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note 7 la représentation conjuguée de w dans ’espace de Hilbert conjugué
H et b le 1-cocycle a coefficients dans 7 correspondant a b. On peut alors
réaliser (Hy,my,by) de la facon suivante: le cocycle by est donné par
by(g) = b(g) + b(g), 'espace H,, est le sous-espace réel fermé de H & H
engendré par by (G), et my est la sous-représentation de 7 @ 7 obtenue en
restreignant ’action de m @ 7 au sous-espace réel invariant H,, (voir [Del],
remarque V.3). De plus, pour tous x,g € G, on a I’égalité

B.D) {7y by(g) | by(9)) = Y(g™ xg) — (g™ ') — P(xg) + P(x) .

4. PREUVE DU THEOREME

Soient 7 une représentation factorielle du groupe G telle que
HY(G,7)#0

et b un 1-cocycle continu a coefficients dans 7 qui n’est pas un cobord. Il
s’agit de montrer que le support de 7 est contenu dans le cortex de G.

4.1 STRATEGIE

On considere la fonction conditionnellement de type positif ¢: G — R
définie par

P(x) = — || b

et le triple GNS (Hy, 7y, by) correspondant.
Pour tout g € G on a une fonction

Y. G— C:x+— <7r¢(x) by (9) ‘ b¢(g)>

qui est de type positif et qu’on va décomposer en une somme
4.1) P9 = @9 + x9

de deux fonctions de type positif (proposition 4.7).
Soit V un voisinage de 15 dans G. En utilisant I’hypothese que b n’est
| pas un cobord, nous montrons qu’il existe g € G tel que la fonction 9
est non nulle (proposition 4.8) et limite pour la topologie de la convergence
compacte de combinaisons linéaires de fonctions de type positif associées 2
| des représentations de V (proposition 4.10).
La fin de la preuve est alors standard, et se déroule comme suit. Soit
(K, p, &) le triple GNS défini par 9. Il résulte de ’assertion ci-dessus que
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le support de p est contenu dans 1’adhérence de YV pour la topologie de
Fell. La décomposition (4.1) montre que p est une sous-représentation de la
représentation GNS associée 2 9, qui est elle-méme une sous-représentation
de my; et my est une sous-représentation de T @ 7. Quitte a échanger les
roles de 7 et 7 (ce qui peut se faire sans perte de généralité car H (G, m) # 0
si et seulement si HY(G,7) # 0 et suppmt C corG si et seulement si
suppm C corG), on peut supposer que p posséde une sous-représentation
o qui est équivalente 2 une sous-représentation de .

Le support de o est dans 1’adhérence de V, puisqu’il est contenu dans le
support de p. Comme 7 est une représentation factorielle, o et 7 sont quasi-
équivalentes (proposition 5.3.5 de [Dix]), d’ou il résulte que leurs supports
coincident. Par suite .

supp T = suppo C V.

Ceci étant vrai pour tout choix de V, le support de 7 est contenu dans le
cortex de G.

4.2 THEOREME DE SCHOENBERG

Soit % une fonction conditionnellement de type positif sur un groupe G.
Pour tout nombre réel ¢t > 0, la fonction ¢, définie par

pi(g) = ™9

est de type positif. De plus,

. . . SOt_l_
4.2) limp =1 et limZ— =

avec des limites au sens de la topologie de la convergence compacte (voir par
exemple le théoreme 5.16 de [HaVa)).

-

4.3 DECOMPOSITION DE CHOQUET

On dit qu'une mesure y sur un espace Q est supportée par une partie
mesurable A C Q si u(Q\A)=0.

Soit F un espace vectoriel topologique localement convexe séparé et
métrisable et K une partie convexe et compacte de F. On note ex K 1’ensemble
des points extrémaux de K. Une mesure de probabilité p supportée par ex K
détermine un unique élément x € K donné par la formule

x=/ydu(y),
K

entendue au sens x-faible, ¢’est-a-dire au sens ou
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£ = /K £0) du)

pour toute forme linéaire continue f sur F ([Cho], proposition 26.3).
Réciproquement, tout élément x de K peut étre représenté de cette maniere.
En effet, pour tout x € K il existe une mesure de probabilit€ p sur K,
supportée par ex K, telle que

%= /ydu(y)
K

au sens x-faible. Une telle décomposition est appelée décomposition de Choquet
du point x (voir [Cho], Theorem 27.6). Dans le cas ou x est lui-méme un
B point extrémal, la mesure p qui donne une décomposition de Choquet du
point x est unique et donnée par la mesure de Dirac ¢, au point x ([Cho],
proposition 26.3). En particulier, pour 1’ensemble Ey(G) défini au numéro
| 3.2, il existe pour tout ¢ > 0 une mesure de probabilité p, supportée par

¥ P(G)U {0} telle que
Pr :/ n d (1)
Ey(G)

| au sens faible o(L*°,L!), c’est-a-dire au sens ou

Ey(G)
§ pour tout f € LYG) (voir [Dix], proposition 13.6.8).

§ 44 LOCALISATION

On note V' le voisinage de la fonction 1 dans P(G) qui est I'image inverse
§ de V par I’application

P(G) — G: O Ty, .

On va décomposer les fonctions de type positif ¢, de la facon suivante. Soit
VW un voisinage de la fonction constante 1 dans Ey(G) tel que ¥V = WNP(G).
Puisque }ir% ¢ = 1, on peut supposer grice au lemme ci-dessous que
¥ 1.0V) #0. On définit

w 1 /
r d t
® o) Wn (1)

et
' 1

et PREAZYVN du(n) si p,(W 1
3 =) 1= mow) EO(G)\WU pe(n wOV) #
0 sinon.
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On a

Qo = / ndu(n) + / 1 d (1)
W Eo(G)\W

= uMe” + (1 = OV .
En posant A\, = 1,(W), on obtient

o — 1 :)\twg/v‘f“(l“)\t)&yv‘_l
t t

W_1 1=\ /_
:‘Pft + Z’(sotw—sotw).

(4.3)

4.5. PROPOSITION. On conserve les notations précédentes.
(1) limA =1;
t—0
(i) }1_{% 0V =1 uniformément sur tout compact;
(iii) pour tout t > 0, !V est limite uniforme sur tout compact de

combinaisons convexes d’éléments de V.
De plus, pour une sous-suite de @, que I’on indexe encore par t,

(iv) il existe une fonction @, € Eo(G), @o Z 1 telle que lir% 62/\} = @y pour
—
la topologie x-faible;

t—0

1—A
(v) il existe un nombre réel positif \ tel que lim ( " t) = A

Afin de démontrer cette proposition, nous aurons besoin du lemme suivant.

LEMME. Soit K un compact convexe dans un espace métrisable. Soient
@ € exK un point extrémal de K et ¢; une suite d’éléments de K telle que
Iir% ¢ = . Pour chaque t, on se donne une décomposition de Choquet
t— .

0 = / n d (1)
K

ou [i; est une mesure de probabilité supportée par exK. Alors, pour tout
voisinage VYV de ¢ dans K, on a

lingut(WﬂexK) =1.
—

Preuve. L’ensemble M(K) des mesures de probabilité sur K est compact
pour la topologie faible. Il existe donc une sous-suite u, de u, qui converge
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faiblement sur K vers une mesure p. La suite ¢, converge vers ¢ qui est

un point extrémal, donc
Q= / ndu(n)
ex K

et la mesure p coincide avec la mesure de Dirac d,, au point ¢ (Proposition
26.3 de [Cho]). De plus, toute sous-suite convergente de (u,) admet 0
comme limite. Autrement dit, d, est ’unique point adhérent de la suite (u,)
et }516 (W) = 1 pour tout voisinage VW contenant . La mesure u, est

supportée par ex K, donc
liII(l) uWnexK) =1
—

comme annoncé. [

Preuve de (i). C’est une conséquence du lemme ci-dessus. En effet,

lir% w (W) = }ing (W Nex Eg(G)) = 1.
— —

Preuve de (ii). Les fonctions ¢!V et la fonction constante 1 appartiennent

a I'ensemble E(G) sur lequel les topologies *-faible et de la convergence

compacte coincident. Il suffit donc de montrer que lin(% 0 =1 pour la
[—>

topologie o(L*°,L!). Pour f € L}(G), on a

(i f) = /W (0, dp(n) + / (0, dpe(m)

Eo(G\W
et

lim (i1,f) = (1,).
Le lemme implique que

limpOV) =1 et limu(E(G)\W) =0,

donc

|

Eo(G)\W

(n,f) dm(n)) =(1,f).

Preuve de (iii). Pour une partic A de Ey(G), on désigne par A 1’adhérence

de A dans Ey(G) pour la topologie -faible et coA son enveloppe convexe.
Posons

Ky = co(W N P(G))

et considérons la mesure )Y, supportée par W N P(G), donnée par
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_ (AN W)
(V)

Ceci détermine une mesure de probabilité sur le compact convexe Ky telle
que

1V (A) pour A C Ey(G) .

soth/ ndw” ).
Kw

La proposition 26.3 de [Cho] implique que )Y € Kjy. Autrement dit,
la fonction ¢!Y s’écrit comme limite pour la topologie o(L>®°,L!) de
combinaisons convexes d’éléments de WNP(G). Or ¢!V appartient 3 E(G) et
coWWNP(G)) C E(G) sur lequel les topologies de la convergence compacte et
o(L*°, L") coincident, donc la fonction ¢!V s’écrit aussi comme limite pour la
topologie de la convergence compacte de combinaisons convexes d’éléments
de W N P(G).

Preuve de (iv). Comme la suite (&2/\}) est contenue dans Ey(G) qui est
compact pour la topologie o(L°°,L!), il existe une sous-suite, encore indexée
par ¢, et un élément g € Ey(G) tel que

lim ;" = o
t—0
pour la topologie faible o(L>°,L!).
Supposons que o = 1. En particulier, on peut supposer que les fonctions
(;2/\/ qui apparaissent dans la sous-suite considérée sont toutes non nulles.

Considérons la mesure ﬁtw définie par

(A N (Eo(G\W))

~W .
pe (A) = 1= OV

pour A C Ey(G) .

Cette mesure est supportée par (Eo(G)\W) N P(G), et donne pouf tout ¢ une
décomposition de Choquet de thW. :

Puisque 9 = 1 est un point extrémal, la mesure de probabilité o qui
donne une décomposition de Choquet de ¢y est la mesure de Dirac en 1 et
vérifie

S 7Y
po = lim i, ~ .

Par conséquent,
L= po(W) = lim " W) =0,

ce qui est absurde.
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3:1 aet £ 1—\
Preuve de (v). Montrons d’abord qu’il existe un réel 7o > 0 tel que —=
soit borné pour 0 < t < 19.
Supposons que ce n’est pas le cas. Alors, quitte a extraire une sous-suite
que I’on indexe encore par ¢, on peut supposer que

lim (1 _Af> = +00.
t—0 A

Choisissons un gg € G tel que o(go) # 1 et un voisinage ouvert relativement
compact U4 de go dans G tel que

Re (po(g) — 1) < 0O pour tout g € U

et une fonction f € LYG), non nulle, positive et telle que suppf C U.
L’équation (4.3) donne

(Re(271), 1) = (Re(£577), £) o+ (152) (Re(@” ~ 01*). 1)
Gréce au choix de f, on a
lim(Re(3;” — "), f) = (Re(po — 1), ) < 0
et

(R0, 1) <0

Puisque lin(l)(l—*tﬁ) = 400, grace a (4.2) on a
t—

(Rewp,f) = }E%<Re(%—;l),f> —

Comme 1) est continue et f est a support relativement compact, ceci méne 2
une contradiction. On peut donc supposer, quitte & passer A une sous-suite, que

nm(l_”\’) =\,
t—0 A

avec A >0 car \, = (W) < 1.

Ceci termine la preuve de la proposition 4.5. [

4.6 CONSTRUCTIONS GNS

Fixons g € G. En utilisant (3.1) et (4.2), on a

1
(@ by(9) | by(9)) = lim —{2i(g™"xg) — 0i(g™'%) — @ixg) + 0u(x)}

uniformément pour x parcourant les ensembles compacts de G.
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On utilise alors 1’égalité (4.3) pour trouver
(T (x) by(g) ’ by(9))

= 1im {1 (o2¥(g7x0) — (g™ '0) — /¥ (xg) + ) ()

+ (552) (@Y (07 %) — V(g7 — 3V (g) + 3V )

= (122) (6 'x9) — 0V (gD — Vo) + 9 ) }

uniformément pour x parcourant les parties compactes de G. Pour tout ¢ > 0,
soit (H;, s, &) (resp. (H;, 71, €,)) le triple GNS associé a la fonction de type
positif ¢} (resp. &’). En posant

n = %@rt(g) §—&), of =T9E & et B =m@&—&,
on trouve
44 ()b | by(e)) = im{ (m()nf | 7¢)
+ (557) (R af | of)
— (52) (w0 87 | ) |

pour la topologie de la convergence compacte et donc aussi pour la topologie
o(L>, L.

4.7. PROPOSITION. On pose «of = mo(g)&o — &0 on (Ho,mo, &) est le
triple GNS associé a la fonction de type positif o apparaissant dans la
proposition 4.5 (iv). Pour le reste, on conserve les notations précédentes.

(i) 1irr(1)<7?t(.)oztg , of ) = (mo(.)af l o) pour la topologie o(L>°,1L1);
—

(ii) lif%<7rt(.)ﬁf | B7) =0 pour la topologie o(L>®,L');
—

(iii) il existe une sous-suite de ;, toujours indexée par t, et une fonction
de type positif @9 telle que, pour la topologie o(L>®,LY), on ait

im(m () ! | ) = 7.

Preuve. L’assertion (i) est une conséquence du fait que

o =1lim & = lim(7(.) &, | £,)
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pour la topologie o(1L>°, L), et que ¢ = (mo(.)&o | o). Grace a 4.5 (ii) on a
lim(m(.)& | &) =lime” =1
pour la topologie o(L>°,L!), et donc
lim(r,(.) 67 | B7) =0

pour la topologie o(L*°,LY). Enfin, en utilisant la compacité¢ de Eo(G)
pour la topologie o(L*°,L!), on peut extraire une sous-suite telle que
lir% (m(.)m? | n?) existe. On note cette limite 9.  []

f—

En passant a la limite dans (4.4), on écrit

(4.5) (1) by(@) | by(@) = ¢ + A{mo(.) of | of).

Pour chaque g € G, ceci fournit un candidat pour une décomposition du type
(4.1) avec x9 = A(mo(.)af | af). 1l reste a vérifier qu’il existe un élément
g € G tel que la fonction @9 possede les bonnes propriétés.

4.8. PROPOSITION. Si le cocycle b n’est pas un cobord, alors il existe
un élément g € G tel que p9 £ 0.
Preuve. Si @9 =0 pour tout g € G, alors d’une part
[{mu () by(9) | bu@) | o = sup[{my @) by(9) | bu(9))]
= (my(e) by(9) | by(g))
= —2¢(9) = 2||b(@)|I*,
et d’autre part
1o (Dby(9) | byp(@)]], = A(mote) of | of)

= X (mo(g) & — &o I m0(9) &0 — &o)
=2X (1 = Regpo(9))

pour tout g € G. La fonction de type positif ¢y est bornée; 1’égalité

Hb(g)||2 = A(1 — Reyp(g)) implique que b est un cocycle borné sur G,
donc un cobord. [
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Pour la suite, on fixe un élément g € G tel que 9 Z 0.

4.9. PROPOSITION. Les fonctions de type positif (m(.)n? |n?) sont
uniformément bornées pour t > 0, autrement dit

sup sup ‘<7T,()C) n? ] ntg>| < 00.
>0 xeG

Preuve. On a
sup | (myf | )| = (mte)nf | nf) = In? .

On va montrer que (1 | /) est borné pour ¢ > 0. Pour cela, écrivons 1’égalité
(4.4) au point x = e,

[o@I” = tim{ (0 | n) + (15%) (af | af) — (122) (67 | 1)}
On a
(of | of)—(B7 | B7)
- {2 — 2 Re(Fg) &, | 5})} — {2 — 2 Re(ml(g) & | §t>}
=2 Re("(9) - 7" (9)) ,
et les suites

(B2), @@ et |30

sont bornées en ¢. Donc la suite (ny | /) est également bornée.  []

4.10. PROPOSITION. La fonction @9 est limite pour la topologie de la
convergence compacte de combinaisons convexes de fonctions de type positif
associées a des représentations de V.

Preuve. Gréce aux propositions 4.7 (iii) et 4.9, la fonction de type
positif @Y est limite pour la topologie *-faible de fonctions de type positif
uniformément bornées associées aux représentations 7. Ceci implique ([Fell],
Lemma 1.5) qu’il existe une suite ¢, de fonctions de type positif associées
aux représentations m, telle que

w9 = lim 6,

t—0

uniformément sur les compacts de G.
De plus, 7, est la représentation GNS associée a la fonction de type positif
@/ qui, d’apres 4.5 (iii), est limite uniforme sur les compacts de combinaisons
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convexes d’éléments de YWNP(G). Donc les fonctions de type positif associ€es
a m, sont limites uniformes sur les compacts de combinaisons convexes
d’éléments de W N P(G). Finalement, @9 est elle-méme limite uniforme
sur les compacts de combinaisons convexes d’éléments de V = W N P(G).
Comme les fonctions de type positif appartenant a )/ sont associées aux re-
présentations de V, ceci termine la preuve de la proposition.  []

On a donc établi une décomposition de la fonction (my(.)by(9) | by(9))
comme annoncé en 4.1. Ceci termine la preuve du Théoréme. [

REFERENCES

[BeHa] BEKKA, M. et P. DE LA HARPE. Représentations d’un groupe faiblement
€quivalentes a la représentation réguliere. Bull. Soc. Math. France 122
(1994), 333-342.

[BeKa]  BEKKA, M. et E. KANIUTH. Irreducible representations of locally compact
groups that cannot be Hausdorff separated from the identity represen-
tation. J. reine angew. Math. 385 (1988), 203-220.

[BeLo] BEKKA, M. et N. LOUVET. On a variant of Kazhdan’s property (T) for
subgroups of semisimple groups. Ann. Inst. Fourier (Grenoble) 47
(1997), 1065-1078.

[BLM]  BOIDOL, J., J. LUDWIG et D. MULLER. On infinitely small orbits. Studia Math.
88 (1988), 1-11.

[CoSt]  COWLING, M. et T. STEGER. The irreducibility of restrictions of unitary
representations to lattices. J. reine angew. Math. 420 (1991), 85-98.

[Cho] CHOQUET, G. Lectures on Analysis, Vol. 2. W. A. Benjamin, 1969.

[Dav] DAVIDSON, K.R. C*-Algebras by Example. Fields Institute Monographs 6.
Amer. Math. Soc., 1996.

[Del] DELORME, P. 1-cohomologie des représentations unitaires des groupes de
Lie semi-simples et résolubles — Produits tensoriels continus de
représentations. Bull. Soc. Math. France 105 (1977), 281-336.

[Dix] DIXMIER, J. Les C*-algébres et leurs représentations. Gauthier-Villars, 1969.

[Fell] FELL, J.M. G. The dual spaces of C*-algebras. Trans. Amer. Math. Soc. 94
(1960), 365-403.

[Fel2] —— Weak containment and induced representations of groups. Canad. J.
Math. 14 (1962), 237-268.

[Guil] GUICHARDET, A. Cohomologie des groupes localement compacts et produits
tensoriels continus de représentations. J. Multivariate Anal. 6 (1976),
138-158.

[Gui2] ~ —— Sur la cohomologie des groupes topologiques II. Bull. Sci. Math. (2)
96 (1972), 305-332.
[HaVa] DE LA HARPE, P. et A. VALETTE. La propriété (T) de Kazhdan pour les

groupes localement compacts. Astérisque 175. Soc. Math. de France,
1989.




	4. Preuve du théorème
	4.1 Stratégie
	4.2 Théorème de Schoenberg
	4.3 DÉCOMPOSITION DE CHOQUET
	4.4 Localisation
	4.5. PROPOSITION. On conserve les notations précédentes.
	4.6 Constructions GNS


