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pour la topologie de la convergence compacte, de sommes de fonctions de

type positif associées à des représentations de S. Avec ces définitions, une
suite (généralisée) 7rn de représentations unitaires de G converge vers 1r si

et seulement si, pour toute sous-suite infinie 7r„/ de 7rn, 7r est faiblement
contenue dans {7iy}.

Pour les représentations irréductibles, la topologie ainsi induite sur G n'est
autre que la topologie quotient définie par l'application surjective

P(G) —* G: ip i—> 7r^

qui associe à un état pur la classe de la représentation GNS correspondante,
P(G) étant muni d'une quelconque des topologies mentionnées au §3.2. De
plus, si 7r est une représentation irréductible et S est un sous-ensemble de

G, alors 7r est faiblement contenue dans S si et seulement si tt est dans
l'adhérence de S pour la topologie de Fell.

3.5 COHOMOLOGIE ET ACTIONS AFFINES

Une action par isométries affines du groupe G sur un espace de Hilbert
affine H est un morphisme a de G dans le groupe IsoiTt) des isométries
affines de H tel que l'application

GxH —> H:(g\—>a(g)Ç

soit continue. Par le choix d'une origine, on identifie un espace de Hilbert
affine H à l'espace de Hilbert de ses translations. Si a est une action par
isométries affines alors, pour tout g dans et tout élément £ de on peut
écrire

a(g)Ç 7r(p)£ + %)
où 7 r(g)est un opérateur linéaire unitaire et b(g) En imposant la
continuité et la condition de morphisme pour a, on trouve d'une part que 7r
est une représentation unitaire de G sur H, appelée partie linéaire de a, et
d autre part que b est une application continue de G dans 7ï qui satisfait la
condition de cocycle

b(xy)b(x) + 7r(x) b(y) pour tous x, y G G

Réciproquement, la donnée d'une représentation unitaire tt de G sur H et
d'une application continue bde Gdans H vérifiant la condition de cocycle
par rapport à tt définit une action par isométries affines « de G sur H, par
la formule a(p)£ tt(p)£+ b(g).
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Pour à, 7T et ß comme ci-dessus, les conditions suivantes sont équivalentes
(voir [HaVa], chapitre 4, lemme 3):

(i) a possède un point fixe;
(ii) a possède une orbite bornée;

(iii) toute orbite de a est bornée;

(iv) le cocycle b associé à a est borné;

(v) le cocycle b associé à a est un cobord.

3.6 Fonctions conditionnellement de type positif
Si b: G -* H est un cocycle continu pour la représentation 7r alors la

fonction ip définie par

-||&(#)||2 pour tout g G G

est conditionnellement de type positif : pour tous #i,..., gn G G, pour tous
Ai,..., Xn G R tels que Ai H h \n 0, on a

n

^2 xJxi tpigp>o.
ij= 1

La fonction ip est normalisée (i,b(e) 0) et symétrique ('P(g) ip(g~1)).
Réciproquement, à une telle fonction continue ij), on associe le triple GNS

où 7T,/, est une représentation orthogonale de G dans l'espace
de Hilbert réel Hg, et b,P est un cocycle à coefficients dans TL,;, tel que,
d'une part, le sous-espace engendré par b^(G) est dense dans H,p, et d'autre
part, pour tout g e G,ona

Wg) -\\\b^g)f.
Pour rappel, si V désigne l'espace vectoriel des fonctions f:-G —» R de
support fini et telles que 0 alors H,P est l'espace de Hilbert réel
obtenu en séparant et complétant V pour la forme bilinéaire

(f\h)=
x,y£G

et bg, applique g G sur la classe dans U,,} de la différence des fonctions
caractéristique de get e.Lareprésentation n,P est déduite de l'action par
multiplication à gauche de G sur V.

Soit 7T une représentation, b un 1-cocycle à coefficients dans tt et
-</; -1) h H la fonction conditionnellement de type positif correspondante. On


	3.5 COHOMOLOGIE ET ACTIONS AFFINES

