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/M [ f(y)dp(y)
Jk

pour toute forme linéaire continue / sur F ([Cho], proposition 26.3).

Réciproquement, tout élément x de K peut être représenté de cette manière.

En effet, pour tout x G K il existe une mesure de probabilité p sur K,
supportée par qxK, telle que

x / ydfiiy)
Jk

au sens *-faible. Une telle décomposition est appelée décomposition de Choquet
du point x (voir [Cho], Theorem 27.6). Dans le cas où x est lui-même un

point extrémal, la mesure p qui donne une décomposition de Choquet du

point x est unique et donnée par la mesure de Dirac Sx au point x ([Cho],
proposition 26.3). En particulier, pour l'ensemble Eo(G) défini au numéro

3.2, il existe pour tout t > 0 une mesure de probabilité pt supportée par
P(G) U {0} telle que

(pt= Vdptip)
Je0(G)

au sens faible c^L00^1), c'est-à-dire au sens où

CFtJ) [ (v,f) dpt(rj)
Je0(G)

pour tout / G L^G) (voir [Dix], proposition 13.6.8).

4.4 Localisation

On note V le voisinage de la fonction 1 dans P(G) qui est l'image inverse
de V par l'application

P(G) —¥ G : ip i—» Wtp

On va décomposer les fonctions de type positif cpt de la façon suivante. Soit
W un voisinage de la fonction constante 1 dans E0(G) tel que V WflP(G).
Puisque 1, on peut supposer grâce au lemme ci-dessous que

Ah(W) 7^ 0. On définit

St
1 f

{ 0 sinon.
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On a

(pt= f]dpt(rj)A- / pdpt(p)
Jw JE0(G)\W

— pt(W)p]v + (i — Ht(yv))v]

En posant À, pt(W), on obtient

(4 3) (ft — I
__

Xt pY^ + (1 — Xt) p — 1

t t

_ tpW-î 1 — Xt
+ f~w w\

~PtJ
4.5. PROPOSITION. On conserve les notations précédentes.

(i) lim Xt 1 ;
?—>o

(ii) lim p^ 1 uniformément sur tout compact;

(iii) pour tout t >0, p^ est limite uniforme sur tout compact de
combinaisons convexes d'éléments de V.

De plus, pour une sous-suite de pt que l'on indexe encore par t,
(iv) il existe une fonction po G Eq(G), po ^ 1 telle que lim p^ — p0 pour

la topologie *-faible;

(v) il existe un nombre réel positif X tel que lim — J À
M0V t J

Afin de démontrer cette proposition, nous aurons besoin du lemme suivant.

LEMME. Soit K un compact convexe dans un espace métrisable. Soient

p G ex K un point extrémal de K et pt une suite d'éléments de K telle que

J Pt P- Pour chaque t, on se donne une décomposition de Choquet

Pt= p dpt(rj)
JK

où pt est une mesure de probabilité supportée par qxK. Alors, pour tout
voisinage W de p dans K, on a

limpt (W DexK) 1.
t—>-0

Preuve. L'ensemble M(K) des mesures de probabilité sur K est compact
pour la topologie faible. Il existe donc une sous-suite ß,k de p, qui converge
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