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304 N. LOUVET

le support de p est contenu dans l'adhérence de V pour la topologie de
Fell. La décomposition (4.1) montre que p est une sous-représentation de la
représentation GNS associée à ip9, qui est elle-même une sous-représentation
de 7T0 ; et est une sous-représentation de 7r ©7f. Quitte à échanger les
rôles de tt et W (ce qui peut se faire sans perte de généralité car H1 (G, tt) ^ 0
si et seulement si H1 (G, tt) ^ 0 et supp7r c cor G si et seulement si
supp7r c cor G), on peut supposer que p possède une sous-représentation
a qui est équivalente à une sous-représentation de ir.

Le support de a est dans l'adhérence de V, puisqu'il est contenu dans le
support de p. Comme 7r est une représentation factorielle, a et 7r sont quasi-
équivalentes (proposition 5.3.5 de [Dix]), d'où il résulte que leurs supports
coïncident. Par suite

Ceci étant vrai pour tout choix de V, le support de ir est contenu dans le
cortex de G.

4.2 Théorème de Schoenberg

Soit ip une fonction conditionnellement de type positif sur un groupe G.
Pour tout nombre réel t > 0, la fonction (pt définie par

avec des limites au sens de la topologie de la convergence compacte (voir par
exemple le théorème 5.16 de [HaVa]).

4.3 Décomposition de Choquet

On dit qu'une mesure p, sur un espace Q est supportée par une partie
mesurable A c Q si p(Q\A) 0.

Soit F un espace vectoriel topologique localement convexe séparé et
métrisable et K une partie convexe et compacte de F. On note ex F l'ensemble
des points extrémaux de K. Une mesure de probabilité p supportée par ex F
détermine un unique élément x G K donné par la formule

SUpp 7T supp a c V.

<P,(9) e'^9)

est de type positif. De plus,

(4.2)

yd/j,(y),
Jk

entendue au sens *-faible, c'est-à-dire au sens où
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