in Z.

Similarly one finds a suitable map u' : Hom^(V*,V) —> Hom#(>V*,>V)

as required in Definition 2.6. Finally, to make to' unique, one requires

üof((/)-l)=u((l))~1 for one (and hence for all) invertible </> G Honu(V,V*).
Now it is a routine matter to check that (u>\ cj2, w') defines an algebra

isomorphism Q of End^(V 0 V*) onto End,g(>V 0 W*) with the required

properties.

At the end of this basic chapter some comments might be in place : The

reader should check as a little exercise that BilA(L) (given as explicit bilinear

forms or as maps from L to L*) determines EndA(L) (but not conversely of
course) and EndA(L0L*). One now may ask how much is determined by

Bil+(L).

Definition 2.10. Call L, V and BilA(L) exceptional, if End^.R(VR) has

a simple component isomorphic to C or H.

Remark 2.11. The following three conditions are equivalent.

(i) Bil^(L) can be recovered from Bil^(L) ;

(ii) EndA(L) can be recovered from Bil^ (L) ;

(iii) L is not exceptional.

For instance the difference between the Bravais group and the strict Bravais

group in Example 2.2 (ii) only occurs in the exceptional situation.

3. Autoequivalences and invariants

The basic notation is kept: (A, °), L C V, BilA(L) HomA(L,L*).
Continuing Definition 2.6 in the direction 'autoequivalences', we fix the

following notation.

Definition 3.1. Let R be a subring of R containing Z. The group of
all R-equivalences u: BÜar(Lr) Bil a(Lr)isdenoted by Aute(BilAfi(LÄ)).
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From the discussion following Definition 2.6, it is clear that one has a
monomorphism of Aute(BilA(LA)) into the group of all automorphisms of
EndA/?((L © L*)r) as a C2-graded algebra with involution, and also into the
automorphism group of EndA/?(LA). It therefore makes sense to look at the
pointwise stabilizer of the centre of EndA/?(LA).

Remark 3.2. Denote by Aut^(BilA/?(LA)) the biggest subgroup of
Aute(BilA(LA)) fixing the centre of EndA/?(LA)

(i) Autz(BilA^(LA)) is a normal subgroup of Aute(BilA7?(LA)) of finite index
with the factor group Aute(BilA/?(LA))/ AutJ(BilA/?(LA)) acting faithfully on the
centre of EndA/?(LA).

(ii) Aut^(BilA/?(LA)) is isomorphic to the group of inner automorphisms of
EndA/? (Lr) in case R is a field.

(iü) If R is not a field, let Q be its field of fractions. Then AutJ(BilÀ7?(LA))
is isomorphic to a subgroup of AutJ(BilÀô(Lô)).

Proof, (i) Finite dimensional semisimple commutative algebras have finite
automorphism groups. The same applies to R-orders in such algebras.

(ii) This follows from the Skolem-Noether Theorem.
(iii) Obvious.

PROPOSITION 3.3. The group Aute(BilA(L)) acts properly discontinuously
on Bili,>o(LR)-

Proof. That Aute(BilA(L)) acts on Bil+R >0(LR) follows from the
definition of equivalence. By Remark 3.2 it suffices to show that Aut*(BiIA(L))
acts properly discontinuously. But this follows from the well known fact that
GL„(Z) acts properly discontinuously on the cone of positive definite sym-
metric matrices of degree n.

In fact, the action is even discontinuous on Bil+ >0(LR) modulo the action
of R>0 by multiplication and, apart from some marginal exceptions, it is also
faithful. One interesting issue is the structure and size of OutJ(BilA(L)), to
be defined now.

Definition 3.4.

(i) The subgroup of Auk(BilA(L|) corresponding to the inner automorphisms

of EndA(L) will be denoted by Inn(BilA(L)) and referred to as the group
of inner automorphisms of BilA(L). (Clearly Inn(BilA(L)) Inn(EndA(L)) ^
(EndA(L))*/Z(EndA(L)*).)
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(ii) Similarly,

Out^(BilA(L)) := Autze(BilA(L))/Inn(BilA(L))

will be the outer central group of equivalences of BilA(L), and

Oute(BilA(L)) := AuF(BilA(L))/Inn(BilA(L))

the outer group of equivalences of BilA(L).

Aute(Bil(L))

Oute(Bil(L)) Aut^(Bil(L))

Inn(Bil(L))
OuF(Bil(L))

Proposition 3.5. The group Oute(BilA(L)) is well defined and embeds

into Out(EndA(L)) := Aut(EndA(L))/Inn(EndA(L)). In particular, it is finite.

Proof Clearly, conjugation by u G Aute(BilA(L)) of an inner

automorphism induced by some cp G EndA(L)* results in the inner automorphism

induced by cofip) in the notation of the discussion of Definition 2.6.

Hence Oute(BilA(L)) is well defined. The finiteness follows from the Jordan-

Zassenhaus Theorem, which implies that Out(r) is finite for any Z-order T
in a semisimple Q-algebra, cf. [CuR87] (55.19).

Obviously Out*(BilA(L)) is an interesting invariant for the equivalence class

of BilA(L). Further on in this chapter, it will be proved that it is an Abelian

group in case EndA(L) is hereditary. But some notions from the theory of
orders first have to be recalled, in order to define some invariants measuring
the distance from this favourable situation.

Recall from [BeZ85] that the arithmetical radical arad(r) of a Z-order T
in a semisimple Q-algebra B is defined as the ideal which localizes to
the radical of Tp at the primes dividing the discriminant of T, and to the
localization Tp of the order itself at the other primes. The left idealizer or
left order T(/) of the arithmetical radical arad(r) is the biggest Z-order in B
in which arad(r) is a left ideal, in particular T(/) arad(r) Ç arad(r). It is well
known, cf. [Rei75], that F is hereditary if and only if T Likewise the
two-sided idealizer of arad(r) is the biggest Z-order in B having arad(r) as

a two-sided ideal. It is denoted by T(r/). A slight modification of the argument
in [Rei75] characterizing hereditary orders by the property T T(/) also shows
that T is hereditary if and only if F T(r/). Besides, if F is invariant under
an involution of B, so is T(r/). Define the left, respectively two-sided, idealizer
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sequence of T by T0 := T and ri+1 := Tf1, resp. ri+1 := for > 0.
The length of either of these sequences is the smallest i with T, T,+1.

Definition 3.6.

(i) The e-depth of BilA(L) is defined as the length of the left idealizer
sequence of EndA(L).

(ii) The e-*-depth of BilA(L) is defined as the length of the two-sided
idealizer sequence of EndA(L©L*).

Clearly, e-depth and e-*-depth are well defined and compatible with equivalence.

As for the definition of e-*-depth, note that all members of the two-sided
idealizer sequence of EndA(L©L*) are both C2-graded and invariant under the
involution of End^(V © V*). However, it does not seem that they are necessarily

endomorphism rings of lattices Mwith the AT s constructed from
Lin a canonical way. That is why we shall focus here mainly on the e-*-depth,

resp. e-depth, zero case. The general discussion will be resumed in the next
section; cf. 4.8 and 4.10. Already the case of one-dimensional BilA(L) shows
that even if the e-depth is zero, the e-*-depth can be arbitrarily large, since the
discriminant of (BilA(L), Bil(L*)) can be arbitrarily big. However, it seems that
for every isomorphism type of End^(V) the equivalence classes of e-*-depth 0
lattices BilA(L) of covariant integral forms can be classified, provided one
restricts the number of primes involved in the discriminant. Here is an example,
whose verification is left to the reader as an exercise in combinatorics.

Example 3.7. Let Endyt(V) Q2x2. Assume that BilA(L) is of e-*-depth
zero and that the discriminant of the pair (BilA(L), Bil(L*)) is a power of a

prime p. Then there are nine equivalence classes of such lattices and the
endomorphism rings satisfy EndA(L©L*) X(E)withE one of the matrices

/0 0 0 (L
0 0 0 0
0 0 0 0

\0 0 0 0y

/o 0 1 r
0 0 11
0 0 0 0

\0 0 0 Oy

/o 0 1 r10110001
\0 0 0 0,

0 0 1 r
1 0120-101V-i -1 0 0

/o 0 0 r10 1-1
0001

\o 0 0 0,

'0 0 1 1 \10 11
0 0 0 1

,0 -1 0 0/
0 0 1 2N

1 0 2 2

0-101\-l -1 0 0

'0 0 0 r10110001
,0 -1 0 oy

/o 0 i 1

10120001\0 -1 0 Oy
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and X(K)) := (fey) G QnXn \ xq G pWZ} for any (rol7) G ZnXn.

In all cases L L\ 0 L2 with irreducible A-lattices Li,L2 satisfying

pL\ < L2 < L\ < L\ < p~lLu where the dual lattice is taken with

respect to the positive definite generator of BÜa(Li). The individual cases are

characterized by a chain of inclusions which can be read off from the rows

of the matrices, like L\ L2 L\ l\ in the first case, L\ — L2 < L\ Lf
in the second case, pL\ < L2 < L\ L\ < Lf in the third case, or

I pl\ L2 < Lx L\ < l\ in the fourth case. Moreover, the second, the

I fourth, and the last three cases might have outer automorphisms.

To proceed to the promised structure theorem on Out*(BilA(£) for the

depth 0 case, the following lemma is needed, which is implicit in [Neb98]

and which certainly does not depend on the big Picard group machinery of

[CuR87], Chapter 55.

LEMMA 3.8. Let T be a hereditary order in a simple Q-algebra B,

which has Schur index s and degree d (over its centre). Then Outz(T) is

Abelian. Moreover, if n is the number ofprimes in the centre Z(T) dividing the

discriminant of T with respect to the centre, then Outz(T) can be embedded

into an extension of the class group CZ(Z(F)) by (Csd)n.

Proof Define NÇT) := {b G B* \ bTb~l T}. Then Outz(T)

N(D/(r*,Z(B)*). Let W be an irreducible B-module. Then N(T) acts on the

T-sublattices in W. For every prime p in the centre of T, the Tp-sublattices
in the completion Wp form a chain by inclusion, on which N(T) acts by

[ shifting the lattices up and down. Clearly the intersection of all the kernels

of these shifts at the various primes is T*. Hence Outz(r) is Abelian.

More precisely, let Sh(W) be the group of all permutations of the

T-sublattices of W which fixes all lattices in Wp for almost all primes p in
the centre of F and induces shifts at the remaining finitely many completions.
Then Sh(W) is the direct sum of the Sh(Wp), each of which is infinite cyclic.
Moreover Sh(W) acts regularly on the set of all nonzero T-lattices in W.
The above argument shows that A^(r)/r* embeds into Sh(W). But so does

the group F of all fractional ideals of Z(ß), resulting in a subgroup F of
Sh(W). The cokernel of this embedding is isomorphic to a subgroup of a

direct product of n cyclic groups, the order of each one of which divides sd.
It is well known that Z(B)* maps into F with cokernel the class group of
Z(F) and kernel the torsion subgroup of Z(B), which lies in T* anyhow.
Now by the above description of Out(T), it can be viewed as a subgroup of
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Sh(W)/X, where X is the image of Z(B)* in Sh(W). But Sh(W)/Z is also
an extension of F/XCl(Z(T)) by Sh(W)/F.

As a consequence one gets the following

THEOREM 3.9. Let BilA(L) be depth 0, then OuL(BilA(L))
Abelian.

It is worthwhile to extract more precise statements from Lemma 3.8.
They will be used and extended in the forthcoming chapter in the study of
Out(BilA(L)) when the e-*-depth of BilA(L) is zero.

Definition 3.10. Let T be a hereditary Z-order in a simple Q-algebra
B and let p be a prime ideal in the centre Z(T) of T. The p shift index
s(T, p) of T is defined as follows : For any irreducible Ap -lattice L define
by p""X) := [L:Lmax],where Lmax is the unique maximal T-sublattice of L.
The chain • L, > Ll+i of irreducible lattices in a simple Bp -module VV

yields a periodic sequence ,m(L,),»î(L,+1),... because of m(L) m(pL).
The index of the group of all "central" shifts generated by multiplication with
p in the group of all shifts of the chain respecting m(L) is called .?(F, fp).

Obviously, AF, p) is equal to the p-local Schur index of B if Fp is a
maximal order. In particular it is almost always equal to 1. With the definition
of the local shift index at hand, the refined statement of Lemma 3.8, which
was actually proved, should read as stated with (Csd)" replaced by ®p Cc(r,p),

4. Extrinsic notions : using the underlying lattice

Up to now, the lattices BilA(L) of covariant forms have only been
investigated by themselves without much reference to the underlying lattice L.
In this section L will be taken more seriously into account. Unless confusion
can arise L will also denote the underlying Z-lattice of which is usually
considered as a A-lattice.

To start with, we discuss the determinant function and its behaviour under
equivalence.



LATTICES OF COVARIANT QUADRATIC FORMS 35

Definition 4.1.

del: BilÀ(L) Z : (ß ^ det(^)

is called the determinant function on BÜa(L), where B is some lattice basis

for L over Z and <j>B is the Gram matrix of <ß with respect to B.

Clearly, choosing some Z -basis for BÜa(L) turns the determinant into

a homogeneous polynomial in Z[X\,... ,Xd] of degree n dimz(L) in

d dimz(BilA(L)} variables. A connection of the factorization properties

in Q[Xi,... ,Xd] with the structure of V is indicated in the rather obvious

Remark 4.2 below. Those in Z[X\,..., Xj\ have not yet been investigated.

There sometimes seem to be changes in the factorization behaviour when one

restricts from BÜa(T) to Bil^(L); cf. Chapter 5.

Remark 4.2. Let 1 ex + -f en be the decomposition of 1 G A
into central primitive idempotents of A, and fix some isomorphism
iß G Hom^(V,V*). There is a constant a a(iß,L) G Q depending on

iß such that, for all <ß G BÜa(L), one has

h

det(<£) a JJ(detred(V'4i))m(')
i= 1

where the </>; and % denote the restrictions of </>, resp. iß, to Vet, resp. to

V*ei, defied is the reduced determinant of End^(Vci), and finally m(i) is the

degree of the matrix algebras which are the simple components of C Aet.

If uo: BilA(L) -4 BilA(M) is an equivalence, only the constant a in the
above formula changes to some other constant b b{uü'(iß),M), and the

exponents m(i) change to the degrees m(i)' of the corresponding simple
components of C <S>q Be-. One has

h

det(w(0)) b • n(detred(^A))m('y,
i= 1

since defied (ißifd defied (u' (ißi)uj{(ßi)), cf. discussion of Definition 2.6.

As an instructive example, which comes up as a step in the proof of
Remark 4.2, the reader may want to relate the above formula to the well
known determinant formula for the Kronecker product of two matrices.
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Definition 4.3. Let W, M, and R be as in Definition 2.6.
(i) Call L and M form-R-equivalent, or simply form-equivalent in

case R Z, if there is an -module isomorphism t: -a LR which
induces an R-equivalence cj: Bi1Ar(Lr) BHAr(Mr) : f ^uo{f)= rf with
T(j)(WuW2) <fi(WiT, W2r) for all WUW2 e MR. In this case (L,BilA(L))
and (M, Bilr(M)) are also called ^-equivalent and the R-equivalence cu is
said to be induced.

(ii) We denote by N(LR) the group of all r G AutR(LR) inducing
autoequivalences of BilA(LÄ).

(iii) The group of all induced autoequivalences of BilA)î(LÂ) is denoted
Aut(BilAff(LÄ)) ; its elements are also called automorphisms of BilA(LÄ).

The connection with the earlier concepts is easily seen : for the determinant
functions, one has det(^) detfof©)) for all <j> G BilA(L) if the equivalence
u>: BilA(L) Bilr(M) is induced, i.e. the constant and the exponents in
the formula of Remark 4.2 do not change any more. In other words, the
associated polynomials in Z[Xi,...,X^] are Z-equivalent, or even equal
if one chooses appropriately the bases of the lattices of forms. Clearly,
Inn(BilA(L)) < Aut(BilA(L)) < Aute(BilA(L)) with all indices finite.

To get a full picture of the situation, one more group has to be introduced,
namely the kernel of the epimorphism of N(L) onto Aut(BilA(L)), which is
U(L) defined as follows.

Definition 4.4.

(i) U(Lr) is the image of the group U(A(L)r) := {u G A uu° 1}
in AutR(LR) defined by its natural linear action on LR.

(ii) The exact sequence

1 — U(L)— N(L) ^ Aut(BilA(L)) 1

is called the basic exact sequence.

Obviously U(L)is finite. If the Q-algebra spanned by U(L) is all of the
image A of A in Endq(V), then N(L) is the normalizer of (the strict Bravais
group) U(L)in Autz(T) ; cf. [BNZ73]. In general one only has that N(V) is
the normalizer of U(V) in -AutQ(V). The structure of N(V) is easily worked
out : it is dominated by the pair of semisimple subalgebras A and End^(V)
of EndQ(V), which are centralizers of each other. In fact, if one restricts to the
pointwise stabilizer NZ(V) of the common centre of these two algebras, then
NZ(V) is the central product of End^(V)* and a group t/(V) amalgamated over
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their common centre, where U(V) is the image of {u e A* \ uu° G Z(A)} in

J. Note that the index N(V) : NZ(V) is finite. As a point of general notation,

Inn(r) will always denote the group of automorphisms of a ring T induced

by conjugating with units in F, and Out(r) := Aut(r)/Inn(r).

Proposition 4.5.

(i) N(L) acts on BilA(L) with kernel U(L).

(ii) N(L) acts on EndA(L) via conjugation also with kernel U(L). In

particular, Aut(BilA(L)) embeds into Aut(EndA(L)).

(iii) N(L) acts on A(L) by conjugation with kernel EndA(L)*. The induced

automorphisms respect the involution °.

(iv) Denote the kernel of the conjugation action of N(L) on Z(EndA(L))

Z(A(L)) (or on Z(A) Z(End^(V)) by NZ(L). Then NZ(L) is a normal

subgroup of finite index in N(L) containing (EndA(L)*, U(L)), which is also

of finite index.

(v) (EndA(L)*, U(L)) is a central product of EndA(L) and U(L) amalgamated

over Z(L) := EndA(L) H U(L).

(vi) The image of the conjugation action of NZ(L) on A(L) induces a finite
index subgroup AutZ}L(A(L), °) of Autz(A(L),°). The latter is also the image

of the conjugation action of {u G U(A, °) | u~lA(L)u A(L)}.

(vii) The image of the conjugation action of NZ(L) on EndA(L) induces a

subgroup AuQyi(EndA(L)) of Autz(EndA(L)). The latter is also the image of
{up G End^(V)* I EndA(L)<^ EndA(L)}

(viii) The group Nz(L)/Z(L) is a subdirect product of Aut^zXA(L),°) and

AutZjz,(EndA(L)), amalgamated over the common finite factor group

Autz>L(A(L), °)/ Inn(A(L), °) Autz,L(EndA(L))/ Inn(EndA(L))

— NZ(L)/(EndA(L)*, U(L)).
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Proof: Most of the statements can be verified in a straightforward way
in the order in which they are listed, by using the preceding discussion
of AZ(V). The various finiteness statements follow from Proposition 3.5.

Here is the main consequence for Aut(BilA(L)) :

Corollary 4.6. Inn(BilA(L)) < Aut(BilA(L)), and

Out(BilA(L)) := Aut(BilA(L))/Inn(BilA(L))

embeds into Out(EndA(L)) and into Out(A(L),°). In particular, Out(BilA(L))
is finite.

It is worthwhile to extract the following slightly more technical consequence
as well.

COROLLARY 4.7. Denote by Autz(BilA(L)) the group of automorphisms
of BilA(L) induced by NZ(L). Then

Inn(BilA(L)) < Autz(BilA(L)) < Aut(BilA(L)),

Aut(BilA(L))/ Autz(BilA(L)) is isomorphic to a subgroup of the (obviously)
finite group Aut(Z(A(L)), and

Outz(BilA(L)) := Autz(BilA(L))/Inn(BilA(L))

embeds into the finite groups Outz(EndA(L)) and Outz(A(L), °).

The next topics are the lattice versions of e-depth and e-*-depth, cf.
Definition 3.6. Recall the notation introduced before Definition 3.6.

Definition 4.8.

(i) Let L(/) be defined as (EndA(L))(/)L.

(ii) Define L(0) := L and L(i) := which yields an increasing

sequence of full lattices in V :

L L(0) < L(1) < L(2) < • • •

(iii) The length of this sequence, i.e. the first i with L(i+1) is called
the depth of L, resp. of BilA(L).

As a subtle point, note that EndA(L(1)) might contain (EndA(L))(1) properly.
In particular, L is of depth 0 if and only if EndA(L) is hereditary, which is
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also equivalent to BilA(L) having e-depth zero. For these situations the Picard

group techniques mentioned above can easily be applied. But before going

into the details of the depth-zero case, a general remark on the smoothing

process must be made.

Remark 4.9. N(LC'>) acts on La+l>, i. e. N(Lin) is conjugate to a subgroup

of N(L{i+l)) under GL(V).

Proof. Clearly, the conjugation action by elements in N(L(,>) preserves

arad(EndA(L®)) and therefore also the idealizer (EndA(Z,(0))® But L(,+1)

(EndA(L(ft»(i)L(i).

Continuing the discussion of e-*-depth of the last section, the notion of

*-depth will be defined. Ideally one is tempted to imitate Definition 4.8 along

the following lines: define L(rl) as the lattice in V containing L with the

property EndA(L © L*)(ri)(L © L*)L(rf) © M for some A-lattice in V

containing L*;define L[0] :=L and L[i] := which yields an

increasing sequence of full lattices in V :

L L[0] < Lm< L[2]

and define the *-depth of L, resp. BilA(L), to be the length of this sequence,

i. e. the first i with L® L[,+1].

To prove that everything is well defined, one needs a statement ensuring

that this process really terminates. This boils down to: EndA(L(d> © (L<rI'f

contains EndA(L © L*) properly up to conjugation, unless EndA(L © L*) is

hereditary. I have not been able to prove this statement, though the argument

below for the soundness of the less satisfactory definition, points somewhat

in the right direction.

Definition 4.10.

(i) Define sequences Lm L<Lm < Lm... of lattices in V and

L*[°l L*<L*[1] < L*'2'... as follows :

LU+i] 0 := y."1''1)

with T, := EndA(L[i] © fl EndA((L*^)* © (Lw)*).

(ii) Define the *-depth of L, resp. BilA(L), to be the length of these

sequences, i. e. the first i with Zi,+ I' and L*[l] L*[i+1].
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Here is a verification that the definition makes sense.

Lemma 4.11.

(i) Ti0^ © (L*)[i]) decomposes as indicated in Definition 4.10 (i).
(ii) For the order F, one has Fo Ç C so that the *-depth is well

defined, namely as the first i with T; hereditary.

(iü) Let s be the *-depth of L, then EndA(LM © is hereditary, i. e.
the *-depth of Lis^ is zero.

Proof, (i) Since the two idempotents mapping L®L* onto L, resp. L*,
lie in any of r,, the result follows.

(ii) By definition if''' C EndA(L[,+ |l ezV'+'l). Moreover Tf' is invariant
under the involution; by Remark 2.4, it is therefore also contained in
EndA((L*[,'+1])* © (L[,'+1])*). Hence T, ç Tfr) Ç Ti+i.

(iii) rs is hereditary; hence Endr ((L[s| ©L*[s]) © ((L*w)* © (L[s])*)) C A
is hereditary. But A(LM) contains this order and is therefore also hereditary,
which makes EndA(LM © (Z,M)*) hereditary.

Various comments should be made. The notions of *-depth zero and
e-*-depth zero are the same. This paper will mainly concentrate on the
*-depth zero case, for which the two approaches yield the same answer.
The first approach would in general be superior to the second one, because
it defines a directed graph on the set of isomorphism classes of lattices in V
with an arrow pointing from L to L[1] (in the first meaning).

This would have the nice property that one has no cycles except for
the one with *-depth 0, and the depth of any lattice could be read off
from the graph. In the second setting this is no longer possible. One has
only an assignment to a *-depth zero lattice for any lattice without the
intermediate steps. Example 2.2 (i) and Remark 2.8 show that one can produce
situations where the ^-depth is arbitrarily high with the depth being zero
already.

It should be noted that this result implies a classical theorem by Watson,
cf. [Wat62], which has been rediscovered by various people; and it puts
the Watson process into the proper general framework. Strictly speaking, the
assumption of positive definiteness is too strong, but it is retained here because
it is the general hypothesis of the present paper. Various generalizations have
been discarded, though they could have also been listed here.
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Corollary (Watson). Let L := Zlxn and f: L x L — Z be a (positive
definite) Z -bilinear form on L. Then there exists a full Z-lattice M in

V := Q which is Aut(L, <f)-invariant and satisfies M Ç M# Ç k~lM for
some square-free divisor k of det(L, </>), where the reciprocal lattice M# is

taken with respect to some rational multiple of f>.

Proof <j) induces an involution on A := Qnxn containing A := A(L) as

an invariant Z-order. Denote the *-depth of L by s and set M := Clearly,
Aut(L, <p) U(L), and M is U(L)-invariant. Since F EndA(M®M*) is

hereditary, the same applies to A(M) Endr(M © M*)). By the general
properties of hereditary orders (as chain orders), the claim follows, since M#
is an absolutely irreducible A-lattice isomorphic to M*

Having a canonical procedure for constructing *-depth zero lattices from
ones of arbitrary *-depth such that the statements of Remark 4.9 carry over,
it becomes an interesting question to look into the structure of Outz(BilA(L))
in this case. Of course, it is no loss of generality if one restricts to the case
of simple algebras A. Here is a first statement, whose hypothesis is often
satisfied.

THEOREM 4.12. Let L be of *-depth zero and assume that the centre
Z(A) is a totally real number field. Then Outz(BilA(L)) is of exponent
dividing 2.

Proof Because of Proposition 4.5 (vi) and Corollary 4.7, one has to

prove the following: for u G Ü(A) DN(A(L)) the square u2 induces an inner
automorphism of A(L). Let uu° zforsome element z G Z(A). Then it
and z~lu2induce the same automorphism. But z-1«2 lies is since
z° z. Each prime of Z(A) is mapped onto itself by the involution °.
Hence, at the completion of the whole situation at any prime p of Z(A),
the element z~lu2 again lies in a unitary group and cannot induce a shift on
the irreducible lattices in the sense of the proof of Lemma 3.8. It therefore
lies in any completion of A(L) and hence in ML). Since A(L) is invariant
under the involution, also the inverse of lies in A(L) and the claim
follows.

Here is a *-depth zero example, where the hypothesis of Theorem 4.12 is
violated and Outz(BilA(L)) is of order 3.
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Example 4.13. Let G := (a, ft, c | a\ b\ah £2, c3, [a, c], [i, c]> be the

group (C7 : C3) x C3 and let A be the residue class order of ZG modulo the
ideal generated by a -1 and c- 1. Then A K3x3 with K Q[s/-3, y/^7]
(of class number 1, cf. [PoZ89]) and

/R R R\
A I / R R J

\i I RJ

where R Z[~l+fr~^, ZK is the maximal Z-order in K and

I is the product of the two prime ideals f and I2 above 7 in K, i.e.
7A 72. The natural involution of QG induces the involution ° of A of
interest. Finally, L := Aa is chosen as the regular A-lattice, i.e. with respect
to the above description of A, one has L (A, A,R) © (7, A, A) © (7,7,R).
One easily checks that the group automorphism a a, b ^ be, c c
maps A onto itself and things can be arranged so that (R,R,R) is mapped
onto (7i,^,72 and (7i,A,72 onto (7i,7i72~1,72_1). Since, clearly, L
(A,R,R) 0 (7i, A,72 1)0(7i,7i72 1,72_1), this reveals an element of order 3 in
Autz(BilA(L))/ Inn(BÜA(L)). In fact, Out(BilA(T,)) is of order 12.

The general situation for the *-depth zero case is as follows with the
notation of Definition 3.10.

THEOREM 4.14. Let L be of *-depth zero and assume (w.l.o.g.) that A
is simple. Then Outz(BilA(L)) is Abelian and embeds into an extension of the
class group C/(Z(A(L))) of the centre Z(A) by a group of the form

© C2 0 © QA(x)5p),
pes {PjPo}GA/-

with S the set of prime ideals p of Z(A) with p p° and s(A(L), p) even,
and Af the set of pairs {p,p°} of prime ideals with p ^p°.

Proof That Out(BilA(L)) is Abelian was already shown in Theorem 3.9.
As in the proof of Theorem 4.12, let u G Ü(A) H A(A(L)). At each prime p
of Z(A), u induces a shift of period a(p) | j(A(L),p), as explained in Lemma
3.8 and Definition 3.10. Let uu° z for some element z G Z(A). At the real
primes p p°, both u and u° shift by the same index, and hence the induced
shift generates at most a subgroup of order 2 of C5(T(L),p). If p ^ p°, the
induced shifts at p and p° are opposite to each other and of the same order
modulo local central shifts. Since the situation is global, the class group of
the centre has to be taken into account, as in the proof of Lemma 3.8.
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5. Inversion and modularity

Since BilJ(V) £ Hom^(V, V*), the inverse of a nondegenerate
(f) G BilJ(V) is well defined and lies in Bil^(V*). By Cramer's rule
inversion is a rational map from Bil^(V) to Bilj^(V*), more precisely
there is a homogeneous polynomial map P: BilJ(V) —> BilJ(V*) such
that (j)pcj) det(0) • zV/y. Viewing this as an identity of matrices with
polynomial entries, one might cancel out the greatest common divisor of
all occurring entries and get new polynomial maps p: BilJ(V) BilJ(V*)
and d : BilJ(V) Q with (jffi d{fi) • idv. The properties of the map p
have not been studied in this generality. The aim here is to investigate the

simplest case, where p is homogeneous of degree 1, i.e. a Q-linear map l,
as it is called in the sequel. Of course, the same analysis can be done with
Bilyi(V). The question whether such a i is an equivalence, will be treated
later in this section.

Definition 5.1. Let R be one of Z or Q. Then BilA*(Z*) is called
special if there is an R-linear map i\ BHAr(Lr) - BilAr(Lr) and a quadratic
form q: BHAr(Lr) -* R such that for any nondegenerate E BilAr(Lr) one
has q((j))idLR. Analogous definitions hold for Bil^(L^)

Example 5.2.

(i) One-dimensional lattices of covariant forms are special for trivial
reasons.

(ii) If BiU(V) is two-dimensional, then it is special. This is because
BiU(V) can be viewed as a free Z(A) -module and for two-dimensional
algebras B one has a canonical automorphism k of B such that bK m n(b)b~l
for all b G B*, where n : B — F is the norm map with respect to the regular
representation. (Note that Z(A) End^(V) in the present situation.)

(üi) If BilJ(V) is two-dimensional then it is special. This is because
can be viewed as a free Z(A)+ -module, where

Z(A)+:= {<p e Z(A) I <p° ip}

Here are some more interesting examples.

Proposition 5.3. Let R&q End^(V) * K2x2 with K g {R,C,H}. Then
Bil^(V) is special. In the first two cases also Bil^V) is special.
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Proof. Define £ := EncU(V) (eAe)kxk, where e e° is a primitive
°-invariant idempotent of A and k is defined by V (eA)k. In particular,
the positive involution ° on A induces a positive involution * on £,
(iAy)' := (afj)tr, such that Bil^(V) can be identified with the subspace £+
of the symmetric elements in the algebra (£,*) with involution. It suffices to

prove that there exists a Q-vector space automorphism of also denoted

by i, and a Q-valued quadratic form on £+, also denoted by q, such that
q<4>)\s.

(i) .Let R 0q £ R2x2. Then £ is a quaternion algebra over Q. Denote
its canonical involution by u' and its reduced norm by n. Clearly, n is a

quadratic form and coff) f n(f) 1 holds for all elements f G £. With

i \= u)'\g+ and q := n\g+ one gets the desired formula.

(ii) Let R®q£ C2x2. Then £ is a quaternion algebra over the imaginary
quadratic number field Z j= Z(A). Denote its canonical involution by uj'
and its reduced norm by n. The involution # induces the nontrivial Galois

automorphism of (Z/Q), and therefore one checks quite easily, using [Scha85]
Theorem 11.2 (ii) of Chapter 8, that the norm n maps £+ into Q. Now one

argues as in (i).

(iii) Let RG)q£ H2x2. Then £ D2x2, where D is a positive definite
quaternion algebra over Q (with canonical involution uo'). Indeed, £ carries

an involution of the first kind and hence cannot be of index 4. Since * is a

positive involution one sees from the proof of Theorem 13.3 of Chapter 8 in

[Scha85] that x* =f~1xtrf for all x G £, where f — ~fr G £* and (xy) (xf)
for all (xy) G D2x2 £. If (xy) G £ is symmetric with respect to ~tr one
checks

(Xy) -(^11 Xl2
J with xii Xu for i- 1,2

\ Xl2 X22 J

X22 -xn\ (xn xi2\
and — — (X22X11 -x12xi2)l£.

\-x12 *11 J \Xx2 X22 J

This is the desired formula for / lg. In the general case, note that x G

if and only if fx is symmetric with respect to ~tr and apply the above formula
to fx.

(iv) The remaining two cases for Bil^(V) are treated similarly, like (i)
and (ii) with £+ replaced by £.

The question immediately arises, whether the map l of Definition 5.1

is or can be extended to an equivalence of Bil^(V) onto Bil^V*). This is
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clearly the case for two-dimensional End^V). It may fail for two-dimensional
BilJ(V) with four-dimensional commutative End^(V) for the simple reason
that the nontrivial automorphism of the real quadratic subfield does not
necessarily extend to the whole of End^(V). For R(g)QEnd^(V) R2x2 one
gets a nice canonical answer, cf. Proposition 5.4 below. For R®QEnd^(V)
C2x2 the answer is still positive, but the proof is computational and we omit
it. Finally, for R ®q End^(V) H2x2 the map i no longer extends to an
equivalence.

PROPOSITION 5.4. Let R ®q End^V) — R2x2. Then any nonzero

f G Bil^(V*) defines an equivalence Bil^(V) —» Bil^(V*) : f i—»

which restricts to a map i : BilJ(V) —» BilJ(V*) with the properties
described in Proposition 5.3.

Proof. If V is a simple Gl-module, obviously any nonzero element of
Bil^(V*) is invertible if viewed as an Gl-homomorphism from V* to V.
Otherwise, V Vo®Vo for some simple Gl-module Vo- Any Gl-isomorphism
Vo V0* gives rise to an invertible element of Bil^(V), which therefore
consists of 0 and invertible elements, since it is one-dimensional. One easily
checks that any nonzero ip G Bil^(V*) leads to an equivalence, whose
associated isomorphism End^(V 0 V*) -> End^(V* ® V) is induced by
conjugation with diaFinally, for any f g Bil+(V) one has

q((j))idy with qifi) ;= n(ip<j))9 where n is the reduced norm map
of the quaternion algebra End^(V*). This is so, since -(fif)2
and ff lies in End^(V and is of trace zero by triypijf) tr(((pxpyr^
tr(—ijj(j)) -tr(ff).

The next result normalizes t and interprets it in the integral environment
of Bil+(L).

Theorem 5.5. Let R ®Q End^(V) ft K2x2 with K g {R, C, H}.
(i) There is a unique Aut(Bil\{L))-invariant quadratic form q: Bil+(L) —» Z

such that the gcd(q(f)) for fi G Bil^(L) is 1, and q{f) > 0 for
4> G Bil+(L) positive definite.

(ii) There is a unique constant c G Z satisfying det(^) cqifiT with
m 2~J dimQ V for all f G Bil+(L). (Clearly c> I.)

(iii) There is a unique Aut(Bû\(L))-monomorphism l: Bil^(L) —» Bil+(L*)
mapping positive definite forms on positive definite ones such that the
image of l is not contained in pBil+(L*) for any integer p> 2.
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(iv) There is a unique constant cq G Z with coq((f)idi for all
<j) G Bil^(L). Moreover c divides eg, where n — dimQV. (In fact
det(^) cn0c~lq(f)m for all f G Bil+(L) J

(v) Aut(Bil^(L)) < 0(BilJ(L),g) A a subgroup of finite index.

Proof Let Bil^(L) (</>i, </>2, • • •, 4>d)z (with d 3, 4, resp. 6 for
K R, C, resp. H). Choose the isomorphism l of Proposition 5.3 by
multiplying with a suitable positive rational number such that Bil^(L) is
mapped into Bil^(L*) but not into a proper multiple of Bil^(L*). After
rescaling q of Proposition 5.3 appropriately, one gets a quadratic form
q G Z[xh ,xd] with

Since Z[xu xd] is a unique factorization domain, one obtains a constant c0
and a quadratic form q as required in (i) and (iv). Also by taking determinants,
the unique factorization property yields det(f) cq((fi) with a unique integer
c dividing eg. Since det(gf) det(^)2det(0) det(</>) for g G N(L), one
sees that q is Aut(Bil)^ (L))-invariant, at least up to sign. And since the
action respects positive definiteness, one gets invariance. One clearly has

(gfiY g~trfL for all g G N(L) and all f G Bil)[(L) of nonzero determinant.
But since all other elements of Bil^(L) are rational linear combinations of
these, one obtains the equation for all f G Bil^ (L).

To prove (v) we first note that, by a standard Lie group argument, the

group S of norm 1 units of End^(R(g)Q V) is mapped onto the 1-component
of 0(Bil+8A(R ®Q V),q). Also it is well known that the subgroup T of
norm 1 elements of EndA(L)* (which is clearly of finite index in N(L)) has
finite covolume in S. This implies that Aut(Bil^(L)) is of finite covolume in
O(Bil+;M(R0y V),q) and therefore of finite index in 0(Bil^(L), g).

It follows from (v) and the fact that the signature of q is (1, J — 1) that
Aut(Bil)[(L)) acts absolutely irreducibly on Bil+(L). This again implies that
the invariant quadratic form q is unique up to rational multiples, i. e. unique
with the properties specified in (i). It also implies the uniqueness of l in (iii).
The uniqueness of the constants c0 and c now follows from the considerations
at the beginning of the proof.

The corresponding results for the other examples given in Example 5.2
are left as exercises to the reader, who should note however that the action
of 0(Bil^(L),g) on Bil^(L) need not be absolutely irreducible any more.

d d
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The next topic it to set the concepts of this chapter into relation with
modular lattices as introduced by Quebbemann in [Que95] ; cf. also [SSch98]
and [Ple98] for surveys.

Definition 5.6.

(i) f G BilA(L) is said to be k-modular, for k G Z, if is isometric
to (L, f), where l} {/ G V | fil, L) Ç Z}. (Note the Gram matrix of f on
i) is inverse to the Gram matrix on L if one chooses the bases dual to each

other.)

(ii) BilA(L) is called modular if BilA(L) is special by the maps
l: BilA(L) -a BilA(L*) and q: BilA(L) —> Z, cf. Definition 5.1, such that

l is (the restriction to BilA(L) of) an induced equivalence; cf. Definition 4.3.

Clearly, if BilA(L) is modular, each nondegenerate f G BilA(L) is

coq(cf))-modular with Co as in Theorem 5.5, and the isometries are all given by
the same map. Some examples of two-dimensional modular lattices of covariant
forms have already been investigated in the literature, cf. e. g. [Neb98b] where
even the Hermite function was discussed for some examples or [Neb96a], where
the extremal 3-modular lattice in dimension 24 was discovered. Here the main
issue concerns the cases with R <g)Q End^(V) R2x2 or C2x2, since H2x2
cannot occur. Example 6.6 (i) provides an example where Bil+(L) is special
without being modular. It should be emphasized that induced equivalence
between BilA(L) and BilA(L*) is not an uncommon phenomenon. For instance
it occurs whenever L and L* are A-isomorphic. That the induced equivalence
is l, is rather rare.

Proposition 5.7. Let R®QEnd^(V) ^ R2x2 and assume Bil~(L) - Zfa
and BilA(L*) Z^2 with — e - idi for some natural number e.

(i) If e 1 then BilA(L) is modular, with l induced by ip2-

(ii) If fi and do not have the same elementary divisors, then Bil+(L)
is not modular.

(iii) If edim(A> ^ det(^2)2 then BilA(L) is not modular.

Proof, (i) This follows along the lines of Proposition 5.4. That BilA(L)
is mapped onto BilA(L*) follows from the fact that det(^2) ±1.

(ii) This is because induced equivalence respects elementary divisors.
(iii) This can be derived from (ii) by taking determinants. It can also be

obtained from the observation that induces e • i.
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Example 5.8.

(i) Of the four irreducible Bravais groups of degree 8 whose commuting
algebra is a nonsplit rational quaternion algebra (ramified at 2 and 3), cf.
[Sou94], the e of Proposition 5.7 is 1, 2, 3 and 6. In all cases Bil^(L)
is modular and Co is equal to 1. In [Neb99] the Hermite function on the
fundamental domains for these cases is plotted.

(ii) In Example 2.2 (ii), choose /o to be ra-modular for some natural
number m. Then Bil^(L0L) (in the notation of Example 2.2 (ii)) is modular,
where the e of Proposition 5.7 is equal to m, as is c0.

To test whether Bil^(L) is modular, one can simply compute the images
of a Z-basis of Bil^(L) under i as described in Theorem 5.5 and find a
simultaneous isometry of L to L* (with respect to all of the forms, resp. their
images). For this there is a powerful algorithm with implementation available,
cf. [P1S97]. Instead of a whole basis, it is sometimes enough to look at one

sufficiently general form; details on this will be given in a subsequent paper,
as well as some examples with R ®q End^(V) C2x2. One such example,
involving the Leech lattice with End^(V) a non-split quaternion algebra over
Qh/=7], is sketched in the last chapter of [Ple96].

6. Some three-dimensional lattices of covariant forms

This chapter is devoted to some examples in the case where End^(V)
Q2x2 and where the depth of BilA(L) is 0. The typical questions we try to
answer are : how to relate the various invariants are outer automorphisms
possible? are modular lattices possible? how does the automorphism group
of Bil^(L) compare to the orthogonal group of (Bil^(L),g) The simplest
case is EndA(L) Z2x2, where all these questions can be answered.

THEOREM 6.1. Let EndA(L) Z2x2. Then L Lo © Lo for some
irreducible K-lattice Lq. Let fio be the positive definite generator of Bil^(Lo).
Then c, Co, and q, introduced in Theorem 5.5, are as follows.

(i) With respect to a suitable basis of Bil^(L), the quadratic form q of
Theorem 5.5 becomes xy — z2.

(ii) c det(^o)2.

(iii) Co is the exponent of Lq/Lo, i.e. the biggest elementary divisor of a

Gram matrix of fo.
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(iv) Inn(Bil^(L)) Aut(Bil^(L)).

(v) Aut(Bil+(L)) is of index 2 in 0(Bil+(L), q). More precisely, it is equal

to the kernel of —0 intersected with 0(Bil^(L)), where 0 is the spinor

norm of 0(Bilj[(V), q) ([Scha85], p. 336).

(vi) The nondegenerate <p G Bil^(L) are modular if and only if (po is

Co -modular. In this case such a <fi is coq(<p) -modular.

(vii) The e-*-depth of BilA(L) is given by [§], where r is maximal with

pr I Co for some prime number p.

Proof. Choose a basis for L0. This yields a Gram matrix A of (p0 • With

respect to a suitable basis of L, one gets (qo)'(oa)'(ao) as ^ram matrices

for the obvious basis of Bil^(L). Since det
z

J <8>A) det(Ä)2(xy — z2)m

and ((* *) (8) A)"1 (xy - z2)'1 fz~z) ® A~l, the claims (i) to (iv) follow,

(v) is straightforward with [Mac81]. (vi) and (vii) are obvious.

The general case of depth 0 is more involved:

PROPOSITION 6.2. Assume S Q2x2 and L, resp. Bil^(L), is of depth 0.

Let d := p\- - -pk be the product of the different primes at which EndA(L) is

not maximal.

(i) There are unique natural numbers s> t such that the quadratic form q

on described in Theorem 5.5 becomes sxy — tz2 with respect

to any basis ((p,'f,x) of Bil^(L) such that (p,ip G Bil^>0(L) with

L Rad^(L) ® Rad^fL) and x zero on both direct summands. The

product st divides d.

(ii) The constant c of Theorem 5.5 is given by

c det(</>) det(ip)s~m

where 2m diniQ(V), (p is the scalar product on Rad^(L) induced

by <p, and ip the scalar product on Rad^L) induced by ip.

Note that, providing k > 0, there are 2k~l such bases up to interchanging
cp and ip and up to EndA(L) operation.

Proof. Let L Ly ® L2 with absolutely irreducible A-lattices L\, L2.
One may assume dL\ < L2 < L\. Note this implies that L\ can
be considered to sit inside with L\ < L\ < d~lL\. As a

result, HomA(Li,L2) d\ HomA(Li,L*) for some divisor d\ of d, and
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HomA(L2,LJ) d2Hoiïia(Li,L|) for some divisor d2 of d. Introducing a

basis for L\, as with L0 in Theorem 6.1, identifies L\ =: Lo with Zlxm;
and choosing a basis for L2 identifies L2 with ZlxmT, where T G ZmXm

represents the change of bases. Denote the m x m-unit matrix by I Im. The

computation for Theorem 6.1 can be transformed as follows:

fl 0\ fx'Az!A\(l zd~lATtr
(o Tj\z'A y'A J(oTJ yd^d^TAT* J '

with x x',zdIz'. ydidiy' The parameter choice (1,0,0), (0,1,0),
(0,0,1) for (x,y,z)yieldsa typical basis for Bil^(L) as described above.

Taking determinants yields

det(^det(A)V^--(A)2)m,
\d\di d\ /

and hence (i) and (ii) with s d\g~l,t <i2^_1 relatively prime, where

g gcd(Ji,J2), if one uses det(</>) det(A). That s, t do not depend on
the particular decomposition of L follows from analyzing the determinant

of q.

Working through the various cases for determining Co in Theorem 5.5

is left as an exercise. Before analyzing Aut(Bil^(L)) one needs to look
at the automorphism groups of the quadratic forms involved. Note that the

automorphism groups of kxy — z2 for k G N square free are analyzed in quite
some detail in [Mac81]. In the present context two extra details are needed.

LEMMA 6.3. Let ^ G N be square free and relatively prime, and

let k\— st.

(i) The diagonal matrix diag(Y, 1) transforms 0(Zlx3, — tz2) onto

0(Zlx\kxy-z2).
(ii) There is an exact sequence of groups :

z) —^ 0(—z2) —> Dt ^ 1,

where D^ < Q*/(Q* )2 is generated by the cosets of the divisors d of
k (including — 1

Proof (i) Denote the quadratic forms sxy — tz2 and kxy — z2 by q and q'

respectively. On L Zlx3 they define integral bilinear forms b and bf, e.g.
b(l[,l2) q(h + h) ~ q(h) ~ q(h) for l\, l2 G L. Clearly, 0(L, q) also acts on
the reciprocal lattice l) of L with respect to b, and 0{L,q') also acts on
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the reciprocal lattice L $ of L with respect to b'. Hence diag(£, f, 1), which

maps L onto tl) n L and q onto tq', conjugates 0(L, q) into 0(L, q'). For

the reverse inclusion one argues similarly for t odd with tL$ n L and one

has to work with $ riL, taking the even sublattice, for t even.

(ii) Define Ld := {( " *
\ a, b, c G Z} and consider the determinant det as

a quadratic form on Ld for any natural number d. Then (Lk) det) is isometric

to (Zlx3,foty — z2). One easily checks that (^ ^)* acts on Lk by gXgtr

] for all X e Lk and § G
^ ^

*
• Clearly this action respects the determinant,

} whence the exactness of the left half of the sequence is established. Note, for
j k— 1, the full claim was already proved in Theorem 6.1. Clearly Lk < L\

\ and the stabilizer Sk of Lk in 0(Li,det) is generated by —id^x and the image
] of (^z)*' *n Theorem 6.1 denote the spinor norm of 0(Qlx3,xy — z2)

by 9. Then —6 restricted to 0(L^,det) will be the homomorphism on the

right of the exact sequence. Clearly the image of ^ z
*

*s *n kernel
: —9. To complete the proof, it is enough to show, by induction on the number

d(k) of prime divisors of k, that 0(L^,det) contains Sk of index 2d^ and is

generated by an Sk and elements (Atkin-Lehner involutions) mapped by —9

onto p(Q*)2 for the primes p dividing k.

The statement follows for d(k) 1, i.e. k p prime, as follows: the

orbit of L\ under 0(1^, det) consists of L\ and L\iP, where in general

Li^d := {(J \a,b,ceZ}. This is because L\ must be mapped onto an

isometric lattice contained in Lp and containing Lp. The isometry fixing Lp

and mapping L\ onto L\^p is the reflection by the vector diag(—1 ,/?) G Lp,
which can also be realized by extending the operation via 2 x 2-matrices to

P~^i°p o) * This settles the case d(k) — 1. Now assume the statement proved
for 0(L^,det) for all proper divisors d of k. Let k pkr for some prime
divisor p of k. Obviously the orbit of Lk> under the action of 0(L*/, det) is

i. of length p + 1, as is the orbit under ^ *. Hence, the stabilizer of Lk

in 0(Lfc/,det) is an extension of Sk by an elementary Abelian 2-group of
rank d(k) — 1 d(kf). An argument similar to the one above shows that this
stabilizer is of index at most 2 in 0(L^,det). That it is of index exactly 2

can then be seen via the element of 0(Lp,det) with spinor norm —p. (In
[Que96] the precise element is given, cf. also [Mac81].)

Note, the elementary Abelian 2-group 0(Lk,àti)/Sk acts regularly on the
set {L\j I d divides k}. In terms of the affine building belonging to the

p-adic completion of the group, all L^d with p\ d \ k belong to one vertex
of the attached tree and all other belong to a different vertex, which is
not of the same type as the first vertex. Finally Lp, resp. all Ld with p \ d,
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belong to the edge connecting the two vertices.

Now Proposition 6.2 can be completed:

PROPOSITION 6.4. Under the hypothesis and notation of Proposition 6.2
the index of Aut(Bil^(L)) in 0(Bil^(L), q) is 21+ö Yl(P + 1). where p runs
through all prime divisors of jt and a is at most equal to the number of
prime divisors of st. Moreover, Aut(Bil^(L))/Inn(Bil^(L)) is an elementary
2-group of rank a.

Proof This is an immediate consequence of Proposition 6.2 and
Lemma 6.3.

The question arises, whether there are examples for which the minimal
possible index of Aut(Bil^(L)) in 0(Bil^(L),g) according to Proposition 6.4
is attained, i.e. a 0 and d st. This is already possible in the group case;
cf. Example 2.2 (ii).

PROPOSITION 6.5. For a prime number p let c(p) /?- 1 if p is odd and
c(2) 2. Then, for any sequence ofprime numbers Pi < pi < ' • • < Pi, there
are examples with diniQ V 2n 1 c(pi), where A is an image of a finite
group algebra and End^(V) Q2x2, where Aut(Bil+(L)) of (minimal)
index 2 in0(Bil+(L), q).Ifp, 3 (mod 4) for all i with p, f 2, then L
can be chosen so that each f G Bil+(L) c0q((j))-modular.

Proof. First construct a finite C-irreducible subgroup of GLeW(Q)
as follows: for p2 take the automorphism group of the quadratic lattice
(which is a dihedral group of order 8) ; for p odd take the Frobenius group of
order p(p -1) in its action on the permutation module factored by the fixed
points, which is then identified with Qlxcl'w. Take the span of -Ic(p) with
this group to obtain G(p) <GLcip)(Q)of order 2p(p - 1). The -lattices
in Q1xc<p) are described in [NeP95a] p. 29: up to multiples they come in a
chain L0(p)> Lx(p)>• • • > Lclp) pL0(p) > where Lfp) is of index p'
in Lq (p).There exists an element n in the normalizer of G(p) in GFc(p)(Q)
mapping L,-(p) onto Li+c{p)/1(p). Choosing and taking
the G(p)-invariant symmetric bilinear forms for Bil+(L) gives the desired
result for the case d p. The case 1 0 for 2, resp. i '-f- for p 3

(mod 4), gives modularity. The general case of composite d is obtained from
the above by taking tensor products.
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One should note that in the above proof one gets modular lattices by

choosing L — Lt 0 Lp-t without having the big Aut(Bil^(L), if i is not
I chosen as above. The same holds for the composite case. By now it should be

I clear that the existence of outer automorphisms and modularity of the lattices

I are different phenomena.

t To end up, some explicit examples of *-depth zero will be given, where

; EndA(L) z
3z * ^ne easily °hecks that the unit group is generated by

a, b,c and that the outer automorphism is induced by d with

0O1 ?)• i:=(i -")• °-(l -.)• o)-

Note that defining relations for the inner, resp. outer, automorphism group are

provided by a2, b2, c2, (ab)3 and b2, c2, d (cd)2, (db)6 respectively. The

fundamental domains in the hyperbolic plane identified with Bil^R >0(V)/R>o,
where R>o acts by multiplication, are triangles with vertices P, C\, C2 in
the first case, where C1 and C2 are cusps, and P, C\,M in the second case.

The angles can be read off from the presentation. According to Example 3.7

there are seven possibilities for the equivalence type of BilA(L), parametrized
by the exponent matrices of EndA(L 0 L*) given there. Only in four cases

can one have outer automorphisms.

Example 6.6.

(i) Take the fourth possibility in the list of Example 3.7. Then L L\ 0L2
with L\ L\ and Lf 3L2, where the reciprocal lattices are taken with
respect to a generator cj)\ of BilA(Li), and L2 < L\ is necessarily of index
3/î/2 jn J^1 with n := dim(Li). (Note: n must be even.) Representing Bil^(L)
by Gram matrices one gets Bil+(L) {(^- ^ | ck, /3,7 G Z}, where Fx

and F2 are unimodular (Gram matrices for L\ and L2) and XF^lXtr 3F2.
Obviously one has no outer isomorphism if F\ and F2 are not equivalent.
In this case Bil^(L) is not modular, though t is bijective, but it is not an
equivalence. In any case, the vertices of the fundamental domain in this case
are given by the (a,/?,7) G {(2, 2,1), (1,0,0), (0,0,1)} corresponding to
F-* Oi 5 C2, the determinant is (aß — 372)n and a nice realization of this setup
is for n 12, where one can find the 3-scaled version of the unimodular
lattice Dj2 as a sublattice of the standard lattice of index 36. Things can be
so chosen that the 2-fold cover of the Mathieu group Mn acts. In Bil+>0(L)
one has two orbits of primitive Mu -perfect lattices, one unimodular with
minimum 2 and one of determinant 512 with minimum 4. Obviously one can
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produce many more examples in higher dimensions. One can show that there
is no realization of this situation for n < 12.

If one has an outer automorphism, there seems to be the possibility that
is modular. The vertices of the fundamental domain in this case

are given by the (a,/?,7) G {(2,2,1), (1,0,0), (1,1,0)} corresponding to

P, Ci,M. For the case F\ F2 I have computed some examples: F\ I4,
Es, A24 (Leech lattice). In the first case the vertex P represents the root
lattice Es, which is the only perfect lattice here. In the other two cases my
choice of X (there might be more than one yielded a 6-modular form as

the only perfect form; the coordinates were (3,3,1), the minima were 6 and

12 respectively.

(ii) Take the eighth possibility in the list of Example 3.7. Then L L\ 0L2
with 3Li < L2 3Lj < L\ — 3L2, where the reciprocal lattices are taken with
respect to a generator 01 of BÜa(Li).

Again representing Bil^(L) by Gram matrices with respect to suitably
chosen bases one gets Bil^(L) — {( ^ | a, /?, 7 £ Z}, where F are the

Gram matrices for (Li, 0i) and F 3F-1. The determinant is (3aß — y2)".
Obviously one has an outer isomorphism if and only if F and F are

Z-equivalent, i.e. if (Li,0i) is 3-modular. Many such examples, with and

without outer automorphisms and also for other exponents different from 3

of L\/L\, have been investigated in [Bav97], because in this case Bil^(L)
is spanned by unimodular symplectic forms. By Proposition 5.7 Bil^(L)
is modular. Here are some examples with outer automorphisms : F A2,

2

A2 ® Es, K\2 (the Coxeter-Todd lattice), and [±56(3) Cs]26 of [Neb96b];
one gets one relative extremal lattice with coordinates (a,/3,7) (1,1,1).
They are 2-modular with minima 2, 4, 4, and 6 respectively. However,

2(3)
F [SL2(9) (8) SL2(9).2]i6, which is also 3-modular with minimum 4 of

00,3
dimension 16 (like A2(g)p8X yields the 11-modular form with minimum 12

and coordinates (ce,/?,7) (3,3,4) as extremal lattice. Finally, F N23

(the extremal 3-modular lattice of dimension 24 of [Neb95]; or [Neb98b],
Theorem 5.1 for an alternative construction) yields a 23-modular lattice as

extremal with minimum 24 4 • 6 and coordinates (a,/?,7) (4,4,5). It
would be interesting to investigate the density function on the fundamental

domain theoretically.
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