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302 N. LOUVET

Pour à, 7T et ß comme ci-dessus, les conditions suivantes sont équivalentes
(voir [HaVa], chapitre 4, lemme 3):

(i) a possède un point fixe;
(ii) a possède une orbite bornée;

(iii) toute orbite de a est bornée;

(iv) le cocycle b associé à a est borné;

(v) le cocycle b associé à a est un cobord.

3.6 Fonctions conditionnellement de type positif
Si b: G -* H est un cocycle continu pour la représentation 7r alors la

fonction ip définie par

-||&(#)||2 pour tout g G G

est conditionnellement de type positif : pour tous #i,..., gn G G, pour tous
Ai,..., Xn G R tels que Ai H h \n 0, on a

n

^2 xJxi tpigp>o.
ij= 1

La fonction ip est normalisée (i,b(e) 0) et symétrique ('P(g) ip(g~1)).
Réciproquement, à une telle fonction continue ij), on associe le triple GNS

où 7T,/, est une représentation orthogonale de G dans l'espace
de Hilbert réel Hg, et b,P est un cocycle à coefficients dans TL,;, tel que,
d'une part, le sous-espace engendré par b^(G) est dense dans H,p, et d'autre
part, pour tout g e G,ona

Wg) -\\\b^g)f.
Pour rappel, si V désigne l'espace vectoriel des fonctions f:-G —» R de
support fini et telles que 0 alors H,P est l'espace de Hilbert réel
obtenu en séparant et complétant V pour la forme bilinéaire

(f\h)=
x,y£G

et bg, applique g G sur la classe dans U,,} de la différence des fonctions
caractéristique de get e.Lareprésentation n,P est déduite de l'action par
multiplication à gauche de G sur V.

Soit 7T une représentation, b un 1-cocycle à coefficients dans tt et
-</; -1) h H la fonction conditionnellement de type positif correspondante. On
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note 7f la représentation conjuguée de 7r dans l'espace de Hilbert conjugué

TL et b le 1-cocycle à coefficients dans tT correspondant à b. On peut alors

réaliser (TL^.n^.b^) de la façon suivante: le cocycle b^ est donné par

b^(g) b{g) + b(g), l'espace TL^ est le sous-espace réel fermé de TL © TL

engendré par b^(G), et iest la sous-représentation de 7r 0 7f obtenue en

restreignant l'action de 7r0 7f au sous-espace réel invariant TL# (voir [Del],

remarque V.3). De plus, pour tous x,g G G, on a l'égalité

(3.1) (ir$(x)b^(g)\ b^(g)) ip{g~lxg- ip(g~lx) - ip(xg) + ip(x).

4. Preuve du théorème

Soient tt une représentation factorielle du groupe G telle que

et b un 1-cocycle continu à coefficients dans ir qui n'est pas un cobord. Il
s'agit de montrer que le support de 7r est contenu dans le cortex de G.

4.1 Stratégie

On considère la fonction conditionnellement de type positif %j) : G —> R
définie par

VVO ~l|Kr)||2

et le triple GNS 7r^, b^) correspondant.
Pour tout g G G on a une fonction

ip9: G — C: x i—> {\b^(g))

qui est de type positif et qu'on va décomposer en une somme

(4.1) i/;9 (p9+x9

de deux fonctions de type positif (proposition 4.7).
Soit V un voisinage de 1G dans G. En utilisant l'hypothèse que b n'est

pas un cobord, nous montrons qu'il existe g G G tel que la fonction g)9

est non nulle (proposition 4.8) et limite pour la topologie de la convergence
compacte de combinaisons linéaires de fonctions de type positif associées à
des représentations de V (proposition 4.10).

La fin de la preuve est alors standard, et se déroule comme suit. Soit
(/C, p, 0 le triple GNS défini par tp9. Il résulte de l'assertion ci-dessus que


	3.6 Fonctions conditionnellement de type positif

