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On a

(pt= f]dpt(rj)A- / pdpt(p)
Jw JE0(G)\W

— pt(W)p]v + (i — Ht(yv))v]

En posant À, pt(W), on obtient

(4 3) (ft — I
__

Xt pY^ + (1 — Xt) p — 1

t t

_ tpW-î 1 — Xt
+ f~w w\

~PtJ
4.5. PROPOSITION. On conserve les notations précédentes.

(i) lim Xt 1 ;
?—>o

(ii) lim p^ 1 uniformément sur tout compact;

(iii) pour tout t >0, p^ est limite uniforme sur tout compact de
combinaisons convexes d'éléments de V.

De plus, pour une sous-suite de pt que l'on indexe encore par t,
(iv) il existe une fonction po G Eq(G), po ^ 1 telle que lim p^ — p0 pour

la topologie *-faible;

(v) il existe un nombre réel positif X tel que lim — J À
M0V t J

Afin de démontrer cette proposition, nous aurons besoin du lemme suivant.

LEMME. Soit K un compact convexe dans un espace métrisable. Soient

p G ex K un point extrémal de K et pt une suite d'éléments de K telle que

J Pt P- Pour chaque t, on se donne une décomposition de Choquet

Pt= p dpt(rj)
JK

où pt est une mesure de probabilité supportée par qxK. Alors, pour tout
voisinage W de p dans K, on a

limpt (W DexK) 1.
t—>-0

Preuve. L'ensemble M(K) des mesures de probabilité sur K est compact
pour la topologie faible. Il existe donc une sous-suite ß,k de p, qui converge
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faiblement sur K vers une mesure p. La suite pt converge vers tp qui est

un point extrémal, donc

<p= vdßiv)
Jex K

et la mesure ß coïncide avec la mesure de Dirac S^ au point tp (Proposition
26.3 de [Cho]). De plus, toute sous-suite convergente de (ßt) admet 8^
comme limite. Autrement dit, 8^ est l'unique point adhérent de la suite (ßt)
et lim ßt(W) 1 pour tout voisinage W contenant p. La mesure ßt est

supportée par exK, donc

lim ßt(W n exK) 1
f—»•o

comme annoncé.

Preuve de (i). C'est une conséquence du lemme ci-dessus. En effet,

lim ßt(W) lim pt(W D exE0(G)) 1.
i—>o *—>•o

Preuve de (ii). Les fonctions 'p]v et la fonction constante 1 appartiennent
à 1 ensemble E(G) sur lequel les topologies *-faible et de la convergence
compacte coïncident. Il suffit donc de montrer que lim <.pp 1 pour la

topologie ^(L00^1). Pour / e L'ïGj, on a

{ft J)/ (??,/) + I
Jw Je0(G)\W

et

}i(ft,f)=(!,/)•
Le lemme implique que

lim ptÇW) 1 et Jim W) 0,

donc

lim<WV> (1./)

Preuve de (iii). Pour une partie A de Eq(G), on désigne par A l'adhérence
de A dans Eq(G) pour la topologie *-faible et coA son enveloppe convexe.
Posons

Kw := co(W H P(G))

et considérons la mesure /ifw, supportée par W flP(G), donnée par



308 N. LOUVET

w / an w)^ mwT
Ceci détermine une mesure de probabilité sur le compact convexe Kyy telle

que

p=[
J Kw)'Kyv

La proposition 26.3 de [Cho] implique que p^ G Kyy. Autrement dit,
la fonction p^ s'écrit comme limite pour la topologie olI/^L1) de

combinaisons convexes d'éléments de WnP(G). Or p^ appartient à E(G) et

co(WnP(G)) C E(G) sur lequel les topologies de la convergence compacte et
crÇL00,h1) coïncident, donc la fonction p^ s'écrit aussi comme limite pour la
topologie de la convergence compacte de combinaisons convexes d'éléments
de W D P(G).

Preuve de (iv). Comme la suite (p^) est contenue dans E0(G) qui est

compact pour la topologie ^(L00^1), il existe une sous-suite, encore indexée

par t, et un élément p0 G Eo(G) tel que

r ~WIl= p0

pour la topologie faible aÇL00,!}).
Supposons que po 1. En particulier, on peut supposer que les fonctions

(p^ qui apparaissent dans la sous-suite considérée sont toutes non nulles.
Considérons la mesure définie par

pt(A H (E0(G)\W))
(A)

1 - ,_ll(W)
P°Ur A C Eo(G)

Cette mesure est supportée par (£,0(G)\>V) H P(G), et donne pour tout t une

décomposition de Choquet de p^.
Puisque po 1 est un point extrémal, la mesure de probabilité po qui

donne une décomposition de Choquet de po est la mesure de Dirac en 1 et

vérifie

Par conséquent,

ce qui est absurde.

ßo }M/

1 ßo(W) limjiPm 0,
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Preuve de (v). Montrons d'abord qu'il existe un réel to > 0 tel que
soit borné pour 0 < t < to.

Supposons que ce n'est pas le cas. Alors, quitte à extraire une sous-suite

que l'on indexe encore par t, on peut supposer que

lim +°° •

Choisissons un go G G tel que (po(go) 7^ 1 et un voisinage ouvert relativement

compact U de go dans G tel que

Revote) - 1) 0 pour tout g ÇïlA

et une fonction / G L*(G), non nulle, positive et telle que supp/ C U.
L'équation (4.3) donne

(M^T1)./) (r=(^)./> + (^)(R^r - vï"),f)
Grâce au choix de /, on a

Iim(Re(^ - (Re(<A) - l),/> < 0

(Re(ä£zi),/) <o.

Puisque limf-^1) +00, grâce à (4.2) on a

(R ûm(Re(2fi),/) -00.

Comme ip est continue et / est à support relativement compact, ceci mène à

une contradiction. On peut donc supposer, quitte à passer à une sous-suite, que

avec A > 0 car \t/xt(W) < 1.

Ceci termine la preuve de la proposition 4.5.

4.6 Constructions GNS

Fixons gG G. En utilisant (3.1) et (4.2), on a

b,jj(g) I b^(g)j lim ~{<Pt(g— — <pt(xg) + (p,(x)\

uniformément pour jc parcourant les ensembles compacts de G.
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