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4.2 CONCLUDING REMARKS

It would be interesting to provide discrete analogues of other “4-vertex
type” theorems known in the smooth case, and to find their specifically discrete
proofs. We give two examples.

The following statement is a discrete version of the celebrated Mobius
theorem (in dimension 2, “flattening” means “inflection”) — see [9]:

An embedded non-contractible closed polygon in RP? has at least 3
flattenings.

The notion of flattening for a polygonal line extends, in an obvious way,
from RP? to the sphere S?. One has the following statement:

An embedded closed polygon in S? bisecting the area has at least 4
flattenings.

In the smooth case this was proved by B. Segre [14] and by V. Arnold
(see [1, 2)]).

We are confident that these statements hold true and can be proved in a
similar way as in the smooth case. However, a detailed discussion would go
beyond the limits of this article.

In conclusion, let us formulate a conjecture. For k > d 4+ 2 the following
statement is stronger than Theorem 3.11.

CONJECTURE 4.2. A strictly convex polygon in RP? that intersects a
hyperplane with multiplicity k has at least k flattenings.

In the smooth case this is precisely Barner’s result in full generality [3].
Conjecture 4.2 would imply strengthenings of Theorems 2.2, 2.6 and 2.10 —
see [15] for the smooth case. For instance, the following result would hold.

Let X and Y be two n-tuples of points in RP! (see Section 2.3 ). If the
closed broken line ((xl,yl), (x2,¥2), . .. ,(xn,yn)) in RP! x RP! intersects the
graph of a projective transformation with multiplicity k, then there exist at
least k extremal triples of indices.
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