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3:1 aet £ 1—\
Preuve de (v). Montrons d’abord qu’il existe un réel 7o > 0 tel que —=
soit borné pour 0 < t < 19.
Supposons que ce n’est pas le cas. Alors, quitte a extraire une sous-suite
que I’on indexe encore par ¢, on peut supposer que

lim (1 _Af> = +00.
t—0 A

Choisissons un gg € G tel que o(go) # 1 et un voisinage ouvert relativement
compact U4 de go dans G tel que

Re (po(g) — 1) < 0O pour tout g € U

et une fonction f € LYG), non nulle, positive et telle que suppf C U.
L’équation (4.3) donne

(Re(271), 1) = (Re(£577), £) o+ (152) (Re(@” ~ 01*). 1)
Gréce au choix de f, on a
lim(Re(3;” — "), f) = (Re(po — 1), ) < 0
et

(R0, 1) <0

Puisque lin(l)(l—*tﬁ) = 400, grace a (4.2) on a
t—

(Rewp,f) = }E%<Re(%—;l),f> —

Comme 1) est continue et f est a support relativement compact, ceci méne 2
une contradiction. On peut donc supposer, quitte & passer A une sous-suite, que

nm(l_”\’) =\,
t—0 A

avec A >0 car \, = (W) < 1.

Ceci termine la preuve de la proposition 4.5. [

4.6 CONSTRUCTIONS GNS

Fixons g € G. En utilisant (3.1) et (4.2), on a

1
(@ by(9) | by(9)) = lim —{2i(g™"xg) — 0i(g™'%) — @ixg) + 0u(x)}

uniformément pour x parcourant les ensembles compacts de G.
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On utilise alors 1’égalité (4.3) pour trouver
(T (x) by(g) ’ by(9))

= 1im {1 (o2¥(g7x0) — (g™ '0) — /¥ (xg) + ) ()

+ (552) (@Y (07 %) — V(g7 — 3V (g) + 3V )

= (122) (6 'x9) — 0V (gD — Vo) + 9 ) }

uniformément pour x parcourant les parties compactes de G. Pour tout ¢ > 0,
soit (H;, s, &) (resp. (H;, 71, €,)) le triple GNS associé a la fonction de type
positif ¢} (resp. &’). En posant

n = %@rt(g) §—&), of =T9E & et B =m@&—&,
on trouve
44 ()b | by(e)) = im{ (m()nf | 7¢)
+ (557) (R af | of)
— (52) (w0 87 | ) |

pour la topologie de la convergence compacte et donc aussi pour la topologie
o(L>, L.

4.7. PROPOSITION. On pose «of = mo(g)&o — &0 on (Ho,mo, &) est le
triple GNS associé a la fonction de type positif o apparaissant dans la
proposition 4.5 (iv). Pour le reste, on conserve les notations précédentes.

(i) 1irr(1)<7?t(.)oztg , of ) = (mo(.)af l o) pour la topologie o(L>°,1L1);
—

(ii) lif%<7rt(.)ﬁf | B7) =0 pour la topologie o(L>®,L');
—

(iii) il existe une sous-suite de ;, toujours indexée par t, et une fonction
de type positif @9 telle que, pour la topologie o(L>®,LY), on ait

im(m () ! | ) = 7.

Preuve. L’assertion (i) est une conséquence du fait que

o =1lim & = lim(7(.) &, | £,)
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pour la topologie o(1L>°, L), et que ¢ = (mo(.)&o | o). Grace a 4.5 (ii) on a
lim(m(.)& | &) =lime” =1
pour la topologie o(L>°,L!), et donc
lim(r,(.) 67 | B7) =0

pour la topologie o(L*°,LY). Enfin, en utilisant la compacité¢ de Eo(G)
pour la topologie o(L*°,L!), on peut extraire une sous-suite telle que
lir% (m(.)m? | n?) existe. On note cette limite 9.  []

f—

En passant a la limite dans (4.4), on écrit

(4.5) (1) by(@) | by(@) = ¢ + A{mo(.) of | of).

Pour chaque g € G, ceci fournit un candidat pour une décomposition du type
(4.1) avec x9 = A(mo(.)af | af). 1l reste a vérifier qu’il existe un élément
g € G tel que la fonction @9 possede les bonnes propriétés.

4.8. PROPOSITION. Si le cocycle b n’est pas un cobord, alors il existe
un élément g € G tel que p9 £ 0.
Preuve. Si @9 =0 pour tout g € G, alors d’une part
[{mu () by(9) | bu@) | o = sup[{my @) by(9) | bu(9))]
= (my(e) by(9) | by(g))
= —2¢(9) = 2||b(@)|I*,
et d’autre part
1o (Dby(9) | byp(@)]], = A(mote) of | of)

= X (mo(g) & — &o I m0(9) &0 — &o)
=2X (1 = Regpo(9))

pour tout g € G. La fonction de type positif ¢y est bornée; 1’égalité

Hb(g)||2 = A(1 — Reyp(g)) implique que b est un cocycle borné sur G,
donc un cobord. [
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Pour la suite, on fixe un élément g € G tel que 9 Z 0.

4.9. PROPOSITION. Les fonctions de type positif (m(.)n? |n?) sont
uniformément bornées pour t > 0, autrement dit

sup sup ‘<7T,()C) n? ] ntg>| < 00.
>0 xeG

Preuve. On a
sup | (myf | )| = (mte)nf | nf) = In? .

On va montrer que (1 | /) est borné pour ¢ > 0. Pour cela, écrivons 1’égalité
(4.4) au point x = e,

[o@I” = tim{ (0 | n) + (15%) (af | af) — (122) (67 | 1)}
On a
(of | of)—(B7 | B7)
- {2 — 2 Re(Fg) &, | 5})} — {2 — 2 Re(ml(g) & | §t>}
=2 Re("(9) - 7" (9)) ,
et les suites

(B2), @@ et |30

sont bornées en ¢. Donc la suite (ny | /) est également bornée.  []

4.10. PROPOSITION. La fonction @9 est limite pour la topologie de la
convergence compacte de combinaisons convexes de fonctions de type positif
associées a des représentations de V.

Preuve. Gréce aux propositions 4.7 (iii) et 4.9, la fonction de type
positif @Y est limite pour la topologie *-faible de fonctions de type positif
uniformément bornées associées aux représentations 7. Ceci implique ([Fell],
Lemma 1.5) qu’il existe une suite ¢, de fonctions de type positif associées
aux représentations m, telle que

w9 = lim 6,

t—0

uniformément sur les compacts de G.
De plus, 7, est la représentation GNS associée a la fonction de type positif
@/ qui, d’apres 4.5 (iii), est limite uniforme sur les compacts de combinaisons
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convexes d’éléments de YWNP(G). Donc les fonctions de type positif associ€es
a m, sont limites uniformes sur les compacts de combinaisons convexes
d’éléments de W N P(G). Finalement, @9 est elle-méme limite uniforme
sur les compacts de combinaisons convexes d’éléments de V = W N P(G).
Comme les fonctions de type positif appartenant a )/ sont associées aux re-
présentations de V, ceci termine la preuve de la proposition.  []

On a donc établi une décomposition de la fonction (my(.)by(9) | by(9))
comme annoncé en 4.1. Ceci termine la preuve du Théoréme. [
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