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5. ROTATION NUMBERS

51 DYNAMICS OF A SINGLE HOMEOMORPHISM

The main invariant of homeomorphisms of the circle was introduced by
H. Poincaré (it is still very 1nterest1ng to read [59]).

Let us start with an element f of Homeo, (S!), i.e. a homeomorphism of
¥R which commutes with integral translations. Observe that if two pomts x,x'
in R differ by at most 1, the same is true for their images by f It follows
that for any two points x,x’, the two numbers f(x) —x and f(x) x' differ
§ by at most 1. Let us define T(f) f(O) f(O) 0. If f1 and f2 are two
 clements of Homeo, (81), we have T(F 75) = (F1(F2(0) ~f2(0)+(f2(0)~0)
so that ‘T( f f2) —T(f l) — T fz)‘ is bounded by 1. Let us formalize this
§ notion :

3§  DEFINITION 5.1. Let T be a group. A quasi-homomorphism from I' to
R is a map F: I' — R such that there is a constant D such that for every
£, 7 in T we have [F(yim) — Fln) = F(m)| <D.

The following is an easy exercise left to the reader.

| LEMMA 5.2. Let F: Z — R bea quasi-homomorphism. Then, there exists
a unique real number T such that the sequence F(n) —nt is bounded.

| As we shall see later, this lemma is far from being true if we replace the
§ group Z by a more general group I.
? Let us restrict the quasi-homomorphism 7T to the group generated by a
| homeomorphism f, i.e. let us consider the sequence T(fn). According to the
| lemma, there is a unique number 7(f) such that T(fn) —n7 is bounded. This
number T(f) is by definition the translation number of ]7 It follows from the
§ definition that if we compose f with an integral translation, the translation
B number increases by an integer. If we consider an element f in Homeo_ (S!),
| the translations numbers of its lifts in Homeo  (S') differ by integers so that
the element p(f) = T(f) mod Z € R/Z is well defined. This is called the
rotation number of the homeomorphism f.

These definitions show that 7 is a quasi-homomorphism from Homeo (S1)
to R and that it has been “normalized” so that it is a homomorphlsm on each

 one generator subgroup, i.e. we have 7(f n) — n7(f) for every f and every
integer 7.
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Of course, it is an easy matter to check that the translation number of
the translation by 7 in R is 7 and that the rotation number of the rotation
x € R/Z — x+p € R/Z of “angle” p on the circle is indeed p as it should be !

The next proposition is easy but is a justification for introducing these
numbers.

PROPOSITION 5.3. The translation number and the rotation number are
invariant under conjugation in Homeo, (S') and Homeo. (S!) respectively.

Proof. This follows formally from the fact that 7 is a quasi-homomorphism
and is a homomorphism on one generator groups. Indeed,

T(an) = n”r(f)

and
T(hf 7Y = r(FRTY) = nr(hf R

differ by a bounded amount, independent of 7, so that they must be equal.
This shows that the translation number is a conjugacy invariant. The assertion
concerning the rotation number follows immediately.  []

Let us give some universal characterization of the translation number.

PROPOSITION 5.4 ([4]). The translation number is the unique quasi-homo-
morphism 7: Homeo(S!) — R which is a homomorphism when restricted
to one generator groups and which takes the value 1 on the translation by 1.

Proof. An easy generalization of Lemma 5.2 shows that any quasi-
homomorphism Z?> — R differs from a homomorphism Z*> — R by a
bounded amount. This implies that if a quasi-homomorphism Z?> — R is a
homomorphism when restricted to one generator groups, it is a homomorphism
Z? — R (note that a bounded homomorphism is necessarily trivial).

Let ¢ be another quasi-homomorphism satisfying the conditions of the
proposition. It follows from our first observation that 7 is a homomorphism
when restricted to the (commutative) group generated by one element ]7 and
the integral translations. Consider now the difference r = 7 — ¢. Its value
on an element ]7 depends only on the projection of f in Homeo, (S1)
so that we get a quasi-homomorphism 7: Homeo,(S') — R which is a
homomorphism on one generator groups. We claim that 7 must be trivial,
This will follow from a property of Homeo . (S!) that we shall prove later
(see 5.11): any homeomorphism f in Homeo (S') can be written as a
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commutator [fi,2] = fifa fl_1 fz‘l. (In fact we only prove in 5.11 that
any homeomorphism is a product of two commutators but this is enough
for the proof which follows.) Assuming this result, we see that any quasi-
homomorphism from Homeo_ (S') has to be bounded. Indeed, up to a bounded
amount, the value of the quasi-homomorphism 7 on f = [fi,f2] is equal to the
sum of its values on fi, />, fl_l, f2_1 which is bounded (since 7(f;) + 7( fl‘l) is
bounded). Now, a bounded quasi-homomorphism which is a homomorphism
on one generator groups is trivial so that 7 is zero.  []

We mention a very interesting problem coming from [37]:

PROBLEM 5.5 (Jankins-Neumann). Let R C (R/Z)? be the set of triples
(p1, p2, p3) such that there exist three elements f1, fa, f3 of Homeo, (S!) such
that f1 > f3 = 1d and whose rotation numbers are (p1, p2, p3). Can one describe
this set R explicitly ?

. In [37], the authors show that R has a fractal structure. First, they explicitly
- describe the set Rg C (R/Z)* of triples (p1, p2, p3) such that there exist three
' elements fi, f>, f3 of some PSL;(2,R) such that fif,f; = Id and whose
rotation numbers are (pi, p2, p3). Of course, Ry C R and they conjecture that
. these two sets are equal. As a motivation for their conjecture, they find an
explicit set R; such that Rg C R C R; and such that R; — Ry is “small”:
1 the Lebesgue measure of R —R( 1s indeed 0.0010547... and the Lebesgue
' measure of Ry is 25/8+3((2)+3¢(3)—6((2)((3)/¢(5) ~ 0.224649208402 . . .
~ (where ( is the Riemann (-function). As Jankins and Neumann write, their
conjecture is therefore 99.9 % proved !

We shall show that the “number” p(f) contains a lot of information on the
topological dynamics of f. Let us begin by explaining the main possibilities
for the dynamics of an arbitrary group of homeomorphisms.

PROPOSITION 5.6. Let T" be any subgroup of Homeo,.(S!). Then there
are three mutually exclusive possibilities.

1) There is a finite orbit.

2) All orbits are dense.
3) There is a compact I'-invariant subset K C S' which is infinite and
. different from S' and such that the orbits of points in K are dense in K. This

set K is unique, contained in the closure of any orbit and is homeomorphic
to a Cantor set.
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Proof.” Let us consider the collection of compact sets in S' which are
non empty and I'-invariant, ordered by inclusion. By Zorn’s lemma, there is
a minimal set in this collection. Choose such a minimal set K. Note that the
closure of the orbit of any point in K is a closed non empty I'-invariant
set contained in K so that it must coincide with K by minimality: the orbit
of a point in K is dense in K. Observe now that the topological boundary
OK = K — interior(K) and the set K’ of accumulation points of K are closed
and I'-invariant. Hence, we have the following possibilities.

1) K’ is empty. In this case, K is finite and we found a finite orbit.

2) OK is empty, so that K is the full circle. In this case, all orbits are
dense.

3) K" =K and 0K = K, so that K is a compact perfect set in the circle
with empty interior: this is one definition of a Cantor set.

In order to prove the uniqueness of K in the last case, we show that K
i1s contained in the closure of any orbit. The complement of K in the circle
is a disjoint union of a countable family of open intervals. Let x be a point
in the complement of K, lying in some interval / and let a be the origin of
I (note that [ is oriented). Finally, let y be any point in K. Since we know
that the orbit of any point of K is dense in K and that K has no isolated
point, there is a sequence of elements -, such that -,(a) consists of distinct
points and converges to y. The intervals -y,(I) are therefore disjoint so that
the distance between -y,(a) and ,(x) converges to zero. It follows that -,(x)
converges to y. This proves that K is contained in the closure of every orbit
and the uniqueness of the minimal set K follows immediately. [

Case 3 looks strange at first sight: it is called the exceptional minimal
set case for this reason. We reduce it to case 2, using the notion of semi-
conjugacy. Consider a map h from R to R which is continuous, increasing
(if x <y then h(x) < h(y)) and which commutes with integral translations.
We stress the fact that & might be non injective : typically it might be constant
on some intervals. Such a map defines a map % from the circle to itself. We
call such a map an increasing continuous map of degree 1 from the circle to
itself.

DEFINITION 5.7. Let I" be a group and ¢, ¢, be two homomorphisms
from I' to Homeo,(S!). We say that ¢, is semi-conjugate to ¢, if there is
an increasing continuous map 4 of degree 1 from the circle to itself such that
for every v in I', we have ¢ (y)h = ho1(7).
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Observe that this notion is not symmetric: ¢, is not necessarily semi-
conjugate to ¢ .

PROPOSITION 5.8. Let I' be a group and ¢ be a homomorphism from I"
to Homeo (S') such that ¢(I') has an exceptional minimal set K. Then there
is a homomorphism ¢ from T to Homeo,(S') such that ¢ is semi-conjugate
to ¢ and (') has dense orbits on the circle.

Proof. The complement of K in the circle is a countable union of open
intervals. For each of these intervals, collapse its closure to a point. The
resulting quotient space is homeomorphic to a circle. In other words, there
is an increasing continuous map h of degree 1 from the circle to itself such
that A(K) = S' and such that the fibers A7 '(x) are either points or the
closed intervals which are the closures of the connected components of the
complement of K. Since ¢(I') acts on the circle and preserves K, it also
acts on the “collapsed” circle so that we can define another homomorphism
¢ which satisfies the conditions of the proposition (we know that orbits of
points in K are dense in K). [

The main object of these notes is to discuss the dynamics of “big groups”
I' acting on the circle. However, we first restrict ourselves to the ‘“easy”
case where I' is generated by one element so that we really study the
dynamics of one homeomorphism of the circle. Of course, we allow ourselves
to say that a homeomorphism f; is semi-conjugate to f, if the corresponding
homomorphisms from Z to Homeo,(S') are semi-conjugate. The following
result shows that the rotation number of a homeomorphism contains a lot of
information on the dynamics.

THEOREM 5.9 (Poincaré). Let f be an element of Homeo, (S'). Then
[ has a periodic orbit if and only if the rotation number p(f) is rational,
l.e. belongs to Q/Z. If the rotation number p(f) is irrational, then f is
semi-conjugate to the rotation on the circle of angle p(f) € R/Z. This
semi-conjugacy is actually a conjugacy if the orbits of f are dense.

Proof. Choose a lift f of f in Homeo . (S'). We know that the numbers
f (x) — n7( f) are umformly bounded (independently of n € Z). Define
h(x) sup, ( f (x) — n7( f)) The following properties of h are obvious :

1) h is 1ncreas1ng (it is left continuous but not necessarily continuous).

2) h(x+ 1) = h(x) + 1.

3) h(f(x)) = h(x) + 7(f).
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If h were continuous, that would lead to a semi-conjugacy between f
and the rotation by an angle 7( f) mod Z = p(f) € R/Z. The structure of
an increasing function like % from R to R is not difficult to analyze. First,
the fibers %_l(x) are either points or intervals. There is at most a countable
number of these intervals : call the union of the interior of these intervals the
plateau set Plat(h) of h; it is empty if and only if s injective. Second,
the image h(R) is the complement of the union of at most countably many
dlSJOlnt 1ntervals call the union of the 1nter10r of these intervals the jump set
Jump(h) of h; it is empty if and only if h is continuous and onto. In our
situation it is clear from 2 that Plat(h) and Jump(h) are open sets which are
invariant under integral translations, so that they define open sets in the circle.
Moreover, property 3 shows that Plat(h) 1s invariant under f and Jump(h) 18
invariant under the translation by 7( f) so that the corresponding open sets in
the circle are invariant under f and the rotation by an angle p(f) respectively.

We can now prove the theorem. Assume first that T(f) is irrational so
that all the orbits of the rotation of angle p(f) are dense. It follows that
Jump(h) has to be empty so that h defines a semi- -conjugacy between J and
the rotation by the angle p(f). If the orbits of f are dense, then Plaz‘(h) has
to be empty and h defines an actual conjugacy between f and the rotation.
Also, since a semi-conjugacy maps finite orbit to finite orbit, f cannot have
any periodic orbits in the case p(f) irrational.

Assume that T(f) is a rational number of the form p/q. The we know that
the element | defined by 7(x) fq — p has a vanishing translation number so
that the orbit of any point x in R under [ is bounded. The upper bound of
any orbit is a fixed point of 1. Since 1 projects to /7 in Homeo, (S'), we have
found a fixed point for f9, hence a periodic orbit for f. This establishes the
theorem. Note that in this last case, we showed something more : if p(f) = p /q
mod Z, then there is a periodic orbit whose “cyclic ordering” is the same
as a rotation of angle p/q. This means that there is a homeomorphism /4 in
Homeo (S') whose restriction to the periodic orbit is a conjugacy between
f and the rotation of angle p/q. [ |

We can now describe the dynamics of a homeomorphism f in Homeo (S!)
quite precisely.

Suppose first that p(f) is irrational: we have two possibilities.

1) If all orbits are dense, then f is conjugate to the rotation of angle p(f).

2) If there is an exceptional minimal set K C S' then f is semi-conjugate
to the rotation of angle p(f). The connected components of the complement
of K are wandering intervals, i.e. disjoint from all their iterates.
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It is not difficult to construct examples of the second type. Start with an
irrational rotation of angle p on the circle and choose a (dense) orbit O C St.
Then “blow up” each point in O to replace it by an interval. In other words,
consider a continuous increasing map & of degree 1 such that h='(x) is an
interval if x is in © and a point otherwise. The complement of the interior of
these intervals is a Cantor set K. Then we construct a homeomorphism jf* of the
circle which preserves K. On K the homeomorphism f is uniquely defined
by the fact that & is a semi-conjugacy with the rotation. On the intervals
of the complement of K, there is still some freedom in the construction:
we choose any homeomorphism f which sends the interval h=l(x) to the
interval h~'(x 4+ p) for x in the orbit O@. The problem with this construction
is that it is not clear whether or not we might do it in such a way that the
corresponding homeomorphism f is smooth. Poincaré thought that there could
exist an example of type 2 for which f is a real analytic diffeomorphism [59]:
he was wrong, as shown later by Denjoy ! Again, we refrain from discussing
this point here since we decided to restrict these notes to topological problems.

Suppose now that p(f) is rational so that f has a periodic point. Replacing
f by one of its powers 9, we study the case where f has a fixed point. To
understand the dynamics of f, we have first to describe the set Fix(f) of fixed
points which can be an arbitrary compact set in the circle (so that it could
be rather complicated). Then, f induces a homeomorphism of each connected
component of the complement of Fix(f). On each component f can move
points “to the right” or “to the left” and this information is the only dynamical
information: it is easy to show that up to orientation preserving conjugacy,
there are two kinds of fixed point free homeomorphisms of an open interval,
those going to the right and to the left respectively.

Summing up, we have a complete description of conjugacy classes of
homeomorphisms of the circle. To give a complete list of invariants is possible
but not very pleasant: for instance in the case of vanishing rotation number,
we should describe a compact set up to homeomorphism and labels “left” or
“right” on each component of the complement.

As a corollary, we get a description of those elements of Homeo (S!)
which have the form ¢! for some topological flow ¢’ on the circle.

This follows immediately from our description of homeomorphisms and the
description that we gave earlier of topological flows.

PROPOSITION 5.10. An element f of Homeo (S') can be included in a
topological flow if and only if p(f) =0 or f is conjugate to a rotation.
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Note that it is possible to find elements S which are not included in flows
arbitrarily close to the identity.

We can now prove an important fact that we have already used in the
proof of the simplicity of Homeo, (S!).

PROPOSITION 5.11. Every element of Homeo, (S') can be written as a
product of two commutators.

Proof.  Consider a topological flow on the closed interval, i.e. a con-
tinuous homomorphism ¢ € R — ¢ € Homeo ([0, 1]). Assume that for
t > 0 the homeomorphism ¢’ satisfies ¢'(x) > x for x € 10, 1[. By the
previous discussion, all homeomorphisms ¢ with ¢+ > 0 are conjugate in
Homeo_ ([0, 1]). In particular, there is a homeomorphism [ in Homeo. ([0, 1])
such that [¢?I~! = ¢!. Tt follows that ¢! = ¢2(¢p!)~! = $*1(@*)~ 1. This
shows that ¢! is the commutator of ¢* and [. Since we know that every
homeomorphism of [0, 1] which fixes only O and 1 is conjugate to ¢' or
its inverse, it follows that any such homeomorphism can be written as a
commutator.

We described the dynamics of homeomorphisms with rotation number
0 € R/Z: in each connected component of the complement of their non
empty fixed point set, they are described by a homeomorphism of the closed
interval with no fixed point in the interior. Our discussion therefore implies
that every element of Homeo  (S!) with rotation number 0 can be written as
a commutator.

Consider finally an element f of Homeo, (S'). Clearly, one can choose a
rotation ry such that frg has a fixed point. In order to prove the proposition, it
is therefore enough to show that any rotation can be written as a commutator.
We show that this is indeed the case in PSL(2,R) using some hyperbolic
geometry (of course, we could also prove the same thing by direct calculations).

Let a, b, c,d be four points in the Poincaré disc whose hyperbolic distances
satisty dist(a,b) = dist(c,d) and dist(a,d) = dist(b,c). Let A (resp. B) be
the orientation preserving isometry of the Poincaré disc such that A(a) = b,
A(d) = c (resp. B(a) = d, B(b) = c). The commutator ABA~'B~! fixes
the point c: it is therefore a hyperbolic rotation centered at the point c.
Figure 5 shows that the angle of this rotation is equal to 27 minus the sum
of the angles of the quadrangle R = abcd which is equal to the area of this
quadrangle and can take any value between 0 and 27 since it is built out
of two hyperbolic triangles. Hence we may realize any rotation as a single
commutator. [
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FIGURE 5

It turns out that Proposition 5.11 can be improved: every element of

Homeo (S') can be written as a single commutator. This is a special case of
a result of [17] that we shall mention later in 6.2.

To conclude, we give some examples. Consider an element A of PSL(2, R)
as a homeomorphism of the circle. The topological dynamics of A are easy

- to describe. Note that since A is a 2 X 2 matrix up to sign, the absolute value
' of the trace of A is well defined. If |#r(A)| > 2, then A is called hyperbolic
- and has two fixed points on the circle. In this case, the rotation number of A
" is of course 0. If |tr(A)| = 2, then A is called parabolic and has only one
fixed point; its rotation number is again 0. Finally, if |[#r(A)| < 2, then A is
- called elliptic and is conjugate to (the equivalence class of) a rotation matrix
' by some angle 276 where 6§ € R/Z is such that 2cos(f) = |tr(A)|. In this
case, the rotation number is therefore cos™!(ir(A)/2)/2r.

Let us consider a finitely generated fuchsian group I' C PSL(2, R). Since

it is a discrete subgroup, any elliptic element in I" must be of finite order.

Assume that I' is torsion free. (A theorem of Selberg guarantees that any
finitely generated subgroup of a matrix group contains a finite index torsion
free subgroup.) Then any element of I" has rotation number equal to O.
However, there are many fuchsian groups exhibiting very rich dynamics, even

1 with dense orbits. These examples show that the data of all individual rotation
| numbers of the elements of a group acting on the circle is far from sufficient
| to describe the dynamics of the group. In other words, Theorem 5.9 cannot be

generalized so easily to groups more complicated than Z. In the next section,
we shall define a more subtle invariant suitable for bigger group actions, like
fuchsian groups.

Observe that our computations in PSL(2, R) show that the rotation number
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is a continuous function on PSL(2,R) but definitely not a smooth function.
On the group Homeo, (S'), we have the following behaviour :

PROPOSITION 5.12.  The map p: Homeo_ (S') — R/Z is continuous and
the pre-image of Q/Z contains an open and dense set. '

Proof. The continuity follows immediately from the definitions. Indeed,
the continuous function fNan(O) /n on H()/II\IG/()+(SI) differs at most by 1/n
from T(f). This implies the continuity of the translation number.

Suppose that f in H()/rﬁe/c>+ (S') is such that f(x) —x achieves both positive
and negative values. Then f has at least a fixed point and T(f) = 0. Since
this condition is obviously open in the uniform topology, we have found an
open set on which the translation number takes the value 0. In the same
manner, we construct open sets on which 7 takes the value p/q : the set of
those f for which fq(x) — X — p takes both positive and negative values.

We leave to the reader the (easy) proof that the set of ]7 for which T(f)
is rational is dense in Homeo, (S!). [J

The local structure of the map p is quite interesting as was shown by
a very nice example due to Arnold [1]. Consider the 2-parameter family of
elements of Homeo, (S') given by

~

So,e@®) = x+ a+ esin(2rx).

Here « is a real number and € is a real number which is small enough to
guarantee that f, . is a homeomorphism (|e| < 1 /2m is enough). We should

think of these f, . as a small deformation of the translation by «a depending
of the small parameter €. Let us look at the behaviour of T(faje) as a function
of o and €. Of course, we have T(fa’o) = a. We can check ‘rather easily

the following facts. For each ¢, the function o T(fa’e) is continuous and
increasing but is not strictly increasing for ¢ # 0. The plateau set of this
function is the complement of a Cantor set on which 7 takes irrational values.
The interior of the set of (o, €) on which 7 takes the rational value p/q is
an “Arnold tongue” which touches the axis € = 0 at the point (p/q,0). The
bigger the denominator g, the thinner the corresponding tongue.

Another interesting feature of this picture is that the Lebesgue measure
of the set of (a,¢€) for which 7 is irrational is not 0. Hence, the translation
number takes rational values on an open dense set but takes irrational values
on a set of positive Lebesgue measure.
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FIGURE 6

As an additional example, consider the case of piecewise linear homeo-
morphisms of the circle. Since the group PL_(S!) contains all rotations, it
is clear that the rotation number of such a homeomorphism can be arbitrary.
However, it is shown in [28] that the rotation number of any element of
the Thompson group G is rational and that any rational number is achieved.
The proof is very indirect and there is a need for a better proof. We could
formulate the problem in the following way.

PROBLEM 5.13. Consider a rational piecewise linear homeomorphism f
of the circle, i.e. such that all its slopes are rational and such that all “break-
points” are rational. Is it true that the rotation number of f is rational ?

We can in fact generalize Thompson’s group quite a lot in the following
way. Let A C R} be a subgroup of the multiplicative group of positive real
numbers and let W C R be an additive subgroup invariant under multiplication
by A. Then we can consider the subgroup GA w of PL+ (S1) consisting of those
elements with slopes in A and break-points in W (for instance, Thompson
group is the case when A consists of powers of 2 and W of dyadic rationals).
These groups are quite interesting especially when A is finitely generated
(see [8, 9, 63]). It would be very useful to understand the nature of translation
numbers of elements of éA,W for specific A and W.

In [34], one can find (among other things!) a very interesting analysis of
the rotation numbers of an explicit 1-parameter family of piecewise linear
homeomorphisms of the circle.

5.2 TITS’ ALTERNATIVE

Recall that J. Tits proved a remarkable alternative for finitely generated
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subgroups I" of GL(n,C) (see [65]): either I" contains a non abelian free
subgroup or T contains a subgroup of finite index which is solvable. Such an
alternative does not hold for subgroups of Homeo, (S'). Indeed, we have seen
that the group PL, ([0, 1]) can be considered as a subgroup of Homeo, (S!)
and contains no free non abelian subgroup. The subgroup F of PL, ([0, 1])
consisting of elements whose slopes are powers of 2 and whose break-points
are dyadic rationals, is a finitely presented group and is certainly not virtually
solvable (since its first commutator subgroup is a simple group, see [28]).
However, answering a question of the author, Margulis recently proved the
following theorem [49] :

THEOREM 5.14 (Margulis). Let I" be a subgroup of Homeo_ (S'). At least
one of the following properties holds :

e I' contains a non abelian free subgroup.

o There is a probability measure on the circle which is T -invariant.

COROLLARY 5.15. Let T be a subgroup of Homeo. (S!) such that all
orbits are dense in the circle. Exactly one of the following properties holds :

o I contains a non abelian free subgroup.

o I is abelian and is conjugate to a group of rotations.

The corollary follows easily from the theorem. Indeed, if all T-orbits are
dense, any invariant probability must have full support and cannot have any
non trivial atom. Any such probability is the image of the Lebesgue measure
by some homeomorphism of the circle. Hence, up to some conjugacy, one
can assume that I' preserves the Lebesgue measure, i.e. consists of rotations.
Note however that the proof which follows will begin with a proof of the
corollary...

The proof of Margulis’ theorem is very elegant and we cannot refrain
from giving an account of it. Qur presentation is a variation (or maybe
a simplification ?) of Margulis’ original ideas. More precise results may be
found in the recent preprint [6]. We begin by recalling the “ping-pong” lemma,
which is the standard way of constructing free subgroups (see [31]). Suppose
a set X contains two disjoint non empty subsets A and A’. Let f,f’ be
two bijections of X which are such that for every n € Z \ {0}, we have
f"A) C A" and f"(A") C A. Then we claim that f and f’ generate a free
subgroup of the group of bijections of X. The proof is easy; consider a word

/ /
w(f,f) = fmf™ - f™f"™ with non zero exponents m;,m), except maybe
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the first one m; and the last one mj (if k =1, we assume that m; and m}
are not both zero...). We want to show that w(f,f’) represents a non trivial
bijection of X. This is clear if m; # 0 and m; = 0 (resp. m; =0 and mj, # 0)
since in this case we have w(f,f)(A) C A" (resp. w(f,f)(A") C A). In the
other cases, one can conjugate w(f,f’) by a suitable power of f or f to get
a new word which is in the previous form. This proves the ping-pong lemma.

In the case of the circle, the typical application of the ping-pong lemma
is the following. Let I,J,1I’,J’ be four closed intervals in the circle and let
| f.f' be two orientation preserving homeomorphisms of the circle. Assume the
following condition holds:

(PING-PONG) The four intervals I, J, I', J' are disjoint, f'(I) =
S!\ interior(J) and f(I') = S'\ interior(J').

Clearly, if one sets X =S8', A=I1UJ and A’ ="' UJ’, we are in the
situation of the ping-pong lemma and one can deduce from (PING-PONG) that
f and f’' generate a free subgroup of Homeo, (S').

In order to find free subgroups inside a given subgroup I'" of Homeo, (S'),
we shall try to locate such ping-pong situations.

Assume now that we are given a group I' such that the following two
properties hold:

(MINIMALITY) All I'-orbits are dense.

(STRONG EXPANSIVITY) There is a sequence of closed intervals I, in the
circle and a sequence -y, of elements of I' such that the length of I, tends to
zero as well as the length of the complementary intervals J, = S'\ int(y,(1,)).

Of course, using subsequences we can assume in (STRONG EXPANSIVITY)
that both endpoints of [, converge to some point x and that both endpoints
of J, converge to some point y. We can also assume that x # y, since
otherwise we could replace v, by 7y, where v is some element of I" such
that y = v(x) # x.

Choose some ~y in I'" such that X' = v(x) and y’ = ~(y) are both different
from x and y (exercise: show that such an element ~ exists!) and consider
the sequence -y, = v~ ',7. Of course, if we let I’ = ~(I,) (resp. J=~)),
the sequence of intervals I, (resp. J,) shrinks to x’ (resp. to y'). Clearly, if
n is big enough, the four intervals I = I,,J = J,,I'’ = I,J' = J' and the

n’

two homeomorphisms f = v,,f’ =+, satisfy (PING-PONG) and therefore +,
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and -, generate a free subgroup of I'. In other words, if (MINIMALITY) and
(STRONG EXPANSIVITY) hold, then T contains a free non abelian subgroup.

The minimality condition is not so restrictive: we saw earlier that any
action without a finite orbit is semi-conjugate to such a minimal action.
However, the strong expansivity condition is very restrictive. Let us introduce
the following weaker condition.

(EXPANSIVITY) There is a sequence of closed intervals I, and a sequence
of elements «y, of I" such that the length of I, tends to zero and the length
of v,(I,) is bounded away from zero.

Call a closed interval K in the circle contractible if there is a sequence of
elements «y, of I' such that the length of +,(K) tends to zero. It follows from
(EXPANSIVITY) that there exists a non trivial contractible interval. If moreover
the condition (MINIMALITY) is also satisfied, then every point of the circle
belongs to the interior of some contractible interval. So let us assume now
that (MINIMALITY) and (EXPANSIVITY) are satisfied.

For each point x in the circle, consider the set of points y such that the
interval [x,y] is contractible. Denote by 6(x) the least upper bound of those
points y (to be correct, one should lift everything to the universal cover). In
this way, we get a map 6 from the circle to itself. Note that obviously 6
commutes with all elements of I". Note also that # is monotone. We claim
that 6 is a homeomorphism. Indeed if it were not strictly monotone, the union
Plat(0) of the interiors of the intervals in which 6 is constant would be a
I'-invariant open set. By (MINIMALITY), this open set is empty unless 6 is
constant, but this is of course not possible since this constant would be fixed
by I'. In the same way, one shows that 6 is continuous, using the union
Jump(@) of the interiors of the “jump intervals” like in 3.2.

We now consider the rotation number of 6. If this rotation number is
irrational, then 6 has to be conjugate to an irrational rotation since otherwise
its unique invariant minimal set would be a non trivial I'-invariant compact
set. Since a homeomorphism which commutes with an irrational rotation is
itself a rotation, that would imply that I" is conjugate to a group of rotations.
This 1s in contradiction with (EXPANSIVITY).

Hence the rotation number of 6 is rational. The union of periodic points
of # is a non empty closed set which is I'-invariant. It follows that § is a
periodic homeomorphism.

Consider the quotient ! = §!/6 of the circle by the finite cyclic group
generated by 6. This is a (“shorter”) circle on which we have a natural action
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of T since, once again, I' commutes with 6.

We observe that this new group of homeomorphisms of a circle satisfies
(MINIMALITY) and (STRONG EXPANSIVITY). Minimality is obviously inherited
from the same property of I" on S!. As for (STRONG EXPANSIVITY), it suffices
to observe that any compact interval contained in [x, 8(x)[ is contractible, by
definition. This means that any compact interval in S!" is contractible and
this implies (STRONG EXPANSIVITY).

We have now proved that if (MINIMALITY) and (EXPANSIVITY) are both
satisfied, then the group T" must contain a free non abelian subgroup.

Now, let us look more closely at (EXPANSIVITY) and observe that the
negation of this property is nothing more than the equicontinuity property
of the group I'. If a group I' acts equicontinuously, then its closure in
Homeo, (S') is a compact group by Ascoli’s theorem. We analyzed compact
subgroups of Homeo, (S!) in 4.1: they turned out to be abelian and conjugate
to groups of rotations.

We have shown that if (MINIMALITY) holds then T is either abelian
or contains a free non abelian subgroup; in other words, we have proved
Corollary 5.15.

Proving Theorem 5.14 in full generality is now an easy matter. Let " be
any subgroup of Homeo, (S') and let us use the structure theorem 5.6-5.8. If
I' is minimal, we have already proved the theorem. If T" has a finite orbit, there
is a I'-invariant probability which is a finite sum of Dirac masses. Finally,
if there is an exceptional minimal set, the I'-action is semi-conjugate to a
minimal action. Applying our proof to this minimal action, we deduce that
I' contains a non abelian free subgroup unless the restriction of the action of
I' to the exceptional minimal set is abelian and is semi-conjugate to a group
of rotations. In this case, one finds a I'-invariant measure whose support is
the exceptional minimal set. This is the end of the proof of Theorem 5.14.

6. BOUNDED EULER CLASS

6.1 GROUP COHOMOLOGY

| Let us begin this section with some algebra. Let I" be any group. Let us
§ consider the (semi)-simplicial set EI" whose vertices are the elements of I
and for which n-simplices are all (n + 1)-tuples of elements of I". The ith
face of the simplex (yp,...,w) is (Y0, --+»i-..n) where the term -, is
i omitted. Note that the set ET" does not depend on the group structure of I.
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