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302 . N. LOUVET

Pour a;, 7 et  comme ci-dessus, les conditions suivantes sont équivalentes
(voir [HaVa], chapitre 4, lemme 3):

(1) a possede un point fixe;
(ii) o posseéde une orbite bornée:
(iii) toute orbite de o est bornée;
(iv) le cocycle b associé a o est borné;

(v) le cocycle b associé a4 o est un cobord.

3.6 FONCTIONS CONDITIONNELLEMENT DE TYPE POSITIF

Si b: G — H est un cocycle continu pour la représentation 7 alors la
fonction 1) définie par

¥(g) = —|b@|*  pour tout g € G,

est conditionnellement de type positif : pour tous 9i,---,9, € G, pour tous
Ao~ A €ER tels que \j+---+ )\, =0, on a

D Nhidg g > 0.

ij=1
La fonction v est normalisée (1)(e) = 0) et symétrique ((g) = P(g1)).
Réciproquement, a une telle fonction continue 1), on associe le triple GNS
(Hy, Ty, by) OU Ty est une représentation orthogonale de G dans I’espace
de Hilbert réel H, et by est un cocycle a coefficients dans Hy tel que,
d’une part, le sous-espace engendré par by(G) est dense dans H,,, et d’autre
part, pour tout g € G, on a

1
¥(9) = —5 by (@)

Pour rappel, si V désigne I’espace vectoriel des fonctions fi*G — R de
support fini et telles que ) . f(x) =0 alors H, est ’espace de Hilbert réel
obtenu en séparant et complétant V pour la forme bilinéaire

(fIh) = f@hry) YO x)
x,y€G |
et by applique g € G sur la classe dans Hy de la différence des fonctions
caractéristique de g et e. La représentation Ty est déduite de 1’action par
multiplication a gauche de G sur V.
Soit m une représentation, b un 1-cocycle a coefficients dans 7 et
w = —||b||” 1a fonction conditionnellement de type positif correspondante. On
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note 7 la représentation conjuguée de w dans ’espace de Hilbert conjugué
H et b le 1-cocycle a coefficients dans 7 correspondant a b. On peut alors
réaliser (Hy,my,by) de la facon suivante: le cocycle by est donné par
by(g) = b(g) + b(g), 'espace H,, est le sous-espace réel fermé de H & H
engendré par by (G), et my est la sous-représentation de 7 @ 7 obtenue en
restreignant ’action de m @ 7 au sous-espace réel invariant H,, (voir [Del],
remarque V.3). De plus, pour tous x,g € G, on a I’égalité

B.D) {7y by(g) | by(9)) = Y(g™ xg) — (g™ ') — P(xg) + P(x) .

4. PREUVE DU THEOREME

Soient 7 une représentation factorielle du groupe G telle que
HY(G,7)#0

et b un 1-cocycle continu a coefficients dans 7 qui n’est pas un cobord. Il
s’agit de montrer que le support de 7 est contenu dans le cortex de G.

4.1 STRATEGIE

On considere la fonction conditionnellement de type positif ¢: G — R
définie par

P(x) = — || b

et le triple GNS (Hy, 7y, by) correspondant.
Pour tout g € G on a une fonction

Y. G— C:x+— <7r¢(x) by (9) ‘ b¢(g)>

qui est de type positif et qu’on va décomposer en une somme
4.1) P9 = @9 + x9

de deux fonctions de type positif (proposition 4.7).
Soit V un voisinage de 15 dans G. En utilisant I’hypothese que b n’est
| pas un cobord, nous montrons qu’il existe g € G tel que la fonction 9
est non nulle (proposition 4.8) et limite pour la topologie de la convergence
compacte de combinaisons linéaires de fonctions de type positif associées 2
| des représentations de V (proposition 4.10).
La fin de la preuve est alors standard, et se déroule comme suit. Soit
(K, p, &) le triple GNS défini par 9. Il résulte de ’assertion ci-dessus que
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