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note 7 la représentation conjuguée de w dans ’espace de Hilbert conjugué
H et b le 1-cocycle a coefficients dans 7 correspondant a b. On peut alors
réaliser (Hy,my,by) de la facon suivante: le cocycle by est donné par
by(g) = b(g) + b(g), 'espace H,, est le sous-espace réel fermé de H & H
engendré par by (G), et my est la sous-représentation de 7 @ 7 obtenue en
restreignant ’action de m @ 7 au sous-espace réel invariant H,, (voir [Del],
remarque V.3). De plus, pour tous x,g € G, on a I’égalité

B.D) {7y by(g) | by(9)) = Y(g™ xg) — (g™ ') — P(xg) + P(x) .

4. PREUVE DU THEOREME

Soient 7 une représentation factorielle du groupe G telle que
HY(G,7)#0

et b un 1-cocycle continu a coefficients dans 7 qui n’est pas un cobord. Il
s’agit de montrer que le support de 7 est contenu dans le cortex de G.

4.1 STRATEGIE

On considere la fonction conditionnellement de type positif ¢: G — R
définie par

P(x) = — || b

et le triple GNS (Hy, 7y, by) correspondant.
Pour tout g € G on a une fonction

Y. G— C:x+— <7r¢(x) by (9) ‘ b¢(g)>

qui est de type positif et qu’on va décomposer en une somme
4.1) P9 = @9 + x9

de deux fonctions de type positif (proposition 4.7).
Soit V un voisinage de 15 dans G. En utilisant I’hypothese que b n’est
| pas un cobord, nous montrons qu’il existe g € G tel que la fonction 9
est non nulle (proposition 4.8) et limite pour la topologie de la convergence
compacte de combinaisons linéaires de fonctions de type positif associées 2
| des représentations de V (proposition 4.10).
La fin de la preuve est alors standard, et se déroule comme suit. Soit
(K, p, &) le triple GNS défini par 9. Il résulte de ’assertion ci-dessus que
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le support de p est contenu dans 1’adhérence de YV pour la topologie de
Fell. La décomposition (4.1) montre que p est une sous-représentation de la
représentation GNS associée 2 9, qui est elle-méme une sous-représentation
de my; et my est une sous-représentation de T @ 7. Quitte a échanger les
roles de 7 et 7 (ce qui peut se faire sans perte de généralité car H (G, m) # 0
si et seulement si HY(G,7) # 0 et suppmt C corG si et seulement si
suppm C corG), on peut supposer que p posséde une sous-représentation
o qui est équivalente 2 une sous-représentation de .

Le support de o est dans 1’adhérence de V, puisqu’il est contenu dans le
support de p. Comme 7 est une représentation factorielle, o et 7 sont quasi-
équivalentes (proposition 5.3.5 de [Dix]), d’ou il résulte que leurs supports
coincident. Par suite .

supp T = suppo C V.

Ceci étant vrai pour tout choix de V, le support de 7 est contenu dans le
cortex de G.

4.2 THEOREME DE SCHOENBERG

Soit % une fonction conditionnellement de type positif sur un groupe G.
Pour tout nombre réel ¢t > 0, la fonction ¢, définie par

pi(g) = ™9

est de type positif. De plus,

. . . SOt_l_
4.2) limp =1 et limZ— =

avec des limites au sens de la topologie de la convergence compacte (voir par
exemple le théoreme 5.16 de [HaVa)).

-

4.3 DECOMPOSITION DE CHOQUET

On dit qu'une mesure y sur un espace Q est supportée par une partie
mesurable A C Q si u(Q\A)=0.

Soit F un espace vectoriel topologique localement convexe séparé et
métrisable et K une partie convexe et compacte de F. On note ex K 1’ensemble
des points extrémaux de K. Une mesure de probabilité p supportée par ex K
détermine un unique élément x € K donné par la formule

x=/ydu(y),
K

entendue au sens x-faible, ¢’est-a-dire au sens ou
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