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306 . N. LOUVET

On a

Qo = / ndu(n) + / 1 d (1)
W Eo(G)\W

= uMe” + (1 = OV .
En posant A\, = 1,(W), on obtient

o — 1 :)\twg/v‘f“(l“)\t)&yv‘_l
t t

W_1 1=\ /_
:‘Pft + Z’(sotw—sotw).

(4.3)

4.5. PROPOSITION. On conserve les notations précédentes.
(1) limA =1;
t—0
(i) }1_{% 0V =1 uniformément sur tout compact;
(iii) pour tout t > 0, !V est limite uniforme sur tout compact de

combinaisons convexes d’éléments de V.
De plus, pour une sous-suite de @, que I’on indexe encore par t,

(iv) il existe une fonction @, € Eo(G), @o Z 1 telle que lir% 62/\} = @y pour
—
la topologie x-faible;

t—0

1—A
(v) il existe un nombre réel positif \ tel que lim ( " t) = A

Afin de démontrer cette proposition, nous aurons besoin du lemme suivant.

LEMME. Soit K un compact convexe dans un espace métrisable. Soient
@ € exK un point extrémal de K et ¢; une suite d’éléments de K telle que
Iir% ¢ = . Pour chaque t, on se donne une décomposition de Choquet
t— .

0 = / n d (1)
K

ou [i; est une mesure de probabilité supportée par exK. Alors, pour tout
voisinage VYV de ¢ dans K, on a

lingut(WﬂexK) =1.
—

Preuve. L’ensemble M(K) des mesures de probabilité sur K est compact
pour la topologie faible. Il existe donc une sous-suite u, de u, qui converge
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faiblement sur K vers une mesure p. La suite ¢, converge vers ¢ qui est

un point extrémal, donc
Q= / ndu(n)
ex K

et la mesure p coincide avec la mesure de Dirac d,, au point ¢ (Proposition
26.3 de [Cho]). De plus, toute sous-suite convergente de (u,) admet 0
comme limite. Autrement dit, d, est ’unique point adhérent de la suite (u,)
et }516 (W) = 1 pour tout voisinage VW contenant . La mesure u, est

supportée par ex K, donc
liII(l) uWnexK) =1
—

comme annoncé. [

Preuve de (i). C’est une conséquence du lemme ci-dessus. En effet,

lir% w (W) = }ing (W Nex Eg(G)) = 1.
— —

Preuve de (ii). Les fonctions ¢!V et la fonction constante 1 appartiennent

a I'ensemble E(G) sur lequel les topologies *-faible et de la convergence

compacte coincident. Il suffit donc de montrer que lin(% 0 =1 pour la
[—>

topologie o(L*°,L!). Pour f € L}(G), on a

(i f) = /W (0, dp(n) + / (0, dpe(m)

Eo(G\W
et

lim (i1,f) = (1,).
Le lemme implique que

limpOV) =1 et limu(E(G)\W) =0,

donc

|

Eo(G)\W

(n,f) dm(n)) =(1,f).

Preuve de (iii). Pour une partic A de Ey(G), on désigne par A 1’adhérence

de A dans Ey(G) pour la topologie -faible et coA son enveloppe convexe.
Posons

Ky = co(W N P(G))

et considérons la mesure )Y, supportée par W N P(G), donnée par
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_ (AN W)
(V)

Ceci détermine une mesure de probabilité sur le compact convexe Ky telle
que

1V (A) pour A C Ey(G) .

soth/ ndw” ).
Kw

La proposition 26.3 de [Cho] implique que )Y € Kjy. Autrement dit,
la fonction ¢!Y s’écrit comme limite pour la topologie o(L>®°,L!) de
combinaisons convexes d’éléments de WNP(G). Or ¢!V appartient 3 E(G) et
coWWNP(G)) C E(G) sur lequel les topologies de la convergence compacte et
o(L*°, L") coincident, donc la fonction ¢!V s’écrit aussi comme limite pour la
topologie de la convergence compacte de combinaisons convexes d’éléments
de W N P(G).

Preuve de (iv). Comme la suite (&2/\}) est contenue dans Ey(G) qui est
compact pour la topologie o(L°°,L!), il existe une sous-suite, encore indexée
par ¢, et un élément g € Ey(G) tel que

lim ;" = o
t—0
pour la topologie faible o(L>°,L!).
Supposons que o = 1. En particulier, on peut supposer que les fonctions
(;2/\/ qui apparaissent dans la sous-suite considérée sont toutes non nulles.

Considérons la mesure ﬁtw définie par

(A N (Eo(G\W))

~W .
pe (A) = 1= OV

pour A C Ey(G) .

Cette mesure est supportée par (Eo(G)\W) N P(G), et donne pouf tout ¢ une
décomposition de Choquet de thW. :

Puisque 9 = 1 est un point extrémal, la mesure de probabilité o qui
donne une décomposition de Choquet de ¢y est la mesure de Dirac en 1 et
vérifie

S 7Y
po = lim i, ~ .

Par conséquent,
L= po(W) = lim " W) =0,

ce qui est absurde.
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3:1 aet £ 1—\
Preuve de (v). Montrons d’abord qu’il existe un réel 7o > 0 tel que —=
soit borné pour 0 < t < 19.
Supposons que ce n’est pas le cas. Alors, quitte a extraire une sous-suite
que I’on indexe encore par ¢, on peut supposer que

lim (1 _Af> = +00.
t—0 A

Choisissons un gg € G tel que o(go) # 1 et un voisinage ouvert relativement
compact U4 de go dans G tel que

Re (po(g) — 1) < 0O pour tout g € U

et une fonction f € LYG), non nulle, positive et telle que suppf C U.
L’équation (4.3) donne

(Re(271), 1) = (Re(£577), £) o+ (152) (Re(@” ~ 01*). 1)
Gréce au choix de f, on a
lim(Re(3;” — "), f) = (Re(po — 1), ) < 0
et

(R0, 1) <0

Puisque lin(l)(l—*tﬁ) = 400, grace a (4.2) on a
t—

(Rewp,f) = }E%<Re(%—;l),f> —

Comme 1) est continue et f est a support relativement compact, ceci méne 2
une contradiction. On peut donc supposer, quitte & passer A une sous-suite, que

nm(l_”\’) =\,
t—0 A

avec A >0 car \, = (W) < 1.

Ceci termine la preuve de la proposition 4.5. [

4.6 CONSTRUCTIONS GNS

Fixons g € G. En utilisant (3.1) et (4.2), on a

1
(@ by(9) | by(9)) = lim —{2i(g™"xg) — 0i(g™'%) — @ixg) + 0u(x)}

uniformément pour x parcourant les ensembles compacts de G.
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