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GROUPS ACTING ON THE CIRCLE

by Etienne GHYS

1. INTRODUCTION

The classical theory of dynamical systems studies the orbit structure of a
homeomorphism or of a flow on a manifold, i.e. of actions of the group Z
or R. This theory can be generalized to actions of an arbitrary group I" on a
manifold. These notes propose a survey of some results concerning the case
where the group I' is quite arbitrary and the manifold is the circle or the real
line.

This paper covers a very small part of the theory. We decided to discuss
only the topological aspect; this is a pity since the theory of groups of
smooth diffeomorphisms is so rich! For instance, we would have liked to
discuss the so called “level theory” around Sacksteder’s theorem or problems
related to structural stability. Even in the restricted domain of topological
dynamics, these notes are incomplete; we should have discussed at least the
remarkable classification of convergence groups due to Tukia, Casson-Jungreis,
Gabai [15, 24]... The author hopes that in the near future he will be able to
write a reasonably complete survey on this area.

Our main goal is to provide a motivation for our paper on actions of
higher rank lattices on the circle [26]. Section 3 describes some important
examples of group actions on the circle. Section 4 reviews some of the main
topological and algebraic properties of the group of homeomorphisms of the
circle. In Sections 5 and 6 we describe the interplay between the classical
rotation number and the cohomological invariant given by the Euler class.
Finally, in Section 7 we discuss recent results concerning actions of lattices
on the circle. Subsection 7.2 is essentially an extract from [26].

A first version of these notes was prepared for the 13" ELAM in Lima,
in June 1999.

I would like to thank John Crisp, Bruno Sévennec and Dave Witte for
interesting comments on this text.
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We begin with some very general definitions concerning group actions.
For an introduction to this subject, we refer to [42].
Let I be any group and X be any topological space. An action of T" on X
is a homomorphism ¢ from I' to the group Homeo(X) of homeomorphisms
of X. An element v € I' and a point x € X produce the point v-x = ¢(v)(x).
Conversely a map

v,x) el xX—vy-xeX
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comes from an action if for every <, the point - - x depends continuously
on x and if for every 7,7, we have v - (2 -x) = (7172) -x and ex = x
(e denotes the identity element in I').

Two actions ¢; and ¢, of I' on X; and X, are comjugate if there exists
a homeomorphism %~ from X; to X, such that for every v € ', one has
$r(7) = hg(Mh™!.

An action ¢ is faithful if it is injective, i.e. if non trivial elements in the
group act non trivially on the space. This is a minor assumption since we can
always consider the associated faithful action of the quotient group I'/ker(¢).

The orbit of a point x is the set O(x) = {d(y)(x) | v € T} C X. The main
object of topological dynamics is to study the topological properties of the
partition of X into orbits. An action is transitive if there is only one orbit.
We say in this case that X is homogeneous under the action of I'. Of course,
these transitive actions are quite trivial from the topological dynamics point
of view but this does not mean that the geometrical study of homogeneous
spaces 1S not interesting !

The stabilizer of the point x is the subgroup

Stab(x) = {y € T | ¢p(y)(x) =x} C T.

There is a natural bijection between the quotient I'/Stab(x) and the orbit
O(x). Note that the stabilizers of two points in the same orbit are conjugate
subgroups in I'. An action is free if the stabilizer of every point is trivial, i.e.
if the action of a non trivial element of I" has no fixed point.

In some cases, I' might be a topological group. In these cases, we frequently
consider continuous actions such that -y-x is a continuous function on I" x X.
The orbit map bijection from I/ Stab(x) to O(x) is continuous but is usually
not a homeomorphism when O(x) is equipped with the induced topology
from X. The easiest non trivial example is the case where ' = R, ie. of
a topological flow: if the stabilizer of a point x is trivial, the orbit O(x) is
the image of a continuous bijection R — O(x) C X but in many cases this
orbit might be recurrent (for instance dense in X) and this bijection is not a
homeomorphism. There is however a special case in which this map is indeed
a homeomorphism and we use this fact constantly (and sometimes implicitely)
in these notes. Consider a Lie group G acting continuously and transitively
on a manifold M and denote by H the stabilizer of a point. Then H is a
closed subgroup of G, hence a closed Lie subgroup, and the quotient space

G/H is naturally a smooth manifold. In this case, the orbit map from G/H
to M is a homeomorphism.
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3. TwO BASIC EXAMPLES

Up to homeomorphism, the circle is the only compact connected 1-dimen-
sional manifold: this is probably the reason why we meet so many circles
in mathematics... We can think of the circle S! in many ways. We can first
consider it as the unit circle in R? but we can also see it as the abstract
1-dimensional manifold which is the quotient of the real line R by the
subgroup of integers Z. From this point of view, S! can be thought of as
being an abelian group, isomorphic to SO(2,R) or to the 1-dimensional torus.
The circle can also be considered as the real projective line RP! consisting
of lines in R? going through the origin (identified with R U {c0} by taking

the slope of a line).
; % § g RP!
RPI
R/Z ;2} %z :Sl

FIGURE 1

- @@

U

Going from one point of view to another is easy, the identifications being
given by :

t € R/Z — (cos(2nt), sin(27?)) € S ¢ R?

t € R/Z — tan(nt) € RU{c0} = RP!
1—s* 2

1+s 271 + 5 2
In this first section, we would like to give two very basic examples of

groups acting on the circle which will play a central role in these lecture
notes. The properties of these examples will be detailed in this text and we

sERP1|—>( ye S,
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could say that a major theme of research would be to show that many groups
acting on the circle can be reduced to them.

3.1 THE PROJECTIVE GROUP

The linear group GL(2,R) consists of 2 x 2 real invertible matrices. Its
center is the group of scalar matrices and the quotient of GL(2,R) by this
center is denoted by PGL(2,R) and called the projective group. There is a
natural (projective) action of PGL(2,R) on the circle (seen as RP!). Indeed,
GL(2,R) acts linearly on R? and induces an action on the set of lines in
R? going through the origin, which is RP! by definition. A formula for the
action is given by:
ax+b
cx+d
We use a (square) bracket to denote the equivalence class modulo scalar
matrices. Note that the group PGL(2, R) has two connected components given
by the sign of the determinant. The component of the identity is 1somorphic
to PSL(2, R), which is the quotient of the unimodular group SL(2, R) by its
center which consists of +Id. The action of an element of PGL(2,R) on the
circle preserves or reverses orientation according to the sign of its determinant.

An important feature of this action is that it extends to the disc. The
real projective line RP! sits naturally inside the complex projective line
CP! ~ CU {oo} which is the Riemann sphere. In the same way, the real
projective group PGL(2,R) is a subgroup of the complex projective group
PGL(2,C) which acts on the Riemann sphere by Mcebius transformations.

([“%],%) € PGL(2,R) x RP! € RP'.

00

RP!

FIGURE 2

Hence we get an action of PGL(2,R) on the Riemann sphere CP!

: preserving the circle RP! . The complement of this circle in this sphere consists
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of two discs which are preserved or permuted by an element of PGL(2,R)
according to the sign of the determinant. In the obvious coordinates, the circle
RP! is the real axis in CP! ~ CU{oco} plus the point at infinity. Denote by
H C C C CP! the upper half space, i.e. the set of complex numbers z with
positive imaginary part: this is one of the two components of the complement
of RP! in CP!. We get an action of PSL(2,R) on 7 which extends the
action of PSL(2,R) on the boundary RP!. This extension is holomorphic and
is actually an isometric action when we equip H with its Poincaré metric
(see for instance [67]).

The group PSL(2,R) and the rotation group SO(3,R) are the only simple
Lie groups of real dimension 3 and there is no non trivial simple Lie group of
lower dimension [58]. This may explain why several versions of these groups
occur in mathematics. We give one of them, showing a different aspect of the
action of PSL(2,R) on the circle.

Consider the quadratic form Q = x?+x5—x3 on R?. Its group of isometries
1s denoted by O(2,1). This group has four connected components (see for
example [54]) and it turns out that the component of the identity is isomorphic
to PSL(2,R). A simple way to check this fact is to consider the action of
GL(2,R) on the space M(2,R) of 2 x 2 matrices given by conjugation :

(A,M) € GL(2,R) x M(2,R) — AMA™!.

Note that this action factors through an action of PGL(2, R) since the center
acts of course trivially. We can moreover restrict this action to the invariant
3-dimensional vector space E consisting of matrices whose trace is 0. Finally,
we observe that the determinant of M provides an invariant quadratic form on
E. It is easy to check that the signature of this quadratic form is (—, —,+) so
that, using suitable coordinates, we get an injection of PGL(2,R) in O(2,1).
This injection gives the promised identification between PSL(2,R) and the
connected component of the identity in O(2, 1). Figure 3 shows.the orbits of
this linear action on E.

Since O(2,1) acts linearly on R3, it acts projectively on the projective
plane RP? consisting of lines in R®. The zero locus of Q in R? is a cone
which projects to a conic C in RP? invariant under O(2,1). As any non
degenerate conic in the projective plane can be rationally parametrized by
RP!, we get an action of O(2,1) on the circle RP!. The reader will easily
check that we get, up to conjugacy and identifications, the same action of
PSL(2,R) on RP! that we described earlier.

The conic C bounds two domains in RP?. One of them is homeomorphic
to a disc and is the projection of the set of points for which Q < 0: it
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FIGURE 3

is called its interior and is denoted by D. The exterior is homeomorphic to
a Mcebius band. Hence we can think of the circle C ~ RP!' ~ S! as the
boundary of a disc D C RP? on which PGL(2,R) acts projectively. We have
extended the action of PGL(2,R) on the circle to an action on the disc. This
1s the Klein model.

Of course, the two extensions of the action of PSL(2,R) on a disc are
conjugate, even though they don’t quite look the same. The first one is
conformal in one complex variable and the second one is projective in two
real variables. There are several ways of describing a conjugacy between
these two actions [67]. The following one is nice and not so well known.
Consider the linear action of PSL(2,R) on the 3-dimensional vector space
of polynomials of the second degree aX? + bXY + c¥? by linear change of
coordinates. The discriminant b*> —4ac defines an invariant quadratic form of
signature (+,+, —). Hence, we can identify this linear action with the linear
action of the identity component of O(2,1) that we considered above. Now
any polynomial in the negative cone of the discriminant defines a polynomial
aX? + bX + ¢ with two complex conjugate roots. Hence, we can define a
map from the disc D to the upper half plane H sending the line through
the polynomial to the unique root in . This map is obviously a conjugation
between the two actions of PSL(2,R) on D and H. Note however that
the two actions of PSL(2,R) on RP? and CP! that we constructed are not
conjugate since RP> and CP! are not homeomorphic !

The action of PSL(2,R) on the circle that we described is well known
and there is not much to say about its dynamics since it has only one orbit !
In order to get examples which are interesting from the dynamical point of
view, we should restrict it to suitable subgroups of PSL(2,R). We mention the

2
-
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Juchsian groups which are by definition the discrete subgroups of PSL(2, R).
These groups come from many parts of mathematics, in particular from number
theory. For instance, the modular group PSIL.(2,7Z) is fundamental in the study
of quadratic forms in two variables over the integers and its action on RP!
or on H is one of the main tools to understand it. Gauss began. its analysis
in his famous Disquisitiones and the modular group might be the first non-
commutative group to have been been studied in the history of mathematics.
As another example, consider a quadratic form in three variables with integral
coefficients and signature (+,+,—); the group of its isometries with integer
coefficients is of course a fuchsian group. This was another motivation for
Poincaré when he studied these groups [60]. We also want to emphasize that
not only the discrete groups of PSL(2,R) might be interesting, even from
the number theoretical point of view. Examples can be given by taking a
number field £ embedded in R and looking at the ring of integers @ in this
field (for instance Z[+/2] in Q(v2)). The group PSL(2,O) of elements of
PSL(2,R) with entries in O is a very important one (even though it is dense
in PSL(2,R) if k is not the field of rational numbers).

3.2 PIECEWISE LINEAR GROUPS

Our second example is a much bigger group : the group of piecewise linear
homeomorphisms of the circle S!, considered here as R /Z. A homeomorphism
J of the real line R is called piecewise linear if there is an increasing sequence
of real numbers x; parametrized by i € Z such that limi., x; = oo and
such that the restriction of f to each interval [xi,x;+1] coincides with an affine
map. If such a homeomorphism satisfies f(x+ 1) = S(x)+1 for all x, then it
induces a homeomorphism of the circle S! ~ R /Z. Such a homeomorphism of
S! is called a piecewise linear homeomorphism of the circle. Note that, by our
definition, we are only considering orientation preserving homeomorphisms of
the circle. The collection of these homeomorphisms is a group, denoted by
PL_(S). |

Again, this group is acting transitively on the circle so there is not much
to say about its orbits... However PL_ (S!) contains some very interesting
subgroups which will provide good examples of some dynamical phenomena
on the circle. We shall mention only one of them.

The Thompson group, denoted by G, is a countable subgroup of PL_(S!)
- which has been studied quite a lot recently and deserves more attention. Some
of its properties will be mentioned in these notes, in particular as a source
of (counter)-examples. To define it, we consider first the group G consisting
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of piecewise linear homeomorphisms f of R which have the following four
properties.

e The sequence x; can be chosen in such a way that x; and f(x;) consist
of dyadic rational numbers (i.e. of the form p2?, p,q € 7).

e The set of dyadic rational numbers is preserved by f.

e The derivatives of the restrictions of f to ]x;,x;+i[ are powers of 2 (i.e
of the form 29, g € Z,).

e One has f(x+ 1) =f(x)+ 1 for all x.

The elements of G induce homeomorphisms of the circle S! ~ R/Z.
The collection of these homeomorphisms is the Thompson group G. Figure
| 4 shows the graphs of two typical elements of G.

1 1

3/4r e 3/4
7/
1/2 . 1/2
4
/
/4 / 7 1/4
v
0 ] | 1 0 | |
0 1/4 1/2 3/4 1 0 1/4 1/2 3/4 1
FIGURE 4

| Among the nice properties of G, we mention first the fact that G is
an infinite finitely presented simple group. This was the main motivation for
| Thompson: indeed G was the first example of such a group (recall that a
§ group is called simple if it contains no proper normal subgroup).
We also mention a connection with the modular group PSL(2,Z) acting on
| RP!. Consider the group of homeomorphisms of RP! which are piecewise-
PSL(2,Z), i.e. for which one can partition RP! as a finite union of intervals
| with rational endpoints in such a way that on each of these intervals, the
| homeomorphism coincides with an element of PSL(2,Z). It turns out that
| there is a homeomorphism 4 from R/Z to RP! mapping the dyadic points
| in R/Z to the rational points of QP! and conjugating the Thompson group
: G with this group of piecewise-PSL(2,Z) !

Somehow, we could say that G sits inside PL_(S') like a fuchsian group
sits inside PSL(2, R). For more information concerning this group, see [13, 28].
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- 4. THE GROUP OF HOMEOMORPHISMS OF THE CIRCLE

We denote by Homeo, (S!) the group of orientation preserving homeo-
morphisms of the circle S'. In this section, we want to describe the main
properties of this group. .

Denote by Homeo,(S!) the group of homeomorphisms f of the real
line R which satisfy f(x + 1) :f(x) + 1 for all x, i.e. which commute with
integral translations. Every element of Homeo..(S!) defines a homeomorphism
of the circle which is orientation preserving, so that we get a homomorphism
p from Homeo(S') to Homeo,(S!). The kernel of p consists of integral
translations of the real line. Moreover p is onto: any orientation preserving
homeomorphism of the circle lifts to a homeomorphism of its universal
covering space, which is the line R, commuting with integral translations. In
other words, we have an exact sequence:

0 — Z — Homeo (S') — Homeo,(S") — 1.

We say that Homeo, (S!) is a central extension of Homeo. (S').

Equipped with the topology of uniform convergence, these groups are
naturally topological groups.

We would like to turn these groups into infinite dimensional Lie groups.
It is not so easy to do so for many reasons. One of the difficulties is that
it is not true that an element of Homeo,(S') close to the identity lies
on a l-parameter subgroup (see 5.10). For an excellent survey on infinite
dimensional Lie groups, we refer to [53]. In any case, it is customary to think
of these homeomorphism groups as “some kind of infinite dimensional Lie
groups”. For a recent study of the “Lie algebra” of Homeo (S), see [47].

Even though Homeo, (S') is not quite a Lie group, it shares many
properties with finite dimensional Lie groups. More precisely, we shall try
to show that Homeo, (S') is a kind of infinite dimensional analogue of
PSL(2, R). ‘

Lie groups admit a maximal compact subgroup K, unique up to conjugacy,
and the embedding of K in the Lie group is a homotopy equivalence (see
for instance [58]). In case of PSL(2,R), the maximal compact subgroup
is SO(2,R)/{£Id} ~ R/Z and the quotient of PSL(2,R) by its maximal
compact subgroup is contractible since it is identified with the upper half
space H (we remark that PSL(2,R) acts transitively on H and that the
stabilizer of a point is a maximal compact subgroup).

The same result is true for the group of homeomorphisms of the circle:
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PROPOSITION 4.1. Up to conjugacy, the rotation group SO(2,R) is the
only maximal compact subgroup of Homeo_ (S1).

Proof. Let K be a compact subgroup in Homeo_(S!) and A its Haar
probability measure, i.e. the unique probability measure on K which is invariant
under left (and right) translations in K (see for instance [69]). Each element
k of K sends the Lebesgue measure dx of the circle R/Z to a probability
measure k,dx on the circle. Averaging using A, we get a probability measure
W= f «(kidx)d\ on the circle which is invariant under the action of K. This
measure 4 obviously has no atom and is non zero on non empty open sets.
It follows that there is an orientation preserving homeomorphism /4 of the
circle such that A,u = dx. This is a very special case of a theorem which is
valid in any dimension but the proof is very easy on the circle. Indeed, fix
a point xo on the circle (for instance 0 mod Z) and define A(x) to be the
unique point such that the p-measure of the positive interval from xp to x
is equal to the Lebesgue measure of the positive interval from xo to h(x).
The existence and continuity of A follow from the properties of p and the
fact that & sends pu to the Lebesgue measure is obvious from the definition.
Now, after conjugating K by h, we get a group of orientation preserving
homeomorphisms of the circle preserving the Lebesgue measure, i.e. a group
of rotations. Hence, some conjugate of K is contained in SO(2,R). ]

Note 1n particular that the proposition implies that any finite subgroup of
Homeo (S!) is cyclic and is conjugate to a cyclic group of rotations.

PROPOSITION 4.2. The embedding of SO(2,R) in Homeo,(S!) is a
homotopy equivalence.

Proof. Observe first that the group of orientation preserving homeomor-
phisms of the line R is a convex set since it is the set of strictly increasing
functions from R to R tending to +oo as the variable tends to +o0o. Consider
the group Homeo,(S'). An element f of this group can be written in the
form f (x) = x+1(x) where ¢ is a Z-periodic function. Now, any such periodic
function can be written in a unique way in the form ¢y + #, where ¢y is a
constant and 7y is a periodic function whose average value over a period is
0.If0<s<1lisa parameter we define f by f (xX) =x+co+ (1 — 8)tp(x).

We have fo f and f | 1s a translation. It follows from our preliminary ob-
servation that for each s in [0, 1], f 1S a homeomorphlsm n Homeo+(Sl)
Hence we get a continuous retraction of Homeo, (S!) on the subgroup of
translations of R, isomorphic to R. Note also that this retraction commutes
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with integral translations, since the average value of #(x) 4+ 1 over a period is
of course cg+ 1. In other words, we can define a continuous retraction from
the quotient group Homeo (S') = Homeo.(S!)/Z onto the group of rotations
SO(2,R) ~ R/Z. This is the homotopy equivalence that we were looking for.
Observe that we actually proved something a little bit stronger: Homeo (S!)
is homeomorphic to the product of SO(2,R) and a convex set. L]

We should not only consider Homeo, (S') as a kind of Lie group but
as an analogue of a simple Lie group (as for example PSL(2,R)) for which
there is a well developed and wonderful theory (see for instance [58]).

THEOREM 4.3.  The group Homeo(S') is simple.

Proof. Recall that if T is any group, its first commutator subgroup TV C T
is the subgroup generated by commutators [71, 2] = iy, 172_ ! of elements
71,72 In I (see [46]). A group is called perfect if it is equal to its first
commutator group, ie. if every element is a product of commutators.

We shall establish later that Homeo, (S') is perfect (see 5.11). (Note that
the corresponding statement for diffeomorphism groups 1s also true and much
harder to prove but we decided not to discuss groups of diffeomorphisms...)
We now show that this implies quite formally the simplicity of Homeo, (S!).
The reader will find in [18] a general theorem stating that a perfect group of
homeomorphisms of a manifold which is acting “sufficiently transitively on
finite sets” is necessarily a simple group (see also [2]). The proof we present
here is an adaptation of this argument.

Recall that the support of a homeomorphism is the closure of the set
of points which are not fixed. Let N be a non trivial normal subgroup in
Homeo, (S') and suppose f is some element of Homeo. (S') whose support
is contained in some compact interval / C S'. Let ny be a non trivial element
of N and choose some closed interval in S! which is disjoint from its image
under ng. Observe that Homeo, (S') acts transitively on closed intervals in
the circle. Conjugating ny by a suitable element of Homeo (S!), we can
therefore find an element n in N such that n(l) is disjoint from 7. Consider
now the commutator g = n~1f ~!nf . It is an element of N since N is a normal
subgroup. Moreover, it is clear that g agrees with f on I, with n~Yf~1n on
n~1(I), and with the identity in the complement of these two disjoint intervals.

Consider now two elements f; and f; of Homeo, (S!) whose supports are
contained in the same interval I. We can find elements n; and n, of N such
that the intervals 7, nl_l(] ) and n, 1(I) are disjoint. Then the two elements
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g1 = nl_lfflnlfl and g, = n, lfz_ll’lzfz are in N and their commutator is
equal to the commutator of f; and f,. So we showed that the commutator of
two elements of Homeo, (S') having support contained in the same interval
is in N. A

Cover the circle by three intervals Iy, 1, /3 with empty triple intersection
but with non empty intersection two by two. Let Gy, G», G5 be the subgroups
of homeomorphisms with supports in 7;,1, and I respectively and denote by
G the subgroup of Homeo, (S!) that they generate. If a group is generated
by a subset, its first commutator subgroup is generated by conjugates of
commutators of elements in this subset. It follows that the first commutator
subgroup of G is generated by conjugates of commutators of elements in
G1 UG, U Gs. Since the union of two of the intervals 1,1, 15 is not the full
circle, it is contained in some compact interval. Hence we can use the above
argument to conclude that the commutator of two elements in G UGy UGy

- is in N. It follows that N contains the first commutator subgroup of G.

We finally prove that G coincides with Homeo_, (S') and this will prove the

proposition since we know that Homeo, (S!) is equal to its first commutator
8 subgroup (actually we postponed the proof to 5.111!). Let X1,2,X23,X3,1 be

points in the interiors of I;Nl,, LNI5, NI, respectively. Let f be an element of

Homeo, (S) close enough to the identity so that S12),f(x2,3),f(x3 1) are in
4 the interiors of I; NI, LN, ;NI respectively. Then, we can find (commuting)

elements g1, g,,9; of Homeo, (S') with supports in I N I, I, N L, NI
respectively, agreeing with f in neighbourhoods of X1,2,%2,3,%31. Hence
9, 192— : 93 Lf is the identity in neighbourhoods of X1,2,%2,3,%31 and is therefore
a product of three elements of G; UG, U G3. This shows that every element
of Homeo, (S') close enough to the identity is an element of G. The general
case follows from the well known fact that a connected topological group is

- generated by any neighbourhood of the identity.  []

As a corollary of Proposition 4.2, the fundamental group of Homeo (S')
18 Z so that for each integer k > 1 there is a unique connected covering
space Homeokﬁr(Sl) of Homeo (S') with k sheets. In the same way, there
is a unique connected covering space PSL;(2,R) of PSL(2,R) with k sheets.
It is easy to construct these coverings explicitly. Consider a k-fold cover of

the circle onto itself. Any element of Homeo (S!) can be lifted to exactly k
“ﬂ homeomorphisms of the circle and Homeok,+(Sl) consists of the collection
4 of all the lifts of all homeomorphisms. Another way of expressing the same
thing is the following. Consider the finite cyclic group of rotations of order k
@ acting on the circle R/Z. Then we can consider the subgroup of Homeo_ (S')
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consisting of homeomorphisms commuting with this cyclic group: this is a
group isomorphic to Homeoy 4 (S!). This presentation has the advantage of
expressing Homeoy 4 (S') as a subgroup of Homeo  (S!). Analogously, we
can realize PSL;(2,R) as the group of lifts of elements of PSL(2,R) to the
k-fold cover of RP!. This k-fold cover is homeomorphic to a circle so that
PS1L:(2,R) can be realized as a subgroup of Homeok,Jr(Sl) (of course up to
conjugacy). Note however that PSL;(2,R) cannot be realized as a subgroup
of PSL(2,R).

Summing up, for each integer k > 1, we have well defined conjugacy
classes of subgroups PSL;(2,R) and Homeok,+(Sl) in Homeo, (S'). The
first ones are finite dimensional and the second ones are very close to the full
group of homeomorphisms, something like “finite codimension subgroups”.

PROBLEM 4.4. Let T' be a closed subgroup of Homeo(S') acting

transitively on the circle. Is T conjugate to one of the subgroups SO(2,R),
PSL;(2,R) or Homeok,Jr(Sl) ?

Informally, this problem asks whether there is an interesting geometry on
the circle besides projective geometry. For instance, the analogous question
for the group of homeomorphisms of the 2-sphere would have a negative
answer : besides finite dimensional Lie groups acting on the 2-sphere, there
is the group of area preserving homeomorphisms which acts transitively and
is “much smaller” than the full group of homeomorphisms of the 2-sphere.

Let F, be the free group on two generators. It is very easy to construct
explicit examples of embeddings of F, in SL(2,R) (see for instance [31]. It
follows that for a generic choice of two elements of SL(2,R), the subgroup
that they generate is free. Indeed, let f and g be two elements in SL(2,R).
There is a homomorphism i from F, to SL(2,R) sending the first and the
second generator to f and g respectively. In practice, if w is" a non trivial
element of F, seen as a word in the two generators and their inverses,
(w) = w(f,g) is obtained by substituting f and g to the two generators
of F; in w. Let X,, C SL(2,R) x SL(2,R) be the set of (f, g) such that
w(f,g) =1d. This is a real algebraic subset of the algebraic irreducible affine
variety SL(2,R) x SL(2,R) which is not everything since otherwise SL(2,R)
would not contain any free subgroup on two generators. Therefore the set of
couples (f,g) which generate a free subgroup is the complement of a countable
union of proper algebraic submanifolds of SL(2,R) x SL(2,R). Hence for a
generic choice of (f,g) (in the sense of Baire), the group generated by (£, g)
is free.




GROUPS ACTING ON THE CIRCLE 343

We now prove the analogous statement for the group of homeomorphisms
(which is not an algebraic group).

PROPOSITION 4.5. For a generic set of pairs (f,g) of elements of
Homeo,(S') (in the sense of Baire), the group generated by (f,g) is a
free group on two generators.

Proof. First observe that the topology of Homeo. (SY) can be defined by
a complete metric. It follows that Homeo (S!) x Homeo (S') x S' is a Baire
space, i.e. a countable intersection of dense open sets is dense. For each non
| trivial w € F,, consider the closed set X,, C Homeo, (S') x Homeo(S") x St
B consisting of those (f,g,x) such that w(f,g)(x) = x. We shall show that
B a1l these closed sets have empty interior. It will follow in particular that
d for each non trivial word w, the set of (f,g) such that w(f,g) = id has
| empty interior so that, by Baire’s theorem, for a generic choice of ( f,9)
| in Homeo(S") x Homeo_(S!) there is no non trivial relation of the form
B w(f,9) =id and the group generated by f and g is indeed free.
| Assume by contradiction that some X,, has non empty interior and let w be
| a word of minimal length k for which this is the case (note that kK > 1). Let U
| be some non empty open set of Homeo  (S!) x Homeo, (S') xS contained in
| X,,. For each pair of words wy,w, of length strictly less than k, consider the
| closed set of triples (f,g,x) such that w(f, g)wa(f, 9)(x) = wa(f, g)(x) : this
| is the image of X, by (f,g,x) — (f,g,wz"'(f, g)(x)) and therefore has an
| empty interior. Choose a triple (f, g,x) which is in U but not in these (finitely
many) closed sets with empty interiors. Write w = aj.az. -+ .a where each

| a; is one of the generators or its inverse. Write w(f,g) as fif2---fx where

| cach f; is one of f,f ', g,97 .

| Finally, consider the sequence of points xi,...,x,—; defined by x; = f1(x),
B = fo(x1), ..., Xx—1 = fr—1(xx—2). Since we know that (f,g,x) € U, we
| have fi(xx—1) = x. We claim that the points x,x;,...,xx—; are different.

| Indeed, the contrary would mean that some word w; of length strictly
| less than k would fix one of the points x;. Since each point x; has the
form w,(f,g)(x) for some w, of length strictly less than k, the triple
(f,g,x) would be in one of these closed sets with empty interior that we
u excluded.

- We _slightly modify (f,g) in (f,g) in such a way that the corresponding
[y fy still satisfy x1 = £1(x),x2 = fr(x1), .- -, X—1 = f;_;(x_2) but also
| such that f,(xx_1) # x. This is possible since x is different from x,...,x_;.
| It follows that w(f,g)(x) # x. This contradicts the definition of U.  []




344 E. GHYS

Note that this proof works equally well for the homeomorphism group of
manifolds of any dimension.

Brin and Squier have discovered the remarkable fact that the situation is
completely different in groups of piecewise linear homeomorphisms [10].

THEOREM 4.6 (Brin-Squier). The group PL([0,1]) of piecewi&e linear
homeomorphisms of the interval [0,1] does not contain any non abelian free
subgroup.

Proof. If f is any homeomorphism, we denote by Supp,(f) its “open
support”, i.e. the set of non fixed points. Suppose by contradiction that there
exist two elements f and g of PL ([0, 1]) which generate a free subgroup F,
on the generators f and g. The union I = Supp,(f)USuppy(g) is a union of a
finite number of open intervals I;,...,I,. Note that the commutator fgf ~!g~!
has an open support whose closure is contained in I since near the boundary
of 7, the maps f and ¢ are linear and therefore commute.

Among the non trivial elements # in F, such that the closure of Supp,(h)
is contained in I, consider an element s such that Supp,(h) meets the least
possible number of the n components of I. Let Ja,b[ be one of these
components and let [c,d] be a interval contained in the interior of Ja, b[ and
containing Suppy(h)Nla,b[. If x is in ]a,b[ then the orbit of x under the
group F, is contained in ]a, b[ and its upper bound is a common fixed point
of f and ¢ so that it has to be b. It follows that there exists an element
in the group sending ¢ (and hence [c,d]) to the right of d. In particular the
restrictions to [a,b] of h and lhl~! commute and generate a group isomorphic
to Z*. Of course h and [hl~! don’t commute in the free group generated
by f and g since otherwise they would generate a group isomorphic to Z.
Consider now the commutator of A and [Al~!. It is a non trivial element
whose support does not intersect ]Ja,b[ and therefore intersects strictly fewer
components of / than % did. This contradicts our choice of 4. [

Finding a group which does not contain any non abelian free subgroups
is not very difficult: consider for example an abelian group! However, the
interesting feature of PL,([0,1]) is that it contains no non abelian free
subgroups and satisfies no law. This means that for every non trivial word
w, we can find two elements (f,g) in PL,([0,1]) such that w(f,g) # Id
(this 1s not difficult: see [10]). Abelian groups, on the contrary, satisfy the
law that fgf ~'¢g~—! is always the identity element.

Remark also that the proposition is not claiming that the group PL. (S!)
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does not contain any non abelian free subgroups. Indeed, it is very easy to
find free subgroups on two generators in PL,(S!) using for instance the
classical “Klein ping-pong lemma” (see [31] or Section 5.2). Later in this
paper, we shall prove that “most subgroups” of Homeo,(S') contain free
subgroups (5.14). |

4.1 LOCALLY COMPACT GROUPS ACTING ON THE CIRCLE

Recall that a very important (and difficult) theorem of Montgomery and
Zippin states that a locally compact group is a Lie group if and only if
there is a neighbourhood of the identity which does not contain a non trivial
compact subgroup [40, 56]. We know the structure of compact subgroups
of Homeo, (S!): they are conjugate to subgroups of SO(2,R) and therefore
they are either finite cyclic groups or conjugate to SO(2,R). None of these
subgroups can be in a small neighbourhood of the identity. Indeed, consider
the neighbourhood U of the identity in Homeo(R/Z) consisting of those
homeomorphisms f such that the distance between x and f(x) is less than 1/3
for all x in R/Z. Every element f in U has a unique lift f in Homeo_ (R/Z)
which is such that |f(35)—35\ < 1/3 for all X in R. Of course, if f, g and fg are
in U, we have f~g :fj In particular, if there were a non trivial subgroup H
contained in U this subgroup H would lift as a subgroup of Homeo. (R/Z).
Since H&ﬁé/o+(R/ Z) is a torsion free group and since any compact subgroup
of Homeo (R/Z) contains elements of finite order, it follows that no non
trivial compact subgroup of Homeo(R/Z) can lift to H()/IITG:/C)+(R/ Z). In
particular U contains no non trivial compact subgroup. We deduce :

THEOREM 4.7. A locally compact subgroup of Homeo (S') is a Lie group.

It would be interesting to prove this theorem by elementary means, i.e.
without the use of the Montgomery-Zippin theorem.

Consider a connected Lie group G acting continuously and faithfully on
the circle by a homomorphism ¢: G — Homeo(S!). Our objective is to
determine all such actions. Orbits of the action are connected, so they can be
of three kinds: the full circle, an open interval or a point. In other words,
there is a closed set F C S! (which might be empty) consisting of fixed points
| for the action, and the orbits which are not fixed points are the connected
§ components of S' — F. So, in order to understand the action, it is basically
| sufficient to understand it on each 1-dimensional orbit (homeomorphic to R
B or S!). Note that the action of G on one orbit is not necessarily faithful
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anymore but, taking the quotient by the kernel, we are led to study transitive
and faithful actions of a connected Lie group G on R or S!.

Denote by H the stabilizer of a point in such an orbit. This is a closed
subgroup of G, hence a Lie subgroup of codimension 1 and G acts smoothly
on the 1-dimensional manifold G/H. The Lie algebra & will therefore induce
a finite dimensional Lie algebra of smooth vector fields on G/H. Since G
acts transitively on G/H, for any point on G/H there is an element of this
Lie algebra which does not vanish at this point.

Consider the case of the projective action of PSL(2,R) on RP!. The
Lie algebra sl(2,R) is the algebra of 2 x 2 real matrices with trace O.
Taking the differential of the action at the identity, one easily checks that the
corresponding Lie algebra of vector fields is the algebra of vector fields of
the form u(x)0/0x where u is a polynomial of degree at most 2; thus we
get the following identification of algebras:

Cc —a

() esl2,R) — (b+2ax—cx2)(%.

Denote by Uect the Lie algebra of germs of smooth vector fields of R in
the neighbourhood of 0. The subspace Yect; of vector fields u(x)0/0x where
u vanishes at the origin together with its first & derivatives is an ideal in
Lect and the quotient Lie algebra Vect /Vect, can be identified, as a vector
space with the space 3 of vector fields of the form u(x)0/0x where u is a
polynomial of degree at most k.

Note however that 93, is a subalgebra of ect if and only if £k =0,1
or 2. One can therefore think of B¢, B, P, at the same time as subalgebras
of Yect and as quotient algebras of Wect.

The general situation was analyzed a long time ago by Lie, who found all
the possibilities [45]:

THEOREM 4.8 (Lie). Let & be a non trivial finite dimensional Lie algebra
consisting of germs of smooth vectors fields in the neighbourhood of 0 in R.
Assume that not all these vector fields vanish at the origin. Then the dimension
of & is at most 3. More precisely, in suitable coordinates & consists of all
germs of the form u(x)d/0x where u is a polynomial of degree less than or
equal to k for k=0,1 or 2.

Proof. Since one element of @& does not vanish at the origin, we
can find a suitable local coordinate x such that the germ of this ele-
ment is 0/0x. Let £ be the finite dimensional vector space of germs
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of functions u such that u(x)d/0x belongs to ®. Of course & con-
tains the constants and is stable under the operation of taking deriva-
tives, since the bracket [8/0x,u(x)0/0x] equals u'(x)0/0x. The succes-
sive iterates of the linear operator induced by the derivative must be lin-
early dependent. This shows that there exists a linear differential equa-
tion with constant coefficients which is satisfied by all elements in &.
It follows that all elements in & are real analytic functions. Every non
trivial element u# of & therefore has a convergent Taylor expansion of
 the form u(x) = ax' + ... with a; # 0. Moreover, this integer i Iis
- bounded since a solution of a linear differential equation with constant co-
efficients which vanishes at a point together with its derivatives of orders
- up to the degree of the equation has to vanish identically. Choose an ele-
" ment u for which the integer i is maximal. Now the algebra & contains
- [u(x)0/0x,u'(x)0/0x] = a;(x*=? 4+ ...)0/0x. Tt follows that 2i —2 < i, s0O
that i < 2.

For each element of &, consider the Taylor expansion of degree 2 of
 the associated vector field, considered as an element of P, =~ s1(2,R). This
- produces a linear map j,: & — B, which is clearly an algebra homomorphism
and which is injective by the previous argument.

If the image of j, is 1-dimensional, then & consists only of constant
multiples of 9/0x. In this case, G is (locally) isomorphic to R and the Lie
algebra of H is trivial, which means that H is discrete.

Suppose that the image of j, is 3-dimensional, i.e. that j, is an
isomorphism. Consider the element X = 0/0x of 93,. Note that the linear
operator ad®*(X): B, — P, is trivial. The vector field jz_l(X) does not
vanish at the origin so that we could have used it at the beginning when
we chose a local coordinate x. In other words, there is a local coordinate x
such that 9/0x belongs to & and such that the linear operator induced by
taking bracket with 0/0x is nilpotent of order 3. This means that the third
derivative of every element of £ vanishes. In suitable coordinates & coincides
with polynomial vector fields of degree at most 2. In this case, G is locally
isomorphic to SL(2,R) and H is locally isomorphic to the group of upper
triangular matrices.

Suppose finally that the image of j, is 2-dimensional. This means that
the Taylor expansion of order 1 is an isomorphism j;: & — 3; and one
can reproduce the above proof with the nilpotent operator of order 2 induced
by 0/0x. In this case, G is locally isomorphic to the 2-dimensional group
of upper triangular matrices in SL(2,R) and H 1is locally isomorphic to the
1 -dimensional subgroup of unipotent matrices. [
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This theorem gives a complete local description of transitive actions of a
Lie group. It is not difficult to deduce the complete classification of transitive
and faithful actions of connected Lie groups on 1-manifolds. Up to conjugacy,
the list is the following.

e The action of R on itself.
e The action of the circle R/AZ on itself (for A > 0).
e The action of the affine group Aff,(R) on R.

e The action of the k-fold cover PSL;(2,R) of PSL(2,R) on the circle,
described in Section 4 (for £ > 1).

e The action of the universal cover §I:(2, R) of SL(2,R) on the universal
cover of S!.

Loosely speaking, we could say that there are three geometries of finite type
on 1-manifolds: euclidean, affine and projective.

The full description of faithful non transitive actions of a connected Lie
group G on the circle is now easy in principle. We should choose a closed
set F C S! consisting of fixed points and for each connected component I
of the complement of F, the action is described by some surjection from G
to R, Aff_(R), PSLy(2,R) or SL(2,R).

As a trivial example, we get the description of topological flows on the
circle, i.e. of actions of R on the circle. If such a flow is transitive, it is
conjugate to the action of R on the circle R/A\Z for some A\ > 0 (the “period”
of the flow). If it is not transitive, it has a non empty set of fixed points
F C S! and the conjugacy class is completely described by the orientation:
on each component of S! — F, the flow is positive or negative.

Finally, we should describe the actions of non connected Lie groups G.
Let Gy be the connected component of the identity in G so that we already
understand the action of Gy. Observe that Gy is a normal subgroup of G so
that the action of G preserves F and permutes the connected components of
S! — F. It is not easy to fully analyze this situation but it is quite clear that
when Gy is non trivial, its normalizer is usually very small. We leave to the
reader the details of this analysis. Of course, when Gy 1is trivial, i.e. when
G is discrete, the previous discussion has no content. Hence among locally
compact groups acting on the circle, the most interesting ones are the discrete
groups.
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5. ROTATION NUMBERS

51 DYNAMICS OF A SINGLE HOMEOMORPHISM

The main invariant of homeomorphisms of the circle was introduced by
H. Poincaré (it is still very 1nterest1ng to read [59]).

Let us start with an element f of Homeo, (S!), i.e. a homeomorphism of
¥R which commutes with integral translations. Observe that if two pomts x,x'
in R differ by at most 1, the same is true for their images by f It follows
that for any two points x,x’, the two numbers f(x) —x and f(x) x' differ
§ by at most 1. Let us define T(f) f(O) f(O) 0. If f1 and f2 are two
 clements of Homeo, (81), we have T(F 75) = (F1(F2(0) ~f2(0)+(f2(0)~0)
so that ‘T( f f2) —T(f l) — T fz)‘ is bounded by 1. Let us formalize this
§ notion :

3§  DEFINITION 5.1. Let T be a group. A quasi-homomorphism from I' to
R is a map F: I' — R such that there is a constant D such that for every
£, 7 in T we have [F(yim) — Fln) = F(m)| <D.

The following is an easy exercise left to the reader.

| LEMMA 5.2. Let F: Z — R bea quasi-homomorphism. Then, there exists
a unique real number T such that the sequence F(n) —nt is bounded.

| As we shall see later, this lemma is far from being true if we replace the
§ group Z by a more general group I.
? Let us restrict the quasi-homomorphism 7T to the group generated by a
| homeomorphism f, i.e. let us consider the sequence T(fn). According to the
| lemma, there is a unique number 7(f) such that T(fn) —n7 is bounded. This
number T(f) is by definition the translation number of ]7 It follows from the
§ definition that if we compose f with an integral translation, the translation
B number increases by an integer. If we consider an element f in Homeo_ (S!),
| the translations numbers of its lifts in Homeo  (S') differ by integers so that
the element p(f) = T(f) mod Z € R/Z is well defined. This is called the
rotation number of the homeomorphism f.

These definitions show that 7 is a quasi-homomorphism from Homeo (S1)
to R and that it has been “normalized” so that it is a homomorphlsm on each

 one generator subgroup, i.e. we have 7(f n) — n7(f) for every f and every
integer 7.
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Of course, it is an easy matter to check that the translation number of
the translation by 7 in R is 7 and that the rotation number of the rotation
x € R/Z — x+p € R/Z of “angle” p on the circle is indeed p as it should be !

The next proposition is easy but is a justification for introducing these
numbers.

PROPOSITION 5.3. The translation number and the rotation number are
invariant under conjugation in Homeo, (S') and Homeo. (S!) respectively.

Proof. This follows formally from the fact that 7 is a quasi-homomorphism
and is a homomorphism on one generator groups. Indeed,

T(an) = n”r(f)

and
T(hf 7Y = r(FRTY) = nr(hf R

differ by a bounded amount, independent of 7, so that they must be equal.
This shows that the translation number is a conjugacy invariant. The assertion
concerning the rotation number follows immediately.  []

Let us give some universal characterization of the translation number.

PROPOSITION 5.4 ([4]). The translation number is the unique quasi-homo-
morphism 7: Homeo(S!) — R which is a homomorphism when restricted
to one generator groups and which takes the value 1 on the translation by 1.

Proof. An easy generalization of Lemma 5.2 shows that any quasi-
homomorphism Z?> — R differs from a homomorphism Z*> — R by a
bounded amount. This implies that if a quasi-homomorphism Z?> — R is a
homomorphism when restricted to one generator groups, it is a homomorphism
Z? — R (note that a bounded homomorphism is necessarily trivial).

Let ¢ be another quasi-homomorphism satisfying the conditions of the
proposition. It follows from our first observation that 7 is a homomorphism
when restricted to the (commutative) group generated by one element ]7 and
the integral translations. Consider now the difference r = 7 — ¢. Its value
on an element ]7 depends only on the projection of f in Homeo, (S1)
so that we get a quasi-homomorphism 7: Homeo,(S') — R which is a
homomorphism on one generator groups. We claim that 7 must be trivial,
This will follow from a property of Homeo . (S!) that we shall prove later
(see 5.11): any homeomorphism f in Homeo (S') can be written as a
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commutator [fi,2] = fifa fl_1 fz‘l. (In fact we only prove in 5.11 that
any homeomorphism is a product of two commutators but this is enough
for the proof which follows.) Assuming this result, we see that any quasi-
homomorphism from Homeo_ (S') has to be bounded. Indeed, up to a bounded
amount, the value of the quasi-homomorphism 7 on f = [fi,f2] is equal to the
sum of its values on fi, />, fl_l, f2_1 which is bounded (since 7(f;) + 7( fl‘l) is
bounded). Now, a bounded quasi-homomorphism which is a homomorphism
on one generator groups is trivial so that 7 is zero.  []

We mention a very interesting problem coming from [37]:

PROBLEM 5.5 (Jankins-Neumann). Let R C (R/Z)? be the set of triples
(p1, p2, p3) such that there exist three elements f1, fa, f3 of Homeo, (S!) such
that f1 > f3 = 1d and whose rotation numbers are (p1, p2, p3). Can one describe
this set R explicitly ?

. In [37], the authors show that R has a fractal structure. First, they explicitly
- describe the set Rg C (R/Z)* of triples (p1, p2, p3) such that there exist three
' elements fi, f>, f3 of some PSL;(2,R) such that fif,f; = Id and whose
rotation numbers are (pi, p2, p3). Of course, Ry C R and they conjecture that
. these two sets are equal. As a motivation for their conjecture, they find an
explicit set R; such that Rg C R C R; and such that R; — Ry is “small”:
1 the Lebesgue measure of R —R( 1s indeed 0.0010547... and the Lebesgue
' measure of Ry is 25/8+3((2)+3¢(3)—6((2)((3)/¢(5) ~ 0.224649208402 . . .
~ (where ( is the Riemann (-function). As Jankins and Neumann write, their
conjecture is therefore 99.9 % proved !

We shall show that the “number” p(f) contains a lot of information on the
topological dynamics of f. Let us begin by explaining the main possibilities
for the dynamics of an arbitrary group of homeomorphisms.

PROPOSITION 5.6. Let T" be any subgroup of Homeo,.(S!). Then there
are three mutually exclusive possibilities.

1) There is a finite orbit.

2) All orbits are dense.
3) There is a compact I'-invariant subset K C S' which is infinite and
. different from S' and such that the orbits of points in K are dense in K. This

set K is unique, contained in the closure of any orbit and is homeomorphic
to a Cantor set.
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Proof.” Let us consider the collection of compact sets in S' which are
non empty and I'-invariant, ordered by inclusion. By Zorn’s lemma, there is
a minimal set in this collection. Choose such a minimal set K. Note that the
closure of the orbit of any point in K is a closed non empty I'-invariant
set contained in K so that it must coincide with K by minimality: the orbit
of a point in K is dense in K. Observe now that the topological boundary
OK = K — interior(K) and the set K’ of accumulation points of K are closed
and I'-invariant. Hence, we have the following possibilities.

1) K’ is empty. In this case, K is finite and we found a finite orbit.

2) OK is empty, so that K is the full circle. In this case, all orbits are
dense.

3) K" =K and 0K = K, so that K is a compact perfect set in the circle
with empty interior: this is one definition of a Cantor set.

In order to prove the uniqueness of K in the last case, we show that K
i1s contained in the closure of any orbit. The complement of K in the circle
is a disjoint union of a countable family of open intervals. Let x be a point
in the complement of K, lying in some interval / and let a be the origin of
I (note that [ is oriented). Finally, let y be any point in K. Since we know
that the orbit of any point of K is dense in K and that K has no isolated
point, there is a sequence of elements -, such that -,(a) consists of distinct
points and converges to y. The intervals -y,(I) are therefore disjoint so that
the distance between -y,(a) and ,(x) converges to zero. It follows that -,(x)
converges to y. This proves that K is contained in the closure of every orbit
and the uniqueness of the minimal set K follows immediately. [

Case 3 looks strange at first sight: it is called the exceptional minimal
set case for this reason. We reduce it to case 2, using the notion of semi-
conjugacy. Consider a map h from R to R which is continuous, increasing
(if x <y then h(x) < h(y)) and which commutes with integral translations.
We stress the fact that & might be non injective : typically it might be constant
on some intervals. Such a map defines a map % from the circle to itself. We
call such a map an increasing continuous map of degree 1 from the circle to
itself.

DEFINITION 5.7. Let I" be a group and ¢, ¢, be two homomorphisms
from I' to Homeo,(S!). We say that ¢, is semi-conjugate to ¢, if there is
an increasing continuous map 4 of degree 1 from the circle to itself such that
for every v in I', we have ¢ (y)h = ho1(7).
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Observe that this notion is not symmetric: ¢, is not necessarily semi-
conjugate to ¢ .

PROPOSITION 5.8. Let I' be a group and ¢ be a homomorphism from I"
to Homeo (S') such that ¢(I') has an exceptional minimal set K. Then there
is a homomorphism ¢ from T to Homeo,(S') such that ¢ is semi-conjugate
to ¢ and (') has dense orbits on the circle.

Proof. The complement of K in the circle is a countable union of open
intervals. For each of these intervals, collapse its closure to a point. The
resulting quotient space is homeomorphic to a circle. In other words, there
is an increasing continuous map h of degree 1 from the circle to itself such
that A(K) = S' and such that the fibers A7 '(x) are either points or the
closed intervals which are the closures of the connected components of the
complement of K. Since ¢(I') acts on the circle and preserves K, it also
acts on the “collapsed” circle so that we can define another homomorphism
¢ which satisfies the conditions of the proposition (we know that orbits of
points in K are dense in K). [

The main object of these notes is to discuss the dynamics of “big groups”
I' acting on the circle. However, we first restrict ourselves to the ‘“easy”
case where I' is generated by one element so that we really study the
dynamics of one homeomorphism of the circle. Of course, we allow ourselves
to say that a homeomorphism f; is semi-conjugate to f, if the corresponding
homomorphisms from Z to Homeo,(S') are semi-conjugate. The following
result shows that the rotation number of a homeomorphism contains a lot of
information on the dynamics.

THEOREM 5.9 (Poincaré). Let f be an element of Homeo, (S'). Then
[ has a periodic orbit if and only if the rotation number p(f) is rational,
l.e. belongs to Q/Z. If the rotation number p(f) is irrational, then f is
semi-conjugate to the rotation on the circle of angle p(f) € R/Z. This
semi-conjugacy is actually a conjugacy if the orbits of f are dense.

Proof. Choose a lift f of f in Homeo . (S'). We know that the numbers
f (x) — n7( f) are umformly bounded (independently of n € Z). Define
h(x) sup, ( f (x) — n7( f)) The following properties of h are obvious :

1) h is 1ncreas1ng (it is left continuous but not necessarily continuous).

2) h(x+ 1) = h(x) + 1.

3) h(f(x)) = h(x) + 7(f).
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If h were continuous, that would lead to a semi-conjugacy between f
and the rotation by an angle 7( f) mod Z = p(f) € R/Z. The structure of
an increasing function like % from R to R is not difficult to analyze. First,
the fibers %_l(x) are either points or intervals. There is at most a countable
number of these intervals : call the union of the interior of these intervals the
plateau set Plat(h) of h; it is empty if and only if s injective. Second,
the image h(R) is the complement of the union of at most countably many
dlSJOlnt 1ntervals call the union of the 1nter10r of these intervals the jump set
Jump(h) of h; it is empty if and only if h is continuous and onto. In our
situation it is clear from 2 that Plat(h) and Jump(h) are open sets which are
invariant under integral translations, so that they define open sets in the circle.
Moreover, property 3 shows that Plat(h) 1s invariant under f and Jump(h) 18
invariant under the translation by 7( f) so that the corresponding open sets in
the circle are invariant under f and the rotation by an angle p(f) respectively.

We can now prove the theorem. Assume first that T(f) is irrational so
that all the orbits of the rotation of angle p(f) are dense. It follows that
Jump(h) has to be empty so that h defines a semi- -conjugacy between J and
the rotation by the angle p(f). If the orbits of f are dense, then Plaz‘(h) has
to be empty and h defines an actual conjugacy between f and the rotation.
Also, since a semi-conjugacy maps finite orbit to finite orbit, f cannot have
any periodic orbits in the case p(f) irrational.

Assume that T(f) is a rational number of the form p/q. The we know that
the element | defined by 7(x) fq — p has a vanishing translation number so
that the orbit of any point x in R under [ is bounded. The upper bound of
any orbit is a fixed point of 1. Since 1 projects to /7 in Homeo, (S'), we have
found a fixed point for f9, hence a periodic orbit for f. This establishes the
theorem. Note that in this last case, we showed something more : if p(f) = p /q
mod Z, then there is a periodic orbit whose “cyclic ordering” is the same
as a rotation of angle p/q. This means that there is a homeomorphism /4 in
Homeo (S') whose restriction to the periodic orbit is a conjugacy between
f and the rotation of angle p/q. [ |

We can now describe the dynamics of a homeomorphism f in Homeo (S!)
quite precisely.

Suppose first that p(f) is irrational: we have two possibilities.

1) If all orbits are dense, then f is conjugate to the rotation of angle p(f).

2) If there is an exceptional minimal set K C S' then f is semi-conjugate
to the rotation of angle p(f). The connected components of the complement
of K are wandering intervals, i.e. disjoint from all their iterates.




GROUPS ACTING ON THE CIRCLE 355

It is not difficult to construct examples of the second type. Start with an
irrational rotation of angle p on the circle and choose a (dense) orbit O C St.
Then “blow up” each point in O to replace it by an interval. In other words,
consider a continuous increasing map & of degree 1 such that h='(x) is an
interval if x is in © and a point otherwise. The complement of the interior of
these intervals is a Cantor set K. Then we construct a homeomorphism jf* of the
circle which preserves K. On K the homeomorphism f is uniquely defined
by the fact that & is a semi-conjugacy with the rotation. On the intervals
of the complement of K, there is still some freedom in the construction:
we choose any homeomorphism f which sends the interval h=l(x) to the
interval h~'(x 4+ p) for x in the orbit O@. The problem with this construction
is that it is not clear whether or not we might do it in such a way that the
corresponding homeomorphism f is smooth. Poincaré thought that there could
exist an example of type 2 for which f is a real analytic diffeomorphism [59]:
he was wrong, as shown later by Denjoy ! Again, we refrain from discussing
this point here since we decided to restrict these notes to topological problems.

Suppose now that p(f) is rational so that f has a periodic point. Replacing
f by one of its powers 9, we study the case where f has a fixed point. To
understand the dynamics of f, we have first to describe the set Fix(f) of fixed
points which can be an arbitrary compact set in the circle (so that it could
be rather complicated). Then, f induces a homeomorphism of each connected
component of the complement of Fix(f). On each component f can move
points “to the right” or “to the left” and this information is the only dynamical
information: it is easy to show that up to orientation preserving conjugacy,
there are two kinds of fixed point free homeomorphisms of an open interval,
those going to the right and to the left respectively.

Summing up, we have a complete description of conjugacy classes of
homeomorphisms of the circle. To give a complete list of invariants is possible
but not very pleasant: for instance in the case of vanishing rotation number,
we should describe a compact set up to homeomorphism and labels “left” or
“right” on each component of the complement.

As a corollary, we get a description of those elements of Homeo (S!)
which have the form ¢! for some topological flow ¢’ on the circle.

This follows immediately from our description of homeomorphisms and the
description that we gave earlier of topological flows.

PROPOSITION 5.10. An element f of Homeo (S') can be included in a
topological flow if and only if p(f) =0 or f is conjugate to a rotation.
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Note that it is possible to find elements S which are not included in flows
arbitrarily close to the identity.

We can now prove an important fact that we have already used in the
proof of the simplicity of Homeo, (S!).

PROPOSITION 5.11. Every element of Homeo, (S') can be written as a
product of two commutators.

Proof.  Consider a topological flow on the closed interval, i.e. a con-
tinuous homomorphism ¢ € R — ¢ € Homeo ([0, 1]). Assume that for
t > 0 the homeomorphism ¢’ satisfies ¢'(x) > x for x € 10, 1[. By the
previous discussion, all homeomorphisms ¢ with ¢+ > 0 are conjugate in
Homeo_ ([0, 1]). In particular, there is a homeomorphism [ in Homeo. ([0, 1])
such that [¢?I~! = ¢!. Tt follows that ¢! = ¢2(¢p!)~! = $*1(@*)~ 1. This
shows that ¢! is the commutator of ¢* and [. Since we know that every
homeomorphism of [0, 1] which fixes only O and 1 is conjugate to ¢' or
its inverse, it follows that any such homeomorphism can be written as a
commutator.

We described the dynamics of homeomorphisms with rotation number
0 € R/Z: in each connected component of the complement of their non
empty fixed point set, they are described by a homeomorphism of the closed
interval with no fixed point in the interior. Our discussion therefore implies
that every element of Homeo  (S!) with rotation number 0 can be written as
a commutator.

Consider finally an element f of Homeo, (S'). Clearly, one can choose a
rotation ry such that frg has a fixed point. In order to prove the proposition, it
is therefore enough to show that any rotation can be written as a commutator.
We show that this is indeed the case in PSL(2,R) using some hyperbolic
geometry (of course, we could also prove the same thing by direct calculations).

Let a, b, c,d be four points in the Poincaré disc whose hyperbolic distances
satisty dist(a,b) = dist(c,d) and dist(a,d) = dist(b,c). Let A (resp. B) be
the orientation preserving isometry of the Poincaré disc such that A(a) = b,
A(d) = c (resp. B(a) = d, B(b) = c). The commutator ABA~'B~! fixes
the point c: it is therefore a hyperbolic rotation centered at the point c.
Figure 5 shows that the angle of this rotation is equal to 27 minus the sum
of the angles of the quadrangle R = abcd which is equal to the area of this
quadrangle and can take any value between 0 and 27 since it is built out
of two hyperbolic triangles. Hence we may realize any rotation as a single
commutator. [
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FIGURE 5

It turns out that Proposition 5.11 can be improved: every element of

Homeo (S') can be written as a single commutator. This is a special case of
a result of [17] that we shall mention later in 6.2.

To conclude, we give some examples. Consider an element A of PSL(2, R)
as a homeomorphism of the circle. The topological dynamics of A are easy

- to describe. Note that since A is a 2 X 2 matrix up to sign, the absolute value
' of the trace of A is well defined. If |#r(A)| > 2, then A is called hyperbolic
- and has two fixed points on the circle. In this case, the rotation number of A
" is of course 0. If |tr(A)| = 2, then A is called parabolic and has only one
fixed point; its rotation number is again 0. Finally, if |[#r(A)| < 2, then A is
- called elliptic and is conjugate to (the equivalence class of) a rotation matrix
' by some angle 276 where 6§ € R/Z is such that 2cos(f) = |tr(A)|. In this
case, the rotation number is therefore cos™!(ir(A)/2)/2r.

Let us consider a finitely generated fuchsian group I' C PSL(2, R). Since

it is a discrete subgroup, any elliptic element in I" must be of finite order.

Assume that I' is torsion free. (A theorem of Selberg guarantees that any
finitely generated subgroup of a matrix group contains a finite index torsion
free subgroup.) Then any element of I" has rotation number equal to O.
However, there are many fuchsian groups exhibiting very rich dynamics, even

1 with dense orbits. These examples show that the data of all individual rotation
| numbers of the elements of a group acting on the circle is far from sufficient
| to describe the dynamics of the group. In other words, Theorem 5.9 cannot be

generalized so easily to groups more complicated than Z. In the next section,
we shall define a more subtle invariant suitable for bigger group actions, like
fuchsian groups.

Observe that our computations in PSL(2, R) show that the rotation number
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is a continuous function on PSL(2,R) but definitely not a smooth function.
On the group Homeo, (S'), we have the following behaviour :

PROPOSITION 5.12.  The map p: Homeo_ (S') — R/Z is continuous and
the pre-image of Q/Z contains an open and dense set. '

Proof. The continuity follows immediately from the definitions. Indeed,
the continuous function fNan(O) /n on H()/II\IG/()+(SI) differs at most by 1/n
from T(f). This implies the continuity of the translation number.

Suppose that f in H()/rﬁe/c>+ (S') is such that f(x) —x achieves both positive
and negative values. Then f has at least a fixed point and T(f) = 0. Since
this condition is obviously open in the uniform topology, we have found an
open set on which the translation number takes the value 0. In the same
manner, we construct open sets on which 7 takes the value p/q : the set of
those f for which fq(x) — X — p takes both positive and negative values.

We leave to the reader the (easy) proof that the set of ]7 for which T(f)
is rational is dense in Homeo, (S!). [J

The local structure of the map p is quite interesting as was shown by
a very nice example due to Arnold [1]. Consider the 2-parameter family of
elements of Homeo, (S') given by

~

So,e@®) = x+ a+ esin(2rx).

Here « is a real number and € is a real number which is small enough to
guarantee that f, . is a homeomorphism (|e| < 1 /2m is enough). We should

think of these f, . as a small deformation of the translation by «a depending
of the small parameter €. Let us look at the behaviour of T(faje) as a function
of o and €. Of course, we have T(fa’o) = a. We can check ‘rather easily

the following facts. For each ¢, the function o T(fa’e) is continuous and
increasing but is not strictly increasing for ¢ # 0. The plateau set of this
function is the complement of a Cantor set on which 7 takes irrational values.
The interior of the set of (o, €) on which 7 takes the rational value p/q is
an “Arnold tongue” which touches the axis € = 0 at the point (p/q,0). The
bigger the denominator g, the thinner the corresponding tongue.

Another interesting feature of this picture is that the Lebesgue measure
of the set of (a,¢€) for which 7 is irrational is not 0. Hence, the translation
number takes rational values on an open dense set but takes irrational values
on a set of positive Lebesgue measure.
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FIGURE 6

As an additional example, consider the case of piecewise linear homeo-
morphisms of the circle. Since the group PL_(S!) contains all rotations, it
is clear that the rotation number of such a homeomorphism can be arbitrary.
However, it is shown in [28] that the rotation number of any element of
the Thompson group G is rational and that any rational number is achieved.
The proof is very indirect and there is a need for a better proof. We could
formulate the problem in the following way.

PROBLEM 5.13. Consider a rational piecewise linear homeomorphism f
of the circle, i.e. such that all its slopes are rational and such that all “break-
points” are rational. Is it true that the rotation number of f is rational ?

We can in fact generalize Thompson’s group quite a lot in the following
way. Let A C R} be a subgroup of the multiplicative group of positive real
numbers and let W C R be an additive subgroup invariant under multiplication
by A. Then we can consider the subgroup GA w of PL+ (S1) consisting of those
elements with slopes in A and break-points in W (for instance, Thompson
group is the case when A consists of powers of 2 and W of dyadic rationals).
These groups are quite interesting especially when A is finitely generated
(see [8, 9, 63]). It would be very useful to understand the nature of translation
numbers of elements of éA,W for specific A and W.

In [34], one can find (among other things!) a very interesting analysis of
the rotation numbers of an explicit 1-parameter family of piecewise linear
homeomorphisms of the circle.

5.2 TITS’ ALTERNATIVE

Recall that J. Tits proved a remarkable alternative for finitely generated




360 . E. GHYS

subgroups I" of GL(n,C) (see [65]): either I" contains a non abelian free
subgroup or T contains a subgroup of finite index which is solvable. Such an
alternative does not hold for subgroups of Homeo, (S'). Indeed, we have seen
that the group PL, ([0, 1]) can be considered as a subgroup of Homeo, (S!)
and contains no free non abelian subgroup. The subgroup F of PL, ([0, 1])
consisting of elements whose slopes are powers of 2 and whose break-points
are dyadic rationals, is a finitely presented group and is certainly not virtually
solvable (since its first commutator subgroup is a simple group, see [28]).
However, answering a question of the author, Margulis recently proved the
following theorem [49] :

THEOREM 5.14 (Margulis). Let I" be a subgroup of Homeo_ (S'). At least
one of the following properties holds :

e I' contains a non abelian free subgroup.

o There is a probability measure on the circle which is T -invariant.

COROLLARY 5.15. Let T be a subgroup of Homeo. (S!) such that all
orbits are dense in the circle. Exactly one of the following properties holds :

o I contains a non abelian free subgroup.

o I is abelian and is conjugate to a group of rotations.

The corollary follows easily from the theorem. Indeed, if all T-orbits are
dense, any invariant probability must have full support and cannot have any
non trivial atom. Any such probability is the image of the Lebesgue measure
by some homeomorphism of the circle. Hence, up to some conjugacy, one
can assume that I' preserves the Lebesgue measure, i.e. consists of rotations.
Note however that the proof which follows will begin with a proof of the
corollary...

The proof of Margulis’ theorem is very elegant and we cannot refrain
from giving an account of it. Qur presentation is a variation (or maybe
a simplification ?) of Margulis’ original ideas. More precise results may be
found in the recent preprint [6]. We begin by recalling the “ping-pong” lemma,
which is the standard way of constructing free subgroups (see [31]). Suppose
a set X contains two disjoint non empty subsets A and A’. Let f,f’ be
two bijections of X which are such that for every n € Z \ {0}, we have
f"A) C A" and f"(A") C A. Then we claim that f and f’ generate a free
subgroup of the group of bijections of X. The proof is easy; consider a word

/ /
w(f,f) = fmf™ - f™f"™ with non zero exponents m;,m), except maybe
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the first one m; and the last one mj (if k =1, we assume that m; and m}
are not both zero...). We want to show that w(f,f’) represents a non trivial
bijection of X. This is clear if m; # 0 and m; = 0 (resp. m; =0 and mj, # 0)
since in this case we have w(f,f)(A) C A" (resp. w(f,f)(A") C A). In the
other cases, one can conjugate w(f,f’) by a suitable power of f or f to get
a new word which is in the previous form. This proves the ping-pong lemma.

In the case of the circle, the typical application of the ping-pong lemma
is the following. Let I,J,1I’,J’ be four closed intervals in the circle and let
| f.f' be two orientation preserving homeomorphisms of the circle. Assume the
following condition holds:

(PING-PONG) The four intervals I, J, I', J' are disjoint, f'(I) =
S!\ interior(J) and f(I') = S'\ interior(J').

Clearly, if one sets X =S8', A=I1UJ and A’ ="' UJ’, we are in the
situation of the ping-pong lemma and one can deduce from (PING-PONG) that
f and f’' generate a free subgroup of Homeo, (S').

In order to find free subgroups inside a given subgroup I'" of Homeo, (S'),
we shall try to locate such ping-pong situations.

Assume now that we are given a group I' such that the following two
properties hold:

(MINIMALITY) All I'-orbits are dense.

(STRONG EXPANSIVITY) There is a sequence of closed intervals I, in the
circle and a sequence -y, of elements of I' such that the length of I, tends to
zero as well as the length of the complementary intervals J, = S'\ int(y,(1,)).

Of course, using subsequences we can assume in (STRONG EXPANSIVITY)
that both endpoints of [, converge to some point x and that both endpoints
of J, converge to some point y. We can also assume that x # y, since
otherwise we could replace v, by 7y, where v is some element of I" such
that y = v(x) # x.

Choose some ~y in I'" such that X' = v(x) and y’ = ~(y) are both different
from x and y (exercise: show that such an element ~ exists!) and consider
the sequence -y, = v~ ',7. Of course, if we let I’ = ~(I,) (resp. J=~)),
the sequence of intervals I, (resp. J,) shrinks to x’ (resp. to y'). Clearly, if
n is big enough, the four intervals I = I,,J = J,,I'’ = I,J' = J' and the

n’

two homeomorphisms f = v,,f’ =+, satisfy (PING-PONG) and therefore +,
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and -, generate a free subgroup of I'. In other words, if (MINIMALITY) and
(STRONG EXPANSIVITY) hold, then T contains a free non abelian subgroup.

The minimality condition is not so restrictive: we saw earlier that any
action without a finite orbit is semi-conjugate to such a minimal action.
However, the strong expansivity condition is very restrictive. Let us introduce
the following weaker condition.

(EXPANSIVITY) There is a sequence of closed intervals I, and a sequence
of elements «y, of I" such that the length of I, tends to zero and the length
of v,(I,) is bounded away from zero.

Call a closed interval K in the circle contractible if there is a sequence of
elements «y, of I' such that the length of +,(K) tends to zero. It follows from
(EXPANSIVITY) that there exists a non trivial contractible interval. If moreover
the condition (MINIMALITY) is also satisfied, then every point of the circle
belongs to the interior of some contractible interval. So let us assume now
that (MINIMALITY) and (EXPANSIVITY) are satisfied.

For each point x in the circle, consider the set of points y such that the
interval [x,y] is contractible. Denote by 6(x) the least upper bound of those
points y (to be correct, one should lift everything to the universal cover). In
this way, we get a map 6 from the circle to itself. Note that obviously 6
commutes with all elements of I". Note also that # is monotone. We claim
that 6 is a homeomorphism. Indeed if it were not strictly monotone, the union
Plat(0) of the interiors of the intervals in which 6 is constant would be a
I'-invariant open set. By (MINIMALITY), this open set is empty unless 6 is
constant, but this is of course not possible since this constant would be fixed
by I'. In the same way, one shows that 6 is continuous, using the union
Jump(@) of the interiors of the “jump intervals” like in 3.2.

We now consider the rotation number of 6. If this rotation number is
irrational, then 6 has to be conjugate to an irrational rotation since otherwise
its unique invariant minimal set would be a non trivial I'-invariant compact
set. Since a homeomorphism which commutes with an irrational rotation is
itself a rotation, that would imply that I" is conjugate to a group of rotations.
This 1s in contradiction with (EXPANSIVITY).

Hence the rotation number of 6 is rational. The union of periodic points
of # is a non empty closed set which is I'-invariant. It follows that § is a
periodic homeomorphism.

Consider the quotient ! = §!/6 of the circle by the finite cyclic group
generated by 6. This is a (“shorter”) circle on which we have a natural action
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of T since, once again, I' commutes with 6.

We observe that this new group of homeomorphisms of a circle satisfies
(MINIMALITY) and (STRONG EXPANSIVITY). Minimality is obviously inherited
from the same property of I" on S!. As for (STRONG EXPANSIVITY), it suffices
to observe that any compact interval contained in [x, 8(x)[ is contractible, by
definition. This means that any compact interval in S!" is contractible and
this implies (STRONG EXPANSIVITY).

We have now proved that if (MINIMALITY) and (EXPANSIVITY) are both
satisfied, then the group T" must contain a free non abelian subgroup.

Now, let us look more closely at (EXPANSIVITY) and observe that the
negation of this property is nothing more than the equicontinuity property
of the group I'. If a group I' acts equicontinuously, then its closure in
Homeo, (S') is a compact group by Ascoli’s theorem. We analyzed compact
subgroups of Homeo, (S!) in 4.1: they turned out to be abelian and conjugate
to groups of rotations.

We have shown that if (MINIMALITY) holds then T is either abelian
or contains a free non abelian subgroup; in other words, we have proved
Corollary 5.15.

Proving Theorem 5.14 in full generality is now an easy matter. Let " be
any subgroup of Homeo, (S') and let us use the structure theorem 5.6-5.8. If
I' is minimal, we have already proved the theorem. If T" has a finite orbit, there
is a I'-invariant probability which is a finite sum of Dirac masses. Finally,
if there is an exceptional minimal set, the I'-action is semi-conjugate to a
minimal action. Applying our proof to this minimal action, we deduce that
I' contains a non abelian free subgroup unless the restriction of the action of
I' to the exceptional minimal set is abelian and is semi-conjugate to a group
of rotations. In this case, one finds a I'-invariant measure whose support is
the exceptional minimal set. This is the end of the proof of Theorem 5.14.

6. BOUNDED EULER CLASS

6.1 GROUP COHOMOLOGY

| Let us begin this section with some algebra. Let I" be any group. Let us
§ consider the (semi)-simplicial set EI" whose vertices are the elements of I
and for which n-simplices are all (n + 1)-tuples of elements of I". The ith
face of the simplex (yp,...,w) is (Y0, --+»i-..n) where the term -, is
i omitted. Note that the set ET" does not depend on the group structure of I.




364 E. GHYS

As a matter of fact, ET" is contractible since it is the full simplex over the
set I'. However, there is a simplicial free action of I" on ET induced by left
translations of I" on itself. Hence once could think of the quotient BI" of ET
by this action as a space whose fundamental group is I' and with vanishing
higher homotopy groups. One would like to define the cohomology of the
group I' as the cohomology of this quotient space BI'. We should be careful
with BI" since it has only one vertex (a group acts transitively on itself!).

However, guided by this idea, it is natural to define a k-cochain of T with
values in some abelian group A as a map ¢: I'*t! — A which is homogeneous,
i.e. such that c(yyo,yv1,--., %) = ¢(y0,71,--.,7) identically. The set of
these cochains is an abelian group denoted by CK¥(T",A). We have a natural
coboundary dj from C*T,A) to C*(T",A) defined by

k
dkC(')’O, <. 7,7k+1) - Z(—l)iC(’Y(), s 7:)/\i> R af)/k) .
i=0

Of course, we have dy.y10d; = 0 and we define the cohomology group H*(T, A)
as being the quotient of cocycles (i.e. the kernel of dj) by coboundaries (i.e.
the image of dy_;). If A is moreover a ring, then there is a natural cup
product from H*(I',A) x HYI',A) to H*YI',A). We refer to [11] for an
excellent account of this theory of group cohomology. Note that for any
homomorphism ¢ from a group I' to another group I, there is an induced
homomorphism ¢*: HYT', A) — H*T, A).

A homogeneous map c: I"*! — A can be written in a unique way in
the form c(v,...,%) = c(v, 171,71— T, ... 7’)’;:_11%) for a unique function
¢: T — A. Conversely, given a map ¢ there is a unique homogeneous map
c satisfying this relation. One says that ¢ is the inhomogeneous cochain
associated to c. In other words, the space C*(I',A) is canonically 1somorphic
to the A-module of all maps I* — A.

In degree 1, a cochain is a homogeneous map c¢: I? — A and the
corresponding inhomogeneous cochain is a map ¢: I' — A. It is interesting
to check that ¢ is a cocycle if and only if ¢ is a homomorphism. Moreover
O-cochains are constant maps from I' to A and their coboundary is therefore
0. It follows that for any group T', the cohomology H (T, A) is identified with
the set of homomorphisms from T to A.

In degree 2, the interpretation is quite interesting. Consider a central
extension of I" by A :
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This means that I" contains a subgroup isomorphic to A contained in its center
and that the quotient by this subgroup is isomorphic to T". Suppose that the
projection p has a section s which is a homomorphism from I' to I" such
that p os = Idr. Then it follows that T is isomorphic to the direct product
I' x A by the homomorphism sending (y,a) to s(v)i(a). Hence, in order to
measure the non triviality of an extension we try to find the “obstruction” to
finding a section s. This is done in the following way. Choose a set theoretical
section s from T to T'; this is possible since p is onto. If +; and -, are
two elements of I', consider ¢(yi,72) = s(vi72)” 's(y1)s(72). This element
projects on the identity element of I" under p since p is a homomorphism;
it 1s therefore an element of the image of i and can be identified with an
element of A. This defines amap ¢: I — A. Let c: I — A be the associated
homogeneous cochain. One checks that ¢ is a cocycle. Of course, the section
s is not unique but another choice s’ has the form s'(v) = s(7)i(u(vy)) for
some function u: I' — A. If one computes the cocycle ¢’ associated to this
new choice of a section s’, one finds that ¢’ — ¢ is the coboundary of the
1 -cochain associated to the map u. It follows that the cohomology class
of ¢ in H*(T',A) is well defined, i.e. does not depend on the choice of a
section. This cohomology class is called the Euler class of the extension under
consideration.
It is not difficult to check the following properties of the Euler class.

1) Two central extensions 1:1 and fz of A by I' are isomorphic by some
isomorphism which is the identity on the central subgroup A and inducing
the identity on the quotient I' if and only if they have the same Euler class
in HX(T,A).

2) Any class in H*(T,A) corresponds to a central extension.

In short, H*(T",A) parametrizes isomorphism classes of central extensions
of A by T.

Before coming back to the dynamics of groups acting on the circle, let us
consider a few simple examples.

If I' = Z, it is clear that every extension admits a section which is a
homomorphism: it suffices to choose arbitrarily s(1) in p~'(1) and to define
s(n) = s(1)" for n € Z. Hence, if ' = Z or more generally if " is a free
group, we have H*(T',A) = 0.

Let I'y be the fundamental group of a closed oriented surface of genus
g > 1. It has a presentation of the form

[y ={ay,bi,...,a4,b, | alblal_lb1 L. .agbga;lbg‘1 =1).
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Now consider the group l:g defined by the presentation

~

'y, = <z,a1,b1,...,ag,bg

—1;—1 —1—1
arbia; by .. .agbgag bg =z, za;=az, b= b,-z> .

The central subgroup A generated by z turns out to be infinite cyclic so that
[’y defines a central extension of I'y by Z, hence an Euler class in HZ(Fg, 7).
It is a fact that Hz(l“g,Z) 1s isomorphic with Z and that the element that
we have just constructed is a generator of this cohomology group. We shall
not prove this here but we note that this is related to the fact that a closed
oriented surface of genus g > 1 has a contractible universal cover and that
the cohomology of I'y can therefore be identified with the cohomology of
the compact oriented surface of genus g (see [11] for more details).

6.2 THE EULER CLASS OF A GROUP ACTION ON THE CIRCLE

We have already met a central extension related to groups of homeomor-
phisms
0 —7Z — H6ﬁ€o+(Sl) £, Homeo+(Sl) - 1,

The cohomology group H?(Homeo, (S!),Z) has been computed. It is isomor-
phic to Z and a generator is the Euler class of this central extension [50].

Consider now a homomorphism ¢ from some group I' to Homeo,(S!).
Then, we can pull back the previous extension by ¢. In other words, we
consider the set of (v,f) € I' x Homeo,(S') such that ¢(y) = p(f). This
1S a group r equipped with a canonical projection onto I whose kernel is
1somorphic to Z, i.e. I is a central extension of T by Z. In case ¢ is
injective, T is just the pre-image of ¢(I') under p, which is the group of lifts
of ¢(I'). The Euler class of this central extension of I' is called the Euler class
of the homomorphism ¢ and denoted by eu(¢) € H*(I',Z). It is obviously
a dynamical invariant in the sense that two conjugate homomorphisms ¢;
and ¢, have the same Euler class in H*(T',Z). Note that it follows from the
definition that eu(¢) is zero if and only if the homomorphism ¢ lifts to a
homomorphism ¢: I' — Homeo, (S') such that ¢ = p o ¢.

A few examples are in order. In the case of a single homeomorphism, i.e.
when I = Z, we saw that H*(Z,Z) = 0. Hence the Euler class vanishes and
our new invariant is very poor indeed: in particular, it does not detect the
rotation number. A similar phenomenon occurs when I' is free.

If T'y is the fundamental group of a closed oriented surface of genus
g > 1, we know that HZ(FQ,Z) is isomorphic to Z so that the Euler class
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eu(¢) in this case is an integer. In [S1], Milnor gives an algorithm to compute
this number. With the same notation as above, for each 1 <1 < g, choose
lifts a; and E of qb(al) and ¢(b;). Now compute the product of commutators
alblal 1b b agbga lb“1 Since this homeomorphism is a lift of the identity,
it is an 1ntegra1 translatlon This amplitude of this translation does not depend
on the choices made and is the Euler number eu(¢).

As an explicit example, also computed by Milnor, recall that any closed
orientable surface of genus g > 1 can be endowed with a riemannian metric
of constant negative curvature. Recall also that the Poincaré upper half space
H can be equipped with a metric of curvature —1 whose group of orientation
preserving isometries is precisely PSL(2, R). Moreover, any complete simply
connected riemannian surface of curvature —1 is isometric to . Hence
there are embeddings ¢ of the fundamental group I'y of a closed oriented
surface of genus ¢ > 1 in PSL(2,R) such that the corresponding action of
I', on H is free, proper and cocompact. Since we know that PSL(2,R) 1s a
subgroup of Homeo, (S'), we can compute the corresponding Euler number
eu(¢). The result of the computation is 2g — 2. Note that each element of
¢(T'y) is hyperbolic since the action is free and cocompact so that the rotation
number of every element of ¢(I'y) is 0. So we are in a situation in which
the topological invariant eu(¢) is not O but the rotation number invariants are
trivial ; a situation different from the case where I' = Z.

6.3 BOUNDED COHOMOLOGY AND THE MILNOR-WOOD INEQUALITY

It was observed very early that the Euler class of a homomorphism
¢: I' — Homeo,(S') cannot be arbitrary. Milnor and Wood proved the
following [51, 71].

THEOREM 6.1 (Milnor-Wood). Let I'y be the fundamental group of a
closed oriented surface of genus g > 1 and ¢: 1y — Homeo_(S') be any
homomorphism. Then the Euler number satisfies |eu(¢p)| < 2g — 2.

Proof. We shall not give a complete proof since this result will follow
from later considerations but we prove a weaker version. Keeping the previous
notation, we know that eu(qﬁ) is the translation number of the homeomor-
phism a1b1a1 b_ agb a_lb ' We also know that the translation num-
ber function 7 is a quasi- homonorphlsm i.e. there is some inequality of
the form |fr(f1f2)—7(f1)—'r(f2)} <D for some D. We also know that

~1 o
7(f ) = —7(f). So, if we evaluate 7 on this element, we get a bound
of the form |eu(¢p)| < (4g — 1)D. This is not quite the bound given in the
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theorem but this explains the idea of the proof: to get the exact bound, one
should be a little bit more clever! [

In [17], Eisenbud, Hirsch and Neumann gave a much more precise result
that we would like to mention here. If f 1s an element of HomeoJr (Sl) define

m(f) = mf(f(x) x) and 7(f) = sup(f(x)—x). Note that m(f) < r(f) < m(f)
and 0 < m(f) — m(f) < 1.

THEOREM 6.2 (Eisenbud, Hirsch, Neumann). An element f of the group
Homeo+(Sl) can be written as a product of g > 1 commutators if and only

zj”m(f)<29—1 and 1—Zg<m(f)

Any element of Homeo+(S ) has at least one lift f in Homeo,(S') such
that —1 < m( f) < m(f) <1 so that it can be written as one commutator. It
follows that every element of Homeo, (S') can be written as a commutator.
We mentioned this fact earlier.

In [25], we put these inequalities in the context of bounded cohomology,
which was introduced by Gromov (see [30] for many geometrical motivations).
Consider again an abstract group I' and let A = Z or R. Then define a
bounded k-cochain as a bounded homogeneous map from I'**' to A. This
defines a sub A-module of CKT,A) denoted by C’g(F,A). It is clear that
the coboundary dy of a bounded k-cochain is a bounded (k + 1)-cochain
so that we can define the cohomology of this new differential complex, that
is called the bounded cohomology of T with coefficients in A and denoted
by Hj(I',A). We have obvious maps from HI,A) to HT,A) obtained
by “forgetting” that a cocycle is bounded. In general these maps are neither
injective nor surjective. See [35, 36] for a detailed algebraic background on
this cohomology.

The degree 1 case is trivial. A cocycle is given by a bounded homomor-
phism from I"' to A and is therefore trivial. Hence H;(F,A) = 0 for any
group I'.

The degree 2 case is the most interesting for us. Let us look first at
Hg(Z, R). Consider a bounded 2-cocycle ¢ on Z with values in R. Since we
know that H*(Z,R) = 0, we know that ¢ is the coboundary of a 1-cochain
of the form u(ni,n;) = u(n; — ny) for some function #: Z — R. The fact
that ¢ is bounded means precisely that % is a quasi-homomorphism from
Z to R. We know that this implies the existence of a real number T such
that u(n) — nT is bounded. Now, if we define T(n) = u(n) — nr, then the
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coboundary of the bounded 1-cochain v(ny, ny) = B(ny — np) is c¢. We have
shown that H2(Z,R) = 0.

For a general group T, let us define QM(T) as being the vector space
of quasi-homomorphisms from I' to R. Say that a quasi-homomorphism is
trivial if it differs from some homomorphism by a bounded amount. It follows
from the definitions and the previous argument that the kernel of the map from
HXI,R) to HXT,R) is precisely the quotient of OM(T) by the subspace
of trivial quasi-homomorphisms. This gives some intuition about the group
HAT,R).

Let us compute now some examples with coefficients in Z. Start with
H%(Z,Z). Iet ¢ be a bounded integral 2-cocycle. We know that it is the
coboundary of a 1-cochain of the form wu(ni,ny) = u(ny — np) for some
function #: Z — Z. Again, we know that there is a real number 7 such that
#(n) — nt is bounded but if we define T(n) = u(n) — n7 the 1-cochain v is
not integral unless 7 is an integer ! For each real number 7, define ¢, to be
the coboundary of the integral 1-cochain v,(ny,n2) = [(n1 — ny)T] where []
denotes the integral part of a real number. It is clear that ¢, is bounded (by
1) and our previous computations show that every bounded integral 2-cocycle
in Z is cohomologous to some ¢, for some 7. Moreover, it is clear that ¢,
and c,, define the same element in H%(Z,Z) if and only if 7 — 7 1is an
integer. Summing up, we showed that H}(Z,Z) is isomorphic to R/Z. We
hope that the reader will recognize that the rotation number is showing up...

As a matter of fact, the argument that we presented is more general and
shows immediately that for any group I', the kernel of the map from H:(T,Z)
to H2(T', R) is precisely the quotient H'(T', R)/H'(T', Z). (Recall that H NT, A)
is the set of homomorphisms from I" to A.)

We now come to the construction of an invariant of a group action on the
circle that combines the rotation numbers and the Euler class. Let us look
again at the central extension

0 —s Z — Homeo.(S') — Homeo,(S') — 1

and let us try to find some 2-cocycle representing its Euler class (see also [38]).
We know that we should choose a set theoretical section s to p. It turns out
that there is a natural choice of such a section. Indeed, let f € Homeo (S'),
then among the elements in p~I(f) € H5ﬁ€0+(81), there is only one, denoted
by o(f), which is such that o(f)(0) lies in the interval [0, 1[C R. This o
will be our preferred section. Let us try to evaluate the associated 2-cocycle
¢ on Homeo_ (S!). By definition the associated inhomogeneous cocycle T is:

c(fi,f) = o(fif) " o(fi)o(f).




370 - - E. GHYS

The main (easy) observation is that the cocycle ¢ is bounded. More precisely :

LEMMA 6.3. The 2-cocycle c takes only the two values 0 and 1.

Proof. By definition o(£,)(0) is in [0, 1[. It follows that o(f;)(c(£)(0))
is in the interval [o(f;)(0), o(f)(0) + 1[ which is contained in [0,2]. We
know that o(fif;) and o(fi)o(f,) are lifts of the same element fif> and that
o(f1f2)(0) is in [0, 1[. It follows that o(fif2) "'o(fi)o(f) is the translation
by Oor 1. [J

Hence, for this choice of section o, the associated 2-cocycle ¢ is bounded
and integral. Thus, we have defined an element of H?(Homeo. (S'),Z) that
we call the bounded Euler class. It may seem that the definition depends on
the choice of the origin 0 on the line but the reader will easily check that a
modification of the origin would change the section o by a bounded amount
so that the bounded integral cohomology class is indeed well defined. If we
have a homomorphism ¢ from a group I" to Homeo, (S!) we can pull back
this bounded Euler class. We get an element in Hg(l", 7)) that we still denote
by eu(¢) and that we call the bounded Euler class of the homomorphism ¢. In
case I' = Z, it should now be clear that the corresponding bounded Euler class
in H,%(Z, Z) = R/Z is exactly the rotation number of the homeomorphism
¢(1). Hence we have proved the following :

THEOREM 6.4 ([25]). There is a class eu in H,f(HomeoJr(Sl),Z) such
that :

1) For every homomorphism ¢: T — Homeo,(S') the image of
o*(eu) € Hg(l’, Z) in H*(I',Z) under the canonical map is the Euler class.

2) If ¢: Z — Homeo(S") is a homomorphism then ¢*(eu) € HX(Z,Z) =
R/Z is the rotation number of ¢(1).

3) ¢*(ew) is a topological invariant, i.e. if ¢1 and ¢, are two homo-
morphisms from T to Homeo,(S') which are conjugate by an orientation
preserving homeomorphism, then ¢} (eu) = ¢3(eu) in HX(T,Z).

In other words, the bounded Euler class is a topological invariant which
combines the Euler class and the rotation number.

We now show that this new invariant for a group action is as powerful as
the rotation number was for a single homeomorphism. Let us begin by the
most interesting case.
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THEOREM 6.5 ([25]). Let ¢1,¢o two homomorphisms from a group 1" to
Homeo (S!) such that all orbits are dense on the circle. Assume that the
bounded Euler classes are equal: ¢i(eu) = ¢5(eu). Then ¢ and ¢, are
conjugate by an orientation preserving homeomorphism.

Proof. This is very similar to the corresponding statement for rotation
numbers: compare with the proof of 5.9. Since ¢j(eu) = ¢5(eu) then in
particular the Euler classes in H?*(I',Z) are equal, which means that ¢,
and ¢, define the same central extension . In other words, there is a
central extension 0 — Z — I 5T — 1 and homomorphisms gbl and
qbz from T to Homeo. (S') such that ¢1 and gbl map the generator 1
of Z on the translation by 1 and such that the induced homomorphisms
from T/Z ~ T to Homeo,(S')/Z ~ Homeo.(S!) are ¢; and ¢,. The
assumption that the bounded classes agree means in fact that we can choose
those homomorphisms in such a way that for each x in R, the points
1M Pa(F)1(x) are bounded independently of 5 in I'. We now define
Z(x) to be the upper bound of this bounded set. This map R is increasing,
commutes with integral translations, and conjugates 51 and %2. The jump
and plateau sets of h are open sets invariant under ;51 (IN“) and &Fz(f)
respectively. By our assumption these open sets are empty so that his a
homeomorphism which induces a conjugacy between ¢; and ¢,. For more
details, see [25]. [

In case the group ¢(I") does not have all its orbits dense, we saw in 5.6
that there are two possibilities: ¢(I") can have a finite orbit or ¢(I") can have
an exceptional minimal set. In the second case, we also saw that there is a
canonical way of “collapsing” the connected components of the complement of
the exceptional minimal set to construct another homomorphism ¢ which has
all its orbits dense: this is the associated “minimal” homomorphism (see 5.8).

Suppose now that ¢(I') has a finite orbit consisting of k elements. Then,
every element of ¢(I') must permute these k points cyclically so that we
get a homomorphism r: I' — Z/kZ. Tt is clear that two finite orbits of ¢(I)
have the same number of points and define the same r: we call this r the
cyclic structure of the finite orbits. Conversely, consider a homomorphism
r:I' — Z/kZ and the corresponding action on the circle by rotations of
order k. The bounded Euler class of this action is an element of Hg(r, Z):
we call these elements the rational elements in H,f(F, 7). It is not difficult

to see that an element in H,f(F, Z) is rational if and only if its pull-back on
some finite index subgroup is trivial.
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Now, we can state the general result which is the exact analogue of what
has been done in 5.9 for the rotation number. We don’t give the proof: it can be
found in [25] (in a slightly different terminology and with small mistakes...),
but the reader should now be in a condition to fill in the missing details by
himself.

THEOREM 6.6 ([25]). Let ¢1,¢2 two homomorphisms from a group T to
Homeo  (SY). Assume that the bounded Euler classes ¢1(eu) = ¢5(eu) are
equal to the same class ¢ in HX(T',Z).

1) If ¢ is a rational class, then ¢(I') and ¢>(I') have finite orbits with
the same cyclic structure.

2) If ¢ is not rational, then the associated minimal homomorphisms ¢,
and ¢, are conjugate.

Conversely, if ¢1(I') and ¢o(I') have finite orbits of the same cyclic
Structure or if they have no finite orbit and their associated minimal
homomorphisms are conjugate (by an orientation preserving homeomorphism),
then they have the same bounded Euler class.

Note in particular that the bounded Euler class of an action vanishes if
and only if there is a point on the circle which is fixed by all the elements
of the group.

6.4 EXPLICIT BOUNDS ON THE EULER CLASS

Since we know that the bounded Euler class of an action contains almost
all the topological information, it is very natural to try to determine the part
of Hg(l“, Z) which corresponds to the bounded Euler classes of all actions
of T on the circle. In the case T = Z, we know that HXZ,Z) = R/Z
and that every class corresponds to an action (by rotations). However, in the
case where I' is the fundamental group of a closed oriented surface of genus
g > 1, the Milnor-Wood inequality shows that even the usual Euler class in
H*(T',Z) = Z has to satisfy some inequality.

E Given a bounded cochain ¢ in C{(T',R), we define its norm ||c|| as the
supremum of the absolute value of c(vy,...,%). Then we define the “norm”
of a bounded cohomology class with real coefficients as the infimum of the
norms of cocycles that represent it. We should be aware of the fact that this
norm is not really a norm but is merely a semi-norm: a non zero class might
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have zero norm... Consider the case of the bounded Euler class, seen in the
real bounded cohomology.

THEOREM 6.7. The image of the bounded Euler class eu in the real
bounded cohomology H,%(HomeoJr(Sl),R) has norm 1/2.

Proof. This is the abstract version of the Milnor-Wood inequality. Note
that a constant 2-cocycle is the coboundary of a constant 1-cochain. We
found a representative of the Euler class taking only two values 0 and 1.
If we subtract from this cocycle the constant cocycle taking the value
1/2, we get a cohomologous bounded (real) cocycle taking values =+1 f2.
This shows that the norm of the image of eu in Hg(Homeo+(Sl),R)
is at most 1/2. The opposite inequality follows from Milnor’s compu-
tation of the Euler number for an embedding of the fundamental group
I, of a closed oriented surface as a discrete cocompact subgroup of
PSL(2,R) that we mentioned in 6.1. If the norm were strictly less than
1/2, then this number would be strictly less than 2g — 2. See [25] for more
explanations. [

6.5 ACTIONS ON THE REAL LINE AND ORDERINGS

Our main concern is to study actions on the circle but there is a preliminary
question which deals with actions on the line. Of course, if a group acts on
the line, we can always add a point at infinity to produce an action on the
circle (with a common fixed point). In other words studying actions on the
line is equivalent to studying actions on the circle with vanishing bounded
Euler class. This is the reason why we begin by general remarks on groups
acting on the line.

Observe first that the dynamics of a single orientation preserving homeo-
morphism A of R are very easy to describe. Let F = Fix(h) be the set of
fixed points. Each interval of the complement of F is h-invariant and the
action of A on this interval is conjugate to a translation (positive or negative,
according to the sign of h(x) — x on this interval).

We say that a group I' is left orderable if there exists a fotal ordering < on
I' which is invariant under left translations (i.e. v; = v, implies yvy; < vy2).
We write v; < 72 if 71 =12 and v; # 2. An obvious necessary condition
for a group to be left orderable is that it be torsion free (i.e. there is no non
trivial element of finite order).

The following theorem is well known but we weren’t able to find its origin
in the literature.
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THEOREM 6.8. Let T' be a countable group. Then the following are
equivalent :

1) T' acts faithfully on the real line by orientation preserving homeomor-
phisms.

2) I' is left orderable.

Proof. Suppose that I" acts faithfully on the line by orientation preserving
homeomorphisms, i.e. that there exists an injective homomorphism ¢ from
I' into the group Homeo (R) of orientation preserving homeomorphisms of
the real line. Assume first that there is a point x; in R with trivial stabilizer.
Then we can define a left invariant total ordering by defining v, < v, if
d(y1)(x0) < () (xg). If there is no such point x, choose a sequence of
points (x;);exy Which is dense in the line. Now define Y1 27 if vy =5 orif

the first i for which ¢(v1)(x:;) # ¢(12)(x;) is such that ¢(1)(x) < ¢(v2)(x;).
This defines a left invariant total order on T.

Conversely, let < be a left invariant total order on the countable group I.
Enumerate the elements of T, i.e., choose a bijection i € N+ v, € I'. We are
going to construct inductively an increasing injection v of (I, <) in R, ).
Define wv(vo) arbitrarily and suppose that v(yp), ... , V(7;) have been defined.
If iy is smaller (resp. bigger) than all ~y,...,v; then define v(7Yi+1) as
any real number smaller (resp. bigger) than min(v(vy),. .. (7)) — 1 (resp.
max(v(Y), - - -, v(7;)) + 1). Otherwise, there is a pair of integers 0 < o, B8 < i
such that v, < 41 < 3 and such that there is no v (0 <j <i) between
Yo and yg. Then we define v(viy1) as (v(va) +v(y5))/2. Let X C R be the
closure of v(I").

By our construction, it is easy to verify that X is unbounded and that
any connected component ]a,b[ of the complement of X is such that a
and b are in v(I'). The group T' acts on itself by left translations so
that every element v of I' induces an increasing bijection #(v) of w(I).
We claim that ¢(y) extends continuously to X. Otherwise, there would
exist a point x = lim,v(y;,) = lim,v(y; ) for an increasing sequence of
elements ;, and a decreasing sequence ; and such that lim, v(yy,) <
lim,, v(yy;,). Then a = lim,v(yy;) and b = lim,, v(yy,,) would be the
endpoints of some connected component of the complement of X. By
our previous observation, a and b would be the image by v of two
distinct elements of I'. On multiplying these two elements on the left
by 7!, this would produce two distinct elements ~_ and ¥+ such that
v(y;,) < v(y-) < v(y+) <wv(y,) and this contradicts the fact that the two
sequences have the same limit x.
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Therefore we have produced a homeomorphism ¢(vy) of X . We now extend
¢(7) to the whole line R in such a way that ¢(v) is affine on each interval
of the complement of X. It is now clear that ¢ is an injective homomorphism
from I to the group of orientation preserving homeomorphisms of the real
line. [

Theorem 6.8 produces many examples of actions on the real line. For
instance, suppose I' is a countable group containing a nested sequence of
subgroups ' =Ty D Iy D --- D I; D ... (finite or infinite) such that the
intersection of this family reduces to the trivial element and that each T}
is a normal subgroup in the previous one I';_;. Assume that each quotient
Q; = T;/Ti_y is left orderable and denote by =; such a left order on Q;.
Let us construct a left order < on I'. Consider two distinct elements -y,
in T and let i be the first integer such that vy'~' is not in I';. Then !+
is in T;_; and determines an element [y~ !7'] of Q;. Then define v <~/ if
[Y~'~4'] =; 1. This is a left invariant total order on T .

As an example, note that a countable torsion free abelian group A embeds
in the tensor product A ® Q which is a Q-vector space whose dimension is
at most countable and therefore embeds in R. Hence, countable torsion free
abelian groups are orderable. Let us say that a group I' is solvable (resp.
residually solvable) if there is a finite (resp. infinite) decreasing sequence of
subgroups as in the previous paragraph such that the quotient groups Q; are
abelian. We have now proved:

PROPOSITION 6.9. Let I" be a countable group which is (residually)
solvable with torsion free abelian quotients. Then T acts faithfully on the
real line by orientation preserving homeomorphisms.

There are many examples of such groups: free groups or fundamental
groups of closed orientable surfaces for instance have these properties [46].
Observe that the left orderings that we produced by the previous argument
are in fact left and right invariant orderings. If we go back to the proof of
Theorem 6.8 we can check that for bi-invariant ordered groups, the actions on
the line ¢: I' — Homeo (R) produced by the proof are very peculiar: they
are such that for every non trivial v € I', we have either ¢(v)(x) < x for
all x € R or ¢(y)(x) > x for all x. In other words the graphs of ¢() don’t
cross the diagonal. However, there will be elements whose graphs touch the
diagonals, unless of course the action is free, which is almost never the case
because of the following well known theorem of Holder.
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THEOREM 6.10 (Holder). If a group acts freely on the real line by
homeomorphisms, it is abelian. More precisely, such a group embeds as
a subgroup of R and the action is semi-conjugate to a group of translations.
In the same way, a group acting freely on the circle is abelian, embeds in
SO(2), and is semi-conjugate to a group of rotations.

Proof. Let ¢: T — Homeo  (R) be a homomorphism such that for all y
different from the identity the homeomorphism ¢(y) has no fixed point. If
7,7 are elements of T', write v =2 if $(y)(0) < ¢(+')(0) (which implies
P(7)(x) < d(y")(x) for all x since the action 1s free). This defines a left and
right invariant ordering < which is archimedean, i.e. such that for any pair of
non trivial elements ~,~" for which id < v and id < 7', there is a positive
integer n such that 7/ < ~". Indeed, the sequence ¢(7)"(0) is increasing and
has to tend to oo since otherwise its limit would be a fixed point of @(v);
hence for n sufficiently large we have ¢(v/)(0) < ?(v™")(0).

Then we show that any group T’ equipped with a bi-invariant total
archimedean ordering embeds in R and is therefore abelian. Fix a non trivial
element vy such that id < ~, and for each v € I', define ®(y) as the smallest
integer k € Z such that v < 7%. We have

D(y)—1 D(y)

This defines a map ®: I’ — Z which satisfies
DY)+ P(Y) — 1 < D(vy') < D(y) + D(y')

so that @ is a quasi-homomorphism. As we have already observed, ¢(v) =
lim,,_, ., ®(v")/n exists and defines a quasi-homomorphism ¢: I' — R which
is homogeneous (i.e. ¢(y") = no(v)) and which is increasing (i.e. v < +/
implies ¢(y) < ¢(y')). Note that ¢(vp) = 1.

We claim that ¢ is a group homomorphism. Indeed, consider two elements
7,7" in T and assume for instance that vy =< 4'~. It follows easily by
induction that for every positive integer n, we have e e N (0 L
Evaluating @ on this inequality, we get

DY) + D(Y") — 1 < (7)) < O(y") + D(y™) .

Dividing by n and taking the limit, we obtain
PN+ (V) < 6(vy) < 9(9) + B(v)

so that ¢ is indeed a homomorphism.
We still have to show that ¢ is injective. For any -y such that id < v we
know, since the ordering is archimedean, that there is some positive integer k
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such that vy < +*. It follows that 1 < k¢(y) so that ¢(7) is non trivial. This
proves the injectivity of ¢.

Observe that the non decreasing embedding ¢ of I" in R is unique up to
a multiplicative constant. Indeed, if ¢’ is another one, we have by definition
(D(™)— 1) (70) < ¢'(4") < D(v)P' (o). Dividing by n and taking the limit,
we get ¢' = ¢'(70)-¢.

We now show that the action of I' is semi-conjugate to a group of
translations. If T' is isomorphic to Z, it acts freely and properly on the line
so that it is indeed conjugate to the group of integral translations. Otherwise,
&) is dense in R. Let x be any point in R and define

h(x) = sup{p(y) € R | ¥(0) < x}.

Clearly, & is non decreasing and satisfies A(y(x)) = h(x) + ¢(vy) identically.
The continuity of & is easy and follows from the density of the group ¢(I):
if & were not continuous, the interior of R\ A(R) would be a non empty
open set invariant by all translations in ¢(I").

The proof for groups acting on the circle follows easily: if I" is a group
acting freely on the circle, its inverse image in Homeo. (S') acts freely on
the line. [

The following is an elementary corollary of the previous theorem.

PROPOSITION 6.11. Let 1" be a torsion group (i.e. such that every element
in T has finite order). Then any homomorphism from T to Homeo, (S') has
abelian image.

Proof. We know the structure of elements of finite order of Homeo, (S!) :
they are conjugate to rotations of finite order. It follows that an element having
a fixed point and of finite order in Homeo_ (S') is the identity. In other words,

a torsion group acting faithfully on the circle acts freely. The result follows
from 6.10. [

There is another very interesting example of a group which admits a
left and right invariant total ordering: the group PL_ ([0, 1]) of orientation
preserving piecewise linear homeomorphisms of the interval [0, 1]. Indeed,
let v,+" be two distinct elements of PL_ ([0, 1]) and consider the largest real
number x € [0, 1] such that v and ' coincide on the interval [0,x]. Then
for € > 0 small enough, we have either ~(¢) < 7/'(t) for ¢ € Jx,x + €] or
¥(t) > +'(¢) for t € Ix,x + €]. Say that v <+ in the first case and +' < « in
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the second case. This defines a total ordering on PL, ([0, 1]) and it is clearly
left and right invariant. We can induce this ordering on countable subgroups
of PL, ([0, 1]), for instance the subgroup of elements with rational slopes and
apply the general construction that we described above. We get an action of
this rational group on the line which is very different from the given action
of PL([0,1]) on ]0,1[: the corresponding graphs don’t cross the diagonal.

Remark that an affine bijection of the line x — ax-b has at most one fixed
point (if it is not the identity). Solodov proved that this property essentially
characterizes groups of affine transformations.

THEOREM 6.12 (Solodov). Let T be a non abelian subgroup of
Homeo (R) such that every element (different from the identity) has at most
one fixed point. Then T is isomorphic to a subgroup of the affine group
At (R) of the real line, and the action of T on the line is semi-conjugate
to the corresponding affine action.

Solodov did not publish a proof but mentions his result in [62] and
explained it to the author of these notes in 1991. Later T. Barbot needed this
theorem for his study of Anosov flows and published a proof in [3]. More
recently, N. Kovacevi¢ published an independent proof in [43]. See also the
recent preprint [20] for a detailed proof.

Proof. Let I' be a subgroup of Homeo, (R) such that every element
(different from the identity) has at most one fixed point. If no non trivial
element has a fixed point, Holder’s Theorem 6.10 implies that T is abelian
(and that the action is semi-conjugate to a group of translations). If there is a
point x which is fixed by the full group T", then one can restrict the action
to the two components of R\ {x} on which we can use Holder’s theorem
again: this would imply that I" is abelian. :

We claim that T contains an element -y with a repulsive fixed point x,
i.e. such that ~(y) >y for every y > x and v(y) <y for every y < x. Indeed
choose some non trivial v in I' fixing some xo. If xy is not repulsive for
Y and for -y, !, this means that x, is a parabolic fixed point, i.e. replacing
Yo by its inverse, we have 7o(y) >y for all y # xq. Conjugating Yo by some
element which does not fix xy, we get an element v fixing some x; and
such that ~(y) > y for y # x;. Assume for instance x; < x; and consider
the element v = vy, L Obviously, one has v(xp) < xo and ~y(x;) > x; and
since we know that  has at most one fixed point, v must have a repulsive
fixed point between xy and x; as we claimed.
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Now, we can try to mimic the proof of Holder’s theorem. Consider two
elements v and v of I'. Write v < +/ if there is some x € R such that
v(y) < 4/(y) for all y > x. Clearly, our assumptions imply that this defines
a total ordering on I' which is left and right-invariant. Denote by I't the
subset of elements of I'\ {id} such that id < .

The next claim is a weak form of the archimedean property. Fix some g
in T with a repulsive fixed point xy, and let v be any other element of Tt .
Then there exists some positive integer k such that vy =< ~&. Indeed, choose
some real numbers x_,x; such that x_ < xop < x,. For k big enough, one
has E(x_) < y(x_) and ~(x;) > y(xy) since xo is repulsive. It follows

B that v~ !4f has a fixed point in the interval [x_,x,] which is therefore the

unique fixed point of y~!~&. Hence we have ~£(y) > v~ !(y) for all y > x
and v < ~&. This proves our last claim.

Again, we fix some ~ in I'" with a repulsive fixed point xq. For each
v €T we define ®(y) € N to be the smallest integer k such that v < v,
B If v T, we let D(y) = —B(y~!) and finally we define ®(id) = 0. This
| defines a map ®: ' — Z. Then we can copy from the proof of Holder’s
B theorem: @ is a quasi-homomorphism and the limit d(y) = lim,—, 00 D(v") /1
exists and defines a group homomorphism ¢: I' — R.

It follows in particular that the first commutator group [I', I'] is contained in
the kernel of ¢. The final observation is that this kernel acts freely on the line.
Otherwise, we saw that Ker(¢) would contain some element -y with a repulsive
| fixed point and we have already observed that this implies the existence of
@ some integer k such that vy < +* which in turn implies that ¢() > 1 /k#£0,
| a contradiction. Using Holder’s theorem, we conclude that [I',T'] is abelian.
We know the structure of free actions (of abelian groups) on the line: they
| are semi-conjugate to translation groups. More precisely, we know that there

B is amap 2: R — R and an injective homomorphism : [I',T] — R which

are such that for every v € [I',I'] and x € R, one has: h(y(x)) = h(x)+ (7).
| If the image ([I',T']) is non discrete, this map & is unique up to post-
| composition by an affine map. So assume first that ([T, T']) is non discrete.
Note that [I',I] is a normal subgroup of I'. It follows that for every -y
i in T", the map h o+ coincides with 2 up to some affine map. This means
precisely that 4 realizes a semi-conjugacy between I" and some group of affine
transformations of R and shows that I" is indeed isomorphic to a subgroup
of Aff(R). To finish the proof, we still have to show that Y([I',T']) cannot be
discrete, i.e. isomorphic to Z. In this case, inner conjugacies by an element
B 7 <T have to preserve the generator 1 of Z (the unique generator which is
| bigger that the identity in our ordering). This means that Z (=~ [I',T]) lies
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in the center of I". This is not possible since for every fixed point x of an
element v of I', its orbit under Z would consist of fixed points of +. L]

Holder’s theorem essentially characterizes translation groups as groups
acting on the line with no fixed points. Solodov’s theorem essentially
characterizes groups of affine transformations as groups acting on the line
with at most one fixed point. It is very tempting to try to prove a similar
characterization of groups of projective transformations as groups acting on
the circle with at most two fixed points... Unfortunately, this is not the case !
N. Kovacevi¢ recently constructed a nice counter-example in [44].

THEOREM 6.13 (Kovalevié). There exists a finitely generated subgroup of
Homeo (S!) such that every element different from the identity has at most
two fixed points, such that all orbits are dense, and which is not conjugate
to a subgroup of PSL(2,R).

Nevertheless, there is a very important characterization of groups which are
conjugate to subgroups of PSL(2,R). This characterization is due to Casson-
Jungreis and Gabai [15, 24], following earlier work of Tukia. We would have
liked to include a discussion and a proof of this result, but that would be too
long and we have to limit ourselves to a statement! Consider a sequence 7,
of elements of Homeo_ (S!). Let us say that -y, has the convergence property
if it contains a subsequence -y, which satisfies one of the following two
properties :

* 7, 1S equicontinuous;
e there exist two points x,y on the circle such that -, (resp. 7, h
converges to a constant map on each compact interval in S'\ {x} (resp.

in 8\ {y}).

A subgroup T' of Homeo, (S!) is called a convergence group if every
sequence of elements of I' has the convergence property.

THEOREM 6.14 (Casson-Jungreis, Gabai). A subgroup of Homeo (S!) is
conjugate to a subgroup of PSL(2,R) if and only if it is a convergence group.

The reader should at least be able to prove the easy part of the theorem:
subgroups of PSL(2,R) are convergence groups !

We revert now to groups acting on the circle. We state a general criterion
which characterizes the bounded classes coming from some action.
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THEOREM 6.15 ([25]). Let T" be a countable group and c¢ a class in
HX(T',Z). Then there exists a homomorphism ¢: I — Homeo(S') such that
¢*(eu) = c if and only if ¢ can be represented by a cocycle which takes only
the values 0 and 1.

Proof. Of course, the necessary condition is clear from 6.3 and the main
difficulty will be to construct some action from a cocycle taking two values.
Let ¢ be a 2-cocycle on the group I' taking only the values 0 and 1. We
saw that a central extension and a section lead to a 2-cocycle. The process
can be reversed and we can construct a central extension I' in the following
way from a 2-cocycle c¢. As a set, T is the product Z x I' and we define a
multiplication e by:

(n1,71) o (N2, 72) = (n) + ny + (1, 72), V172)

where, as usual, ¢ denotes the inhomogeneous cocycle associated to c¢. The
fact that T is a group is a restatement of the fact that ¢ is a cocycle. The
projection I >Tisa group homomorphism.

Assume first that the cocycle ¢ is non degenerate, i.e. that ¢(id,~y) =
c(v,id) =0 for every ~v in I (where id denotes the identity element in ).
Then the identity element of T is (0,id) and the map n € Z +— (n,id) € r
is also a group homomorphism. Hence, we have a central extension

~

0 Z r r l.

The fact that ¢ takes non negative values means that the subset P of T
consisting of elements of the form (n,v) with n >0 is a semi-group, Le. is
stable under the product e. Moreover, since ¢ takes the values 0 and 1, the
inverse of (n,7) is (—n,y~!") or (—n—1,4~1). It follows that every element
of T belongs to P or to its inverse. In other words, if one defines 4; < 7,
if 2917 €P we get a total pre-order on ' which is left invariant. Denote
by t the element (1,id) in T'. Note that for every 7 in I we have v 2 ty.

The end of the proof mimics 6.8: One constructs a map v: I — R such
that v < %, if and only if v(¥;) < v(¥,) and such that v(yt) = v(v) + 1
for every 7 € I. We may even choose v in such a way that the action of
T on itself by left translations defines an action on v(I') C R which extends
to its closure. Then we extend this action of T" to R using affine maps in
the connected components of the complement of this closure. Finally, since t
acts on R by the translation by 1, we get an action of the quotient group I
on the circle R/Z. This construction was carried out in such a way that it is

clear that the bounded Euler class of this action is precisely the class of the
cocycle c.
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Finally, we have to deal with the case of degenerate cocycles c. Note that
the fact that ¢ is a cocycle can be expressed by the identity :

(1, 72) + (2, 713) = €72, 73) + (71, 1273) -

It follows that there exists an integer v = 0 or 1 such that for every v in
I' we have ¢(1,v) = ¢(y,1) = v. The fact that ¢ is degenerate means that.
v =1. Then we can define ¢/ =1 — ¢. This is a new cocycle which is non
degenerate and takes only the values 0 and 1. By the previous construction,
we get an action of I" on the circle corresponding to the bounded class of
c’. Reversing the orientation of the circle, we get finally an action of T" on
the circle whose bounded Euler class is the class of ¢. []

6.6 SOME EXAMPLES

Recall that a group I is called perfect if every element is a product
of commutators. It is uniformly perfect if there is an integer k such that
every element is a product of at most k¥ commutators. For such a uniformly
perfect group, every quasi-homomorphism from I' to R is bounded (since
it is bounded on a single commutator) so that the canonical map from
H;T,R) to HXT,R) is injective. Moreover the map from HZ(,Z) to
Hy(I',R) is also injective since there is no homomorphism from T to
R. In such a situation, the usual Euler class in H*(I',Z) determines the
bounded Euler class, and therefore most of the topological dynamics of a
group action.

An example of such a group is SL(n,Z) which is uniformly perfect for
n > 3 and which, moreover is such that H*(SL(n, Z),7) =0 (for n > 3) [52].
As a corollary, we get immediately that for n > 3, any action of Sl(n,Z)
on the circle has a fixed point. This will be strengthened later in 7.1. Some
other matrix groups have this property: see for instance [5, 14].

Consider the case of the Thompson group G. We can show that every
element in G is a product of two commutators (see [28]) and that H*(G,Z)
is isomorphic to Z. Using the Milnor-Wood inequality we can show that in
H*(G,Z) only the elements —1,0,+1 have a norm less than or equal to
1/2. Hence we deduce that any non-trivial action of the Thompson group
G on the circle is semi-conjugate to the canomical action given by its
embedding in PL,(S') or to the reverse embedding obtained by conjugating
by an orientation reversing homeomorphism of the circle (see [28] for more
details).
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Another situation where the bounded cohomology is easy to compute is
the case of amenable groups. Let I' be topological group (which will be
frequently a discrete countable group) and denote by CS(I“) the real vec-
tor space of bounded continuous functions on I' with real values. We say
that I" is amenable if there is a linear operator m: Cg(l“) — R called a
“mean” such that m is non negative on non negative elements, is equal
to 1 on the constant function 1 and is invariant under left translations
by elements of I'. See the book [29] for a good description of the the-
ory of these groups. Of course, compact groups are amenable: it suf-
fices to define m as the integral over the Haar measure. Abelian groups
are amenable. A closed subgroup of a locally compact amenable group
is amenable and an increasing union of amenable groups is amenable.
The category of amenable groups is also stable under extensions. In par-
ticular, solvable groups are amenable. The following is due to Johnson
(see [39]).

THEOREM 6.16 (Johnson). If T" is an amenable group then its real bounded
cohomology groups HY(T,R) are trivial for all k > 0.

Proof. Strictly speaking, we only defined cohomology and bounded
cohomology for discrete groups... but of course we could have done it for a
general topological group. Since in any case we don’t need this fact for non
discrete groups, we assume I is a discrete amenable group equipped with
a mean m. Let c: I*f! — R be a bounded k-cochain. Then we can define
m(c): T — R by taking the mean value with respect to the first variable. This
linear operator : C’,j(F, R) — C’g_l(I‘, R) is an algebraic homotopy between
the identity and O, i.e. we have di_im &+ md; = id. It implies immediately
that a bounded cocycle is a bounded coboundary.  []

Let I" be an amenable subgroup of Homeo_ (S') and let T be the group of
lifts in Homeo_(S') : this is also an amenable group since it is an extension
of the amenable group Z by the amenable group I'. The translation number
map 7: I — R is a quasi-homomorphism and is a homomorphism on one
generator subgroups; the vanishing of bounded cohomology therefore implies
that it is a homomorphism. The rotation number is a homomorphism when
restricted to an amenable group.

If I' is an amenable group, the group H,%(F, Z) can easily be determined.
Indeed, we know that H,%(F, R) = 0 and that the kernel of the map from
H*T,Z) to H*T,R) is the quotient group H'(I',R)/HY(T,Z). We have
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therefore proved the following :

PROPOSITION 6.17. Let T be an amenable group and ¢: T — Homeo_ (S!)
a homomorphism. Then the rotation number map po¢: " — R/Z is a
homomorphism. If the image of this homomorphism is finite, then ¢(') has
a finite orbit of the same cyclic structure. Otherwise, ¢ is semi-conjugate to
the rotation group p o ¢(I).

Note that there is another approach to the proof of this proposition, using
invariant probability measures. Indeed, let T' be an amenable group acting on
the circle by some homomorphism ¢: " — Homeo, (SY). If u: S' > R is a
continuous function, we can consider the mean value of the bounded function
v € I' = u(p(y)(0)). This gives a linear functional on the space of continuous
functions u on the circle, equal to 1 on the function 1, i.e. this mean value has
the form fsl udy for some probability measure 4 on the circle. Of course this
probability measure is invariant under ¢(I"). Assume now that 1+ has some
non trivial atom, ie. that some point x has some positive mass u({x}) > 0.
Then there is a finite number of atoms of the same mass so that we get a finite
orbit for ¢(I'). If there is no atom, then there is a degree 1 map of the circle
to itself which sends the measure p to the Lebesgue measure since in this
case the measure of an interval depends continuously on its endpoints. This
map collapses each component of the complement of the support of p to a
point. This provides a semi-conjugacy of ¢ with a group of homeomorphisms
preserving the Lebesgue measure, ie. a rotation group. This gives another
proof of Proposition 6.17.

Invariant probability measures also provide another definition of translation
and rotation numbers. Let f be any element of Homeo, (S!). The qualitative
description of the topological dynamics of f that we gave in 5.9 enables us
to describe explicitly the probability measures ;1 on S' which are invariant
by f.

If the rotation number of f vanishes, the invariant probability measures are
characterized by the fact that their support is contained in the fixed point set
Fix(f) of f. Indeed we know that the action of f on a connected component
of the complement of Fix(f) is conjugate to the translation by 1 on R and
cannot preserve any non trivial finite measure.

If the rotation number is rational, invariant probability measures are
concentrated on the set of periodic points.
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If the rotation number is irrational and the orbits are dense, we know
that f is conjugate to an irrational rotation. In this case, there is a unique
invariant probability measure which is the image of the Lebesgue measure by
the topological conjugacy (see [41]). If the orbits are not dense, there is an
exceptional minimal set K C S' and the support of any invariant probability
has to coincide with K since we know that the connected components of
S! — K are wandering intervals. In this case also there is a unique invariant
probability p which is the unique probability which maps to the Lebesgue
measure by the degree 1 semi-conjugacy with a rotation.

Let f be an element of Homeo, (S') and p a probability measure on §1
which is invariant by the corresponding homeomorphism of the circle f = p(f).
The function f(x) —x 18 Z-periodic and therefore defines a function on R/Z
that we can integrate with respect to . It should be clear to the reader by
now that the result is nothing more than the translation number 7(f). Suppose
now that f and § are two clements of Homeo, (S!) such that p(f) and ()
preserve the same measure 1. Note that fgv(x) —x = (f(ﬁx) —gx)+ (g(x) —x)
and integrate with respect to n. We get that T(]‘NZD = T(f) +7(g). So we have
proved the following:

PROPOSITION 6.18.  Let . be a probability measure on the circle. Denote by
Homeo (S!, 1) the subgroup of Homeo, (S') consisting of homeomorphisms
preserving . Then the rotation number p : Homeo,(S', 1) — R/Z is a
homomorphism.

Of course, in many situations the groups Hg(I‘, R) can be infinite
dimensional. For instance, this is the case of a free non abelian group, of
the fundamental group of a closed orientable surface of genus ¢ > 1 [4] and
more generally of non elementary Gromov hyperbolic groups [19]. This is
not a surprise since there are many homomorphisms from a free group for
instance to Homeo (S') and their bounded Euler classes are usually distinct.

In some cases, the bounded Euler class of a specific action on the circle
might be useful to understand the structure of the group. Suppose for example
that a group I' is such that H!(T",R) = H*(T",R) = 0 and that we are given a
homomorphism ¢: I' — Homeo_ (S!). Then the image of the bounded Euler
class eu(¢) in H*(',Z) vanishes so that there is a (usually non bounded)
quasi-homomorphism %: I' — R such that the bounded Euler cocycle ¢*(c)
is the coboundary of the 1-cochain Py, "0). Modifying 1) by a bounded
amount, we can assume that ¢ is a homomorphism on one generator groups.
With this condition, 1 is uniquely defined since we assumed that there 1S no
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homomorphism from I" to R. Of course, for any v in I', the projection of
¥(v) in R/Z is nothing more than the rotation number of @(v). Summing
up, with these algebraic conditions on the group T, any action of T on the
circle determines canonically a quasi-homomorphism : T' — R which is a
lift of the rotation number map.

A specific example is the modular group PSL(2,Z). As a group, it
is isomorphic to the free product of two cyclic groups: PSL(2,Z) ~

2/27 % Z./3Z (see for instance [61]). Of course there is no non-trivial

homomorphism from this group to R since it is generated by two elements of
finite order. In the same way, its second real cohomology group is trivial
(this follows for instance from the Mayer-Vietoris exact sequence since
finite groups have trivial cohomology over the reals). We deduce that every
action of PSL(2,Z) on the circle yields a well defined quasi-homomorphism
¥: PSL(2,Z) — R lifting the rotation number. If we start with the canonical
action of PSL(2,Z) on the circle RP!, the rotation numbers are not interesting :
the only elliptic elements in PSL(2,Z) have order 2 and 3 so that the rotation
number of elements in PSL(2,Z) are 0,1/2,1/3,2/3 € R/Z. However the
quasi-homomorphism ¥: PSL(2,Z) — R that we get is very interesting
and has been studied in many different contexts: it is called the Rademacher
JSunction. The explicit formula giving ¥ as a function of the entries of a matrix
in PSL(2,Z) involves the so called Dedekind sums which are important in
number theory. We refer to [4] for a description of W and a bibliography on
this very nice subject.

7. HIGHER RANK LATTICES

In this section, we study the problem of determining which lattices in
semi-simple groups can act on the circle. .

Let G be any Lie group and & be its Lie algebra. The real rank of G is
the maximal dimension of an abelian subalgebra 2 such that for every a € 2
the linear operator ad(a): & — & is diagonalizable over R. For instance, the
real rank of SL(n,R) is n— 1: its Lie algebra consists of traceless matrices
and contains the abelian diagonal traceless matrices. A lattice in a Lie group
G is a discrete subgroup I' such that the quotient G/I" has finite measure
with respect to a right invariant Haar measure. A lattice in a semi-simple
group 18 called reducible if we can find two normal subgroups Gi,G, in G,
connected and non trivial, which generate G, whose intersection is contained
in the (discrete) center of G, and such that (G; NT).(G, NT") has finite index
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in T. Otherwise, we say that I" is irreducible. Note that Jattices in simple
Lie groups are obviously irreducible.

The first example of a lattice is SL(n, Z) in SL(n,R) : the corresponding
quotient has finite volume (but is not compact).

Another example to keep in mind is the following. Consider the field Q(v/2)
and its ring of integers O = 7[/2]. The field Q(v/2) has two embeddings in
R given by a + b2 € Q(W2) — a = bv/2 € R. This gives two embeddings
of the group SL(2,0) in SL(2,R). The images of these embeddings are
dense but the embedding of SL(2,0) in SL(2,R) X SL(2,R) has a discrete
image which is an irreducible lattice in SL(2,R) x SL(2,R) (whose real rank
is 2). Of course, we can construct many more examples using this kind of
arithmetic construction: Borel showed for instance that any semi-simple Lie
group (with no compact factor) contains at least an irreducible lattice (and
even a cocompact one).

Note also that if a compact oriented manifold M of dimension n admits a
metric with constant negative curvature, its universal cover is identified with
the hyperbolic space H" of dimension n. It follows that the fundamental
group T' of M is a discrete cocompact subgroup of the group of positive
isometries of H" which is the simple Lie group SOg(n,1). These examples
provide lattices in real rank 1 simple Lie groups.

For the theory of lattices in Lie groups, we refer to [48, 72].

7.1 WITTE’S THEOREM

In-[70], Witte :proves the-following remarkable theorem:

THEOREM 7.1 (Witte). Let I be a finite index subgroup of SL(n,Z) for
n > 3. Then any homomorphism ¢: 1 — Homeo_(S!) has a finite image.

The proof will be derived from the following

THEOREM 7.2 (Witte). A finite index subgroup of SL(n,Z) for n > 3 is
not left orderable.

Proof. It suffices to prove it for a finite index subgroup I' of SL(3,Z)
since a subgroup of a left ordered group is of course left ordered. Suppose by
contradiction that there is a left invariant total order < on I'. Choose some
integer k > 1 so that the following six elementary matrices belong to I :
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‘ 1k0 10k 100
a={010 ], a =1010 ], a =01k},
001 001 001
100 100 100
ag = (k10 |, as= (010 |, ag =010} .
001 k01 0k1

It is easy to check the following relations between these matrices. Taking
indices modulo 6, for every i the matrices a; and a;+1 commute and the
commutator of a;,_; and a;,; is al-ik. Fix some i and let us analyze the
structure of < on the group H; generated by a;,_1,a;,a;4,. Allowing ourself
to replace a;_; or a;+1 by their inverses and to permute them, we can define
three elements «, 3, such that {a, B} = {afl,aill} and v = ¢;** and
such that the following conditions are satisfied :

ay=vya ; By=98 ; afa'fl =1
l<a 5 1<8 ; 1<~

(1 denotes the identity element). If ¢ is an element of I', we set || = ¢ if
1 ¢ and ¢! otherwise. If two elements §,¢ in I' are such that 1 < ¢ and
1 < ¢, we write £ < ( if for every integer n > 1, we have £ < (. We claim
that v < o or v < B (which implies that ai| < |ai—y1| or |a;| < laiv1]).
Indeed, suppose that there is some integer n > 1 such that o < ~v" and
B <~" and let us compute

O = " B" (@™ Yy (B Iy
Since ¢, is a product of elements in " which are bigger than 1, we have
1 < 4. Now the product defining 6,, can easily be estimated since we know

that v commutes with « and S and that interchanging the order of an o
and a [ is compensated by the introduction of a v. We find

6m — ,y-—m2+2mn.
Since 1 < v, we know that + to a negative power is less than 1. For m big
enough, we get 6, < 1. This is a contradiction.

Coming back to our six matrices a;, we find that la;] < |a;i_{| or
la;] < |ai+1]|. If we assume for instance lai| < |az|, we therefore deduce
cyclically |a1| < |az]| < |a3| < |as| < |as| < |ag| < lai|, and this is a
contradiction. [

Let us now prove Theorem 7.1 using similar ideas. Of course, Theorem 7.2
means that a finite index subgroup of SL(n, Z) for n > 3 does not act faithfully
on the line (by orientation preserving homeomorphisms).
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Consider first a torsion free finite index subgroup I' of SL(3,Z) and
suppose by contradiction that there is an action ¢: I’ — Homeo. (S!) with
infinite image. According to an important theorem, due to Margulis, every
normal subgroup of a lattice in a simple Lie group of rank at least 2 is either
of finite index or is finite (see [48, 64]). It follows that the action ¢ is faithful.

As in the proof of Theorem 7.2, choose an integer k such that the matrices
(a;)i=1..6 are iIn I'. Note that the group H; generated by a;_1,a;,a;+1 is
nilpotent, hence amenable, so that the rotation number is a homomorphism
when restricted to H;. Since al-ik 1s a commutator, it follows that the rotation
numbers of all ¢(a;) vanish. Define A; as being the unique lift of ¢(a;)
whose translation number is 0. We claim that the elements A; of HO/I—I\l/eO_,_(SI)
also satisfy the relations that for every i the homeomorphisms A; and A;i;
commute and the commutator of A; | and A1 is AF¥. Indeed A;A; 1A AL
and A,-+1Al-_1Al.jr11Al.—_ llA,-:Fk project on the identity and have translation number
0 since the inverse image of H; in Homeo.(S') is nilpotent and the restriction
of 7 to this group is a homomorphism. Consider now the (left ordered) group
of homeomorphisms of the line generated by the A;. We can reproduce exactly
the same argument that we used in Theorem 7.2 to get a contradiction.

Consider finally the general case of an action ¢: I' — Homeo (S!) of a
finite index subgroup of SL(n,Z) (n > 3). Replacing I" by a finite index
subgroup, we can assume that I" is torsion free. Of course, SL(3,Z) is the
subgroup of SL(n,Z) consisting of matrices preserving Z> ~ Z> x {0} C Z
and I' intersects SL(3,Z) on a subgroup of finite index in SL(3,Z). Since we
have already dealt with the case n = 3, the kernel of ¢ contains a subgroup
of finite index in the infinite group I'NSL(3,Z). By the theorem of Margulis
that we mentioned, the kernel of ¢ is a subgroup of finite index in T" so that
the image of ¢ is a finite group. Theorem 7.1 is proved.

It turns out that the arguments used in this proof can be extended to
a family of lattices more general than finite index subgroups of SL(n,Z)
for n > 3. The general situation in which Witte proves his theorem is for
arithmetic lattices in algebraic semi-simple groups of Q-rank at least 2. We
will not define this concept and refer to the original article by Witte. Note
however that the method of proof cannot be generalized to an arbitrary lattice
since it uses strongly the existence of nilpotent subgroups (which don’t exist

for example if the lattice is cocompact). However, this strongly suggests the
following :

PROBLEM 7.3. Is it true that no lattice in a simple Lie group of real rank
at least 2 is left orderable ?
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7.2 ACTIONS OF HIGHER RANK LATTICES

We now study actions of the most general higher rank lattices on the
circle. Most of this section is an expansion (and a translation) of a small part
of [26] to which we refer for more information.

THEOREM 7.4 ([26]). Let T be a lattice in a simple Lie group G with
real rank greater than or equal to 2. Then any action of I' on the circle has
a finite orbit.

Of course, in such a situation a subgroup of finite index in " acts with a
fixed point so that, deleting this fixed point, we get an action of a subgroup
of finite index acting on the line. Recall our question 7.3 concerning ordering
on lattices; it can be reformulated in the following way :

PROBLEM 7.5. Let I be a lattice in a simple Lie group G with real
rank greater than or equal to 2. Is it true that any homomorphism from T’
to Homeo, (S!) has a finite image ?

These notes only deal with actions by homeomorphisms and we decided
not to discuss properties connected with smooth diffeomorphisms. However,
we mention that the previous question has a positive answer assuming some
smoothness.

THEOREM 7.6 ([26]). Let T" be a lattice in a simple Lie group G with
real rank greater than or equal to 2. Then any homomorphism from T to the
group of Cl-diffeomorphisms of the circle has a finite image.

This theorem is an immediate consequence of 7.4 and of two important
results. The first one, due to Kazhdan, states that a lattice like the one in the
theorem is finitely generated and admits no non trivial homomorphism into R
(see [48]). The second, due to Thurston, states that if a finitely generated group
I" has no non trivial homomorphism to R then any homomorphism from T
to the group of germs of C!-diffeomorphisms of R in the neighbourhood of
the fixed point O is trivial (see [66]).

If we add more smoothness assumptions (but this is not the goal of
this paper...), A. Navas, following earlier ideas of Segal and Reznikov,
recently proved a remarkable theorem which applies to groups with Kazhdan’s
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property (T) (see [57]). Note that lattices in higher rank semi-simple Lie groups
have this property (see [32]).

THEOREM 7.7 (Navas). Let I" be a finitely generated subgroup of the
group of diffeomorphisms of the circle of class C'T% with a > 1/2. If T
satisfies Kazhdan’s property (T), then T is finite.

When the Lie group G is not simple but only semi-simple, the situation
is more complicated since there are some interesting examples of irreducible
higher rank lattices that do act. We have already described some examples of
irreducible lattices in SL(2,R) x SL(2,R) which act on the circle via their
projection on the first factor (which is a dense subgroup in SL(2,R)). As a
matter of fact, the next result shows that these examples are basically the only
ones.

If ¢; and ¢,: I' — Homeo, (S') are homomorphisms, we say that ¢; is
semi-conjugate to a finite cover of ¢, if there is a continuous map h: S' — S!
which is onto and locally monotonous, such that for every v € I' we have

$2(V)h = ho1(7).

THEOREM 7.8 ([26]). Let I' be an irreducible lattice in a semi-simple Lie
group G with real rank greater than or equal to 2. Let ¢ be a homomorphism
from T to the group of orientation preserving homeomorphisms of the circle.
Then either ¢(I') has a finite orbit or ¢ is semi-conjugate to a finite cover
of a homomorphism which is the composition of :

1) the embedding of T in G,
1) a surjection from G to PSL(2,R),
i) the projective action of PSL(2,R) on the circle.

These theorems show that higher rank lattices have very few actions on
the circle. Hence, according to Section 6.15, the second bounded cohomology

groups of lattices should be small. This is indeed what Burger and Monod
showed in [12]:

THEOREM 7.9 (Burger, Monod). Let T" be a cocompact irreducible lattice
in a semi-simple Lie group G with real rank greater than or equal to 2.
Then the second bounded cohomology group HZ(T,R) injects in the usual
cohomology group H*(T',R).
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The assumption that the lattice is cocompact is important in the proof but
the theorem probably generalizes to non-cocompact lattices. Note also that for
many lattices in semi-simple Lie groups, it turns out that the usual cohomology
group H*(T',R) vanishes. This is the case for instance for cocompact torsion
free lattices in SL(n, R) for n > 4 but more generally for cocompact torsion
free lattices in the group of isometries of an irreducible symmetric space of
non compact type of rank at least 3 which is not hermitian symmetric (see [7]).
In these cases, Theorem 7.9 means that Hg(l“, R) vanishes. Hence, using 6.6,
we deduce that every action I" on the circle has a finite orbit. In other words,
Theorems 7.4 and 7.9 are closely related and, indeed they have been proved
simultaneously (and independently). It would be very useful to compare the
two proofs.

As we have already noticed, the vanishing of the second bounded
cohomology group is closely related to the notion of commutator length.
If " is any group and < is in the first commutator subgroup I, we denote
by |y| the least integer k such that 77 can be written as a product of k
commutators. We “stabilize” this number and define ||v|| as lim,_, ., 17| /n
(which always exists by sub-additivity). It turns out that for a finitely generated
group I' it is equivalent to say that the second bounded cohomology group
HZ(T',R) injects in the usual cohomology group H*(T,R), and to say that this
“stable commutator norm” || || vanishes identically [5]. Theorem 7.9 therefore
implies that for cocompact higher rank lattices, this stable norm vanishes. The
following question is natural :

PROBLEM 7.10. Let I' be an irreducible lattice as in Theorem 7.4. Does
there exist an integer k > 1 such that every element of the first commutator
subgroup of T" is a product of k commutators ?

Recall that by a theorem of Kazhdan, there is no non trivial homomorphism
from I' to R; this is equivalent to the fact that the first commutator group
of I' has finite index in I". A positive answer to the previous question would
be a strengthening of this fact.

7.3 LATTICES IN LINEAR GROUPS

In this section, we prove Theorem 7.4 for lattices in SL(n,R) (n > 3).
The general case of a semi-simple Lie group is much harder but the proof
that we present here contains the main ideas. As a matter of fact, we shall
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first concentrate on the case of a lattice T’ in SL(3,R) and we shall easily
deduce the general case of SL(n,R) later.

Let us first informally describe the structure of the proof. Let I be a
lattice in SL(3,R) and consider a homomorphism ¢: I' — Homeo.Jr(Sl).

FIRST STEP. In order to prove the theorem, it is enough to show that
there is a probability measure y on the circle which is invariant under the

group ¢(I').

SECOND STEP (CLASSICAL). A flag in R? is a pair consisting of a
2 -dimensional (vector) subspace E; in R?® and a 1-dimensional (vector)
subspace E; contained in E;. Those flags, equipped with the natural topology,
define a compact manifold FI which is a homogeneous space under the action
of SL(3,R). Note that in particular, I" acts on F l.

Let Prob(S') be the space of all probability measures on the circle.
Equipped with the weak topology, this is a compact metrizable space on
which the group Homeo, (S!) acts naturally. The lattice I also acts on
Prob(S!) via the homomorphism ¢.

Equip FI with the o-algebra of Lebesgue measurable sets and Prob(S')
with the o-algebra of Borel sets. In the second step, we construct a measurable
map ¥: Fl — Prob(S') which is equivariant with respect to the actions of I'
on FI and Prob(S").

In order to prove the theorem, if is enough to show that this map ¥ takes
the same value p almost everywhere with respect to the Lebesgue measure
on FI. Indeed, by equivariance, this measure p Wwill be invariant by the
group ¢(I').

By way of contradiction, we now assume that ¥ is not constant on a set
of full Lebesgue measure.

THIRD STEP. Using ergodic properties of the action of I" on FI, we show
that there is an integer k and a measurable map ‘¥ as above such that the
image of almost every flag in FI is the sum of k Dirac masses on the circle
(each with weight 1/k). Let us denote by S, the set of subsets of S! with
k elements so that we can now consider ¥ as a map from FI to S;.

FOURTH STEP. Let X be the space consisting of triples (E.,E3,E3) of
distinct planes in R® intersecting on the same line E;. This is again a
homogeneous space under the action of SL(3,R). An element of X determines
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three flags. Therefore the map ¥ enables us to define a measurable map
PO X — (Si)>. We will get a contradiction between the ergodicity of the
action of I" on X and the non ergodicity of the action of I" on the set of
triples of points: a triple of points on S!' can be positively or negatively
ordered on the circle and this is invariant under Homeo_ (S!).

We now give the detailed proof.

FIRST STEP: FINDING AN INVARIANT MEASURE. Suppose that there is a
probability measure p on the circle which is invariant under ¢(I').

We know that the rotation number mapping p: Homeo, (S!) — R/Z is not
a homomorphism. However by 6.18, the restriction to the subgroup consisting
of homeomorphisms preserving a given measure g is a homomorphism. It
follows that the map v € T" — p(¢(7y)) € R/Z is a homomorphism. According
to the result of Kazhdan that we mentioned several times already, I" is finitely
generated and every homomorphism from I' to R is trivial. It follows that the
image of the restriction of p to I' is a finite cyclic subgroup Z/kZ. Consider
the kernel I'y of this homomorphism: this is a subgroup of index k of T,
hence a lattice in SL(3,R). We claim that the support of y is fixed pointwise
by I'g. This follows from the fact that for every homeomorphism of the circle
with zero rotation number, the support of every invariant measure is contained
in the set of fixed points. Hence every point in the support of p has a finite
orbit under ¢(I"). This is the conclusion of Theorem 7.4.

SECOND STEP: FURSTENBERG MAP. This step is classical in the study of
actions of lattices and is due to Furstenberg [23].

PROPOSITION 7.11.  There is a Lebesgue measurable map ¥': FI — Prob(S")
which is equivariant under the actions of I on FI and Prob(S').

Proof. We observed that FI is homogeneous under the action of SL(3,R).
The stabilizer of the flag consisting of the line spanned by (1,0,0) and
the plane generated by (1,0,0) and (0,1,0) is the group B of upper
triangular matrices. Therefore we can identify F/ and the homogeneous space
SL(33,R)/B.

Note that the group B is solvable. Hence B is amenable and there is a linear
form m on L°°(B,R) which is non negative on non negative functions, takes
the value 1 on the constant function 1 and is invariant under left translations. It
turns out that it is possible to choose m in such a way that it is a measurable
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function (see [55]). In other words, if f, € L°°(B,R) depends measurably on
a parameter A in [0, 1], the function )\ — m(f)) is Lebesgue measurable.

Coming back to our problem, we first observe that there are measurable
maps Wo: SL(3,R) — Prob(S') which are I'-equivariant. This follows from
the fact that the action of I" on SL(3, R) by left translations has a fundamental
domain; we define Wy in an arbitrary measurable way on this fundamental
domain and we can therefore define it everywhere using the equivariance.

To complete the proof of the proposition, we modify ¥y to make it
invariant under right translations under B. Of course, we use the mean m. We
define ¥: SL(3,R) — Prob(S") in the following way. If g € SL(3,R), the
probability W(g) is defined by its value on a continuous function u: S! — R:

/ ud¥(g) =mix € B — ud¥o(gx)) .

st St

By construction, ¥ is measurable and invariant by right translations by B
this defines another measurable map ¥: FI ~ SL(3,R)/B — Prob(S') which
is I'-equivariant, as required. [

THIRD STEP: THE MAP ¥ TO DIRAC MASSES. As mentioned above, we
now assume by contradiction that the map ¥ is not constant on a subset of
full Lebesgue measure.

PROPOSITION 7.12.  There exist an integer k > 1 and a map ¥: Fl — S|
to the set of subsets of S' with k elements which is Lebesgue measurable
and 1 -invariant.

In order to prove the proposition, we first recall an important ergodic
theorem due to Moore that we shall use repeatedly (see for instance [72]). Let
Y = G/H be a homogeneous space of a semi-simple Lie group G. Assume
that G is connected, has a finite center and has no compact factor. Assume
moreover that / is non compact. Let I" be an irreducible lattice in G. Then
the action of T" on Y is ergodic with respect to the Lebesgue measure (class),
Le. every measurable function on Y which is I'-invariant is constant almost
everywhere.

For instance, the stabilizer B of a flag is non compact. The action of T
on Fl is ergodic.

As another example, let us consider the space Y of pairs of flags of R>
which are in general position. For such a pair of flags, there are three non
coplanar lines Ej, Ef,E{ such that the first flag is given by the line E! and
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the plane spanned by E| and E} and the second flag is given by the line E3
and the plane spanned by E? and E3. Since SL(3,R) acts transitively on the
space of triples of non coplanar lines, it follows that Y is a homogeneous
space of SL(3,R). The stabilizer of an element of Y is the stabilizer of
a triple of non coplanar lines: it is clearly non compact. Consequently, the
action of I' on Y is ergodic. Since the set of pairs of flags in general position
has full Lebesgue measure in the set of pairs of flags, we deduce that I" acts
ergodically on the set of pairs of flags of R>.

However, the reader will easily check that this cannot be generalized to
the set of triples of flags: the action of SL(3,R) is not transitive on the set
of triples of flags in general position.

In order to prove Proposition 7.12, we analyze the action of ' on the
space of pairs of probability measures on the circle.

If 1 is a probability on the circle, we define atom(u) as the sum of the
masses of the atoms of y (i.e. those points x such that u({x}) > 0). This
is a measurable function on Prob(S!) which is invariant under the action of
Homeo (S!). The map:

d € Fl — atom((d)) € [0, 1]

is a measurable I'-invariant function. Using the ergodicity result that we
mentioned above, this function is constant almost everywhere.

Assume first that this constant is not zero. This means that the image of
almost every flag under ¥ has at least one atom.

Let o> 0 be a positive real number. For each probability measure 4 on
the circle, consider the points x such that u({x}) > «. Of course, the number
of those points x is finite (possibly zero). Denote this number by N(u, o).
The map d € Fl — N(¥(d),a) € N is measurable and I-invariant; it is
therefore constant, equal to some integer N, almost everywheré. Since we
assume that for almost every d the probability W(d) has at least one atom,
we can choose some o« in such a way that N, is an integer k > 1. This
enables us to construct a map (defined almost everywhere) from FI to the set
of subsets of S! with k elements, sending the flag d to the k atoms of ¥(d)
having a mass greater than or equal to «. Changing our notation, we shall
call this new map ¥ : it satisfies Proposition 7.12 which is therefore proved,
if almost every W(d) has at least one atom.

We now assume that for almost every d, the probability W(d) has no
atom.
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We shall show that under this assumption, almost all the measures Y(d)
have the same support.

Let p; and py be two probability measures on the circle with no atom.
Define D(ui, ti2) as the maximum of the pp-measures of the connected
components of the complement of the support of p1. If D(u1, 1) = 0, the
support of w; contains the support of u;. The map

(di,d) € FI* — D(¥(d1), ¥(do)) € [0,1]

is defined almost everywhere and is I'-invariant. Using the same ergodicity
result as before, we deduce that it is constant almost everywhere. We claim
that this constant ¢ is 0.

Suppose on the contrary that § > 0. Using Fubini’s theorem, we can find
a measurable part Q C FI such that:

e () has full Lebesgue measure.
e If d € Q, the probability ‘¥(d) has no atom.
o If d € Q, then D(d,d") =6 for almost every d’ in Fl.

e If d € Q, then W(d) belongs to the support of the measure W.(Lebesgue)
on the compact metrizable space Prob(S').

Fix a point d € Q. We can find a sequence d; € € such that Y(d;) = 1;
converges towards W(d) = . The probability measures u; have no atoms
and D(u;, ) = 0. This means that there is a component /; of the complement
of the support supp(u) such that p;(I;) = . If the sequence of lengths of
I; converges to 0, we can assume that the sequence of intervals I; shrinks
to a point p. This implies that the point p is an atom of p, contradicting
our assumption. Therefore we can assume (after taking a subsequence) that
the intervals I; all coincide with some interval /. Since we know that the
endpoints of [ are not atoms of ., that the sequence p; converges weakly
to u, and that w;(/) = 4, it follows that p(f) = . This contradicts the fact
that 7 is in the complement of the support of .

We showed that 0 = 0. This means that for almost every pair of flags
(d,d"), we have D(W(d), W(d")) = 0. Therefore, for almost every pair of flags
(d,d"), the probability measures W(d) and W(d') have the same support. In
other words, there exists a compact set K C S with no isolated point, such
that for almost every flag d, the support of W(d) is equal to K.

Each connected component of S! — K is an open interval. Collapsing the
closure of these intervals to a point, we get a space homeomorphic to a circle.
Therefore, there exists a continuous 7: S' — S! such that each fiber of =
is a point or the closure of a component of the complement of K. If u is
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a measure with no atom whose support is K, the direct image m,(u) is a
measure on the circle with no atom and full support on the circle.

Using 7, we get a map ¥ from FI to the space of probability measures
on the circle with no atom and full support which is I"-equivariant with respect
to the minimal action ¢ associated to ¢ (see 5.8).

The space of probability measures with no atoms and full support on
the circle is a homogeneous space under the action of Homeo_ (S') and the
stabilizer of the Lebesgue measure is of course SO(2). This space can therefore
be identified with the quotient Homeo_ (S!)/ SO(2). The group Homeo, (S'),
as any metrizable topological group, can be equipped with a left invariant
metric, that we can average under the action of SO(2) to produce a left
invariant metric dist on Homeo, (S!) /SO(2). In practice, we could simply
define dist(u1, () as the supremum of |u(/) — pp(I)| where I runs through
the collection of intervals on the circle: it is easy to check that this metric
indeed defines the weak topology when restricted to the set of probability
measures with no atom and full support.

For almost every pair of flags (d, d’) the distance dist(P(d), ¥(d')) defines
a I'-invariant function of pairs of flags; it is therefore constant almost
everywhere. Using the same argument as above, we see that this constant
is 0, which means that the map ¥ is constant almost everywhere. Of course,
two probability measures with no atom and with support in K which have the
same image under 7, have to coincide so that we deduce that W is constant
almost everywhere. We have found a probability measure on the circle which
is invariant under ¢(I'). This is a contradiction with our initial assumption
and proves 7.12.

FOURTH STEP: CYCLIC ORDERING ON TRIPLES OF POINTS ON A CIRCLE. In
order to explain the general idea, we assume first that the integer k that
we introduced is equal to 1. In other words, we have a I'-invariant map
¥: FI — S' defined almost everywhere which is not constant on a set of full
Lebesgue measure.

As explained above, let X denote the space of triples (E, E5, E3) of distinct
planes in R® intersecting on the same line E;. This is again a homogeneous
space under SL(3,R) and the stabilizer of a point in X is clearly non
compact. We deduce from Moore ergodicity theorem that the action of I" on
X is ergodic. Since a point of X determines three flags, we can define a
measurable I'-equivariant map ¥®: X — (S!)® (defined almost everywhere).
Indeed, let us consider the projection pr: FI — RP? from FI to the real
projective plane mapping a flag E; C E, to the line E; C R3. The space X




GROUPS ACTING ON THE CIRCLE 399

is therefore the space of triples of flags having the same projection under pr.
It follows from Fubini’s theorem that for every subset of full measure in FI,
the set of triples of elements of this set having the same projection under pr
has full measure in X : this is exactly what we need to define ¥©.

The space (S')® can be decomposed into disjoint parts, invariant under
the action of Homeo, (S!):

i) Triples of the form (x,x,x).

ii) Triples consisting of two distinct points. In turn, this set can be
decomposed into three parts: the spaces of triples of the form (x,x,z), resp.
(x,y,x), resp. (x,y,y).

iii) Triples (x,y,z) of distinct elements on the circle whose cyclic ordering
is positive, i.e. such that the interval positively oriented from x to y does not
contain z.

iv) Triples (x,y,z) of distinct elements on the circle whose cyclic ordering
1S negative.

Inverse images of these six parts under W® are measurable and disjoint
I"-invariant sets and therefore have to be either of measure O or of full
Lebesgue measure. This means that there is a subset 2 C X of full measure
whose image 1s contained in one of the six parts that we described. We claim
that this is not possible.

Observe that the symmetric group &3 of permutations of three objects
acts on X and on (S')?, permuting respectively flags and points. Note that
these actions commute with the actions of I' on X and (S!)?. Of course ¥®
1s equivariant with respect to these action of &s.

It follows that the part which contains W®(Q) has to be invariant under S5 .
Among the 6 parts that we described, only the first one has this property. This
means that the map W: FI — S! factors through the projection pr: FI — RP2.
In other words, almost everywhere, the image of a flag by W depends only
on the line associated to the flag and not on its plane.

Exactly in the same way, we could have defined a space X’ consisting
of triples of flags having the same plane, i.e. having the same projection in
the dual projective plane. The same proof shows that almost everywhere ¥
depends only on the plane of a flag and not on its line.

This implies that ¥ is constant almost everywhere and gives the contra-
diction we were looking for when k= 1.

When k > 1, we shall use a similar idea.

Recall that we denote by S; the space of subsets A of the circle with k
elements. Given two elements (Aj,A;,A3) and (A}, A}, A}) of (S))?, we say
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that they have the same cyclic ordering if there is an orientation preserving
homeomorphism £ of the circle such that h(A;) = A7, h(Ay) = A), h(A3) = A}.
This gives a partition of (S})° into finitely many parts invariant under the action
of Homeo (S!). As before, it follows that there is a subset Q of full measure
in X such that () is contained in one of these subsets. Using again the
action of &3 we conclude that this subset consists of triples (A;,A,,As) which
have the same cyclic ordering as (A,(1),As2), As3)) for every element o € X3.
Therefore, for every o, there is an orientation preserving homeomorphism £,
such that h,(A;) = Asu for i=1,2,3. Let A be the union of A;,A; et Ajz:
this 1s a set with N < 3k elements. Orientation preserving homeomorphisms
globally preserving A must induce a cyclic permutation of its elements. In
particular, the commutator of two elements i, must fix each element of A
since cyclic permutations commute. As the cyclic permutation o = (1,2,3) is
a commutator in &3, the homeomorphism A 53y acts trivially on A. Since
we know that h(l,z,g)(Al) = A,, h(1,2,3)(A2) = A; and h(1,2,3)(A3) = A1, we
have A; = A, = A3;. We showed that there exists a measurable subset of full
measure €2 C X such that the image ¥() consists of triples of the form
(A,A,A). Exactly as we did in the case k = 1, we conclude that ¥ is constant
almost everywhere and this is a contradiction.

This is the end of the proof of Theorem 7.4 for lattices in SL(3,R).

Remark that the core of the proof is the incompability between two facts.
The group Homeo, (S!) does not act transitively on generic triples of points
on the circle but SL(3,R) does act transitively on X. Note that the existence
of an element of SL(3,R) fixing a line and permuting arbitrarily three planes
containing this line, means that the real projective plane is not orientable.

The proof for a lattice T' in SL(n,R) (n > 3) is very similar. For
every sequence of integers, 1 < i; < i, < --- < i; < n, we consider the
space Fl; . ; of flags of type (i1,...,1), i.e. sequences of vector sub-spaces
E, CE, C-- CE, CR" with dmE; =14 (j=1,...,0). This is a
homogeneous space under the action of SL(n,R). The space of complete
flags, i.e. Fl = Fli, . ., is equipped with projections pr; on incomplete flag
spaces Fl;, s , where the index j does not appear. The space X; consisting
of distinct triples of flags FI having the same projection under pr; is again
a homogeneous space of SL(n,R), with non compact stabilizer.

Now, the proof is the same as before. We first construct an equivariant
map ¥ from FI to Prob(S!) (same proof). Assuming by contradiction that
Y is not constant almost everywhere, we get another map, still denoted by
¥ from FI to S, (same proof). For each j = 1,...,n, we consider the
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corresponding map ‘PJ(-3): X; — S} and we show, as above, that the image of
this map consists almost everywhere of triples of the form (A,A,A). It follows
that for each j = 1,...,n and on a subset of full measure, the image of a
flag by W depends only on its projection by pr;. Since this is true for every
j, this means that W is constant almost everywhere. This is a contradiction
and finishes the proof of Theorem 7.4 for lattices in SL(n, R).

Of course, these proofs immediately generalize to lattices in complex or
quaternionic special linear groups SL(n,C) and SL(3,H) (for n > 3).

7.4 SOME GROUPS THAT DO ACT...

We saw that many higher rank lattices don’t act on the circle. To conclude
these notes, we give some more examples of “big” groups acting on the circle.
Let X be a compact oriented surface of genus g > 2 and x € X be some base
point. The fundamental group 7(Z,x) is a classical example of a hyperbolic
group in the sense of Gromov (see for instance [27]). The boundary of this
group is a topological circle: indeed 7;(Z,x) acts freely and cocompactly
on the Poincaré disc so that 7(Z,x) is quasi-isometric to the Poincaré disc.
Consequently, the automorphism group Aut(m(Z,x)) acts naturally on the
circle. This action is very interesting and has been very much studied. See for
instance [21]. Note that Aut(7(Z, x)) contains the group of inner conjugacies
and that the quotient Out(w((X, x)) is the mapping class group of the surface
(i.e. the group of isotopy classes of homeomorphisms of the surface):

1 — m (2, x) — Aut(m(Z, x)) — Out(m; (2, x)) — 1.

Fix an element f of infinite order in this mapping class group and consider
the group I'y which is the inverse image of the group generated by f in the
previous exact sequence. We have an exact sequence :

1 — m((Z, %) I'y Z 1.

This group I is the fundamental group of the 3-manifold which fibers over
the circle and whose monodromy is given by the class f. Thurston showed that
if f 1s of pseudo-Anosov type, then this 3-manifold is hyperbolic. In particular,
for such a choice of f, the group I'y embeds as a discrete cocompact subgroup
of the isometry group of the hyperbolic 3-ball, isomorphic to PSL(2, C). This
construction provides many examples of faithful actions of (rank 1) lattices
on the circle. In [68] Thurston constructs faithful actions of the fundamental
group of many hyperbolic 3-manifolds on the circle.

Suppose now that X has one boundary component 0. Choose the base
point on the boundary and equip ¥ with a metric with curvature —1 and
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totally geddesic boundary. The universal cover T of ¥ is therefore identified
with the complement in the Poincaré disc of a disjoint union of half spaces.
On the boundary of the disc, these half spaces define an open dense subset
Q2 whose complement is a Cantor set K which is the boundary of the
hyperbolic group (X, x). The union ST UK is a topological circle and if
we collapse each connected component of 8% to a point, this circle collapses
to another circle that we denote by C. Choose also a base point x above
x in the universal cover. Consider now the mapping class group I' of X
i.e. the group of homeomorphisms of X modulo isotopy. A homeomorphism
f of 2~ has a Iift f to 2 which fixes the boundary component containing
x. This homeomorphism f extends continuously to X UK and defines a
homeomorphism f of the circle C. Note that if two homeomorphisms are
isotopic, the two corresponding extensions agree on the Cantor set K. The
connected component of ox containing x yields a base point X in C which
is fixed by all homeomorphisms f. Hence we can define an action of T" on a
line by letting f act via f on the line C — {X}. Hence we proved (following
an idea of Thurston) that the mapping class group of (X,x) acts (faithfully)
on a line and is therefore left orderable.

We could also use the same idea for surfaces with several boundary
components, for instance the sphere minus a finite number of discs. The
corresponding mapping class groups turn into the so called braid groups.
In this way we get interesting faithful actions of braid groups on the
line, or equivalently total left orderings. It is interesting to note that these
orderings were initially discovered from a completely different point of view
by Dehornoy [16].

To conclude this paper, we would like to mention a rich family of group
actions on the circle, coming from the theory of Anosov flows on 3 -manifolds.
Let M be a compact connected 3-manifold with no boundary and X a non
singular smooth vector field on M. Denote by ¢’ the flow generated by X.
One says that ¢’ is an Anosov flow if there is a continuous splitting of the
tangent bundle TM as a sum of three line bundles TM = RX @ E* @ E“
which are invariant under (the differential of) the flow ¢’ and such that vectors
i E" are expanded, and vectors in E* are contracted. More precisely, this
means that for any riemannian metric on M, there are constants C > 0 and
A > 0 such that for any time ¢ > 0 and vectors v, € E and v, € E*,

1d' (wss)| < CexpAn)|vss |,

1d¢' ()| Z CexpAD)| vl -
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This kind of flow is rather abundant on 3-manifolds. The main example, which
gave birth to the theory, is the geodesic flow of a compact surface with negative
curvature, acting on the unit tangent bundle of the surface. We refer to [3, 22]
for a general presentation of the theory including a bibliography. Starting from
some Anosov flow and selecting a periodic orbit, one can perform a Dehn
surgery on this closed curve. It turns out that if the surgery is positive, one can
define a flow on the new manifold which is still of Anosov type. Using this
construction, one constructs many examples. For instance, one can construct
Anosov flows on some hyperbolic 3-manifolds (i.e. admitting a metric of
constant negative curvature).

One of the main properties of Anosov flows is that they give rise to two
codimension one foliations. Indeed, it has been shown by Anosov that there
are two codimension one foliations F* and F* whose leaves are everywhere
tangent to E* @ RX and E¥ D] RX. Verjovsky showed that if one lifts the
flow ¢' to the universal cover M of M, the orbits of the resulting flow gb
are the fibers of a (trivial) fibration of M over a surface S (diffeomorphic to
R?). Lifting the two foliations F* and F* to M we get two foliations which
project to two transverse foliations by curves f and f on the surface S. One
says that the flow is R-covered if the leaves of f are the fibers of a (trivial)
fibration p,: S — R, (where R, is homeomorphic to R). It follows that the

leaves of ]75 are also the fibers of a (trivial) fibration p;: § — R;. For instance,
the geodesic flow on a negatively curved surface i1s R-covered. It turns out
that a positive surgery on an R-covered Anosov flow is still R-covered so
that we get many examples. Consider the map (p,,ps): S — R, X R;. Barbot
and Fenley showed independently that this map is bijective if and only if the
Anosov flow is the suspension of some Anosov diffeomorphism of the 2-torus.
In all other cases, they showed that the image of (p,,ps) 1S an open strip in
R, xRy of the form {(x,y) | hA_(x) <y < hy(x)} where h_ and k., are some
homeomorphisms from R, to R;. Now, observe that the fundamental group
I' of the manifold M acts on all these objects so that we get in particular
actions of I' on R, and Ry which are conjugate by 4, and h;. Denote by
7 the composition h,h; ! : this is a homeomorphism of R, which acts freely
so that we can define a circle S! by taking the quotient of R, by the action
of 7. Note that the action of I" on R, obviously commutes with 7 so that
we get an action of T" on S!. In case we start with the geodesic flow of a
negatively curved surface 2, the fundamental group I' is a central extension
of the fundamental group 7(X) by Z. The action of I" that we get on S! is
not faithful: the center Z acts trivially and the induced action of 7(X) on
the circle is of course the familiar projective action. If the R-covered Anosov
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flow is not the geodesic flow (up to a finite cover), the action of T on Sl is
faithful. For instance, we get in this way some examples of faithful actions
of the fundamental group of some hyperbolic 3-manifolds on the circle.
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