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W(v?; £, K) {ipeL°°(G): sup |^(p) - VO)| < e}

où £ est un nombre strictement positif et K une partie compacte du groupe G.

La topologie de la convergence compacte est plus forte que la topologie
*-faible. En général, ces deux topologies sont différentes. Pour le voir, on

considère les fonctions fn sur le groupe additif R qui sont linéaires par

morceaux, valent zéro sur ]—oo,0] et 1 sur [^,+oo[. Pour la topologie

faible, ces fonctions convergent vers la fonction caractéristique de ]0, +00 [

alors qu'elles ne convergent pas uniformément sur les parties compactes.

L'ensemble Eq(G) est fermé pour ces deux topologies, il est compact pour
la topologie *-faible mais en général pas pour la topologie de la convergence

compacte. Pour le voir, on considère le tore G S1 et pour tout ne Z, le

caractère

Xn : S1 —> C: z 1—> z~n

pour z e2nit e S1. Cette suite de fonctions de type positif converge vers la
fonction nulle pour la topologie *-faible: pour / G L1^1), (x«?/) coïncide

avec le coefficient de Fourier f(ri) de / au point n qui tend vers zéro pour n
tendant vers l'infini. A l'opposé, aucune sous-suite de (Xn) ne peut converger
uniformément vers zéro car supzG5i \Xn(z)\ 1.

On note E(G) l'ensemble des états de G : il s'agit des fonctions (p de

type positif sur G pour lesquelles ip(e) 1. Raikov a montré que, sur E{G),
les deux topologies décrites ci-dessus coïncident (voir [Rai] ou le théorème
13.5.2 de [Dix]). Pour un groupe non-discret, l'ensemble des états n'est en

général pas fermé pour la topologie *-faible. En effet, les caractères du tore
décrits ci-dessus sont des états du groupe S1 mais leur limite pour la topologie
*-faible vaut zéro au neutre.

Si exE0(G) désigne l'ensemble des points extrémaux du convexe E0(G),
on note P(G) (ex£0(G))\{0} et on observe que P(G) c E(G). Les éléments
de P(G) s'appellent les états purs. Comme E0(G) est convexe et compact pour
la topologie a(L00^1), le théorème de Krein-Milman nous dit que E0(G) est

l'enveloppe convexe des états purs et de 0. En particulier, P(G) est non vide.

3.3 Construction GNS

Si tt: G —>• U(H) est une représentation unitaire de G et £ G H, alors
la fonction p(g) m (7r(g)£ 10 est une fonction de type positif sur G telle
que ip(e) ||f || Une telle fonction est dite associée à la représentation n.
Réciproquement, pour toute fonction (p non-nulle de type positif, il existe un
triple où 7^: G^UÇHp) est une représentation unitaire de G
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et ^ Hp est un vecteur de norme \/p(e) tels que l'orbite de ^ sous
l'action de Tip{G) est totale dans Hp et, pour tout g G G, on a

<p(g) (nip(9)Ç<p | £<p)

Un tel triple est appelé triple GNS associé à <p. Il est unique à isomorphisme
près. Pour rappel, si V désigne l'espace vectoriel des fonctions /: G —> C de

support fini alors Hp est l'espace de Hilbert obtenu en séparant et complétant
V pour la forme sesquilinéaire

(/ I h)53 f(xipiy^x).
x,y£G

Cette construction possède les propriétés suivantes :

(1) si <p, i/j et x s°nt tr°is fonctions de type positif telles que ip cp + x
alors la représentation tip est une sous-représentation de trp ;

(2) la fonction de type positif (p est pure si et seulement si la représentation

7Tp est irréductible;

(3) si (p 1 alors Tip \q ;

(4) si (p est une fonction de type positif associée à une représentation tr alors
la représentation iip qu'on associe à <p par construction GNS est une
sous-représentation de 1r.

3.4 TOPOLOGIE SUR LE DUAL

Considérons la topologie de Fell (inner hull-kernel topology) sur l'ensemble

Rep(G) des (classes d'équivalence de) représentations unitaires du groupe
localement compact G. Cette topologie est définie comme ceci. Soient 7r

une représentation, s > 0, K un ensemble compact de G, et
des fonctions de type positif associées à n. On note W(7r; K, e, </?i,..., (pn)

l'ensemble des représentations p G S pour lesquelles il existe des fonctions

ißlf, „., ipn, chacune étant une somme de fonctions de type positif associées

à p, telles que

\(Pi(x) — vpi(x)\ < £ V/=1,...,7Z Viel.
Les sous-ensembles du type e, <pi,..., cpn) forment un système
fondamental de voisinages de la représentation ir dans Rep(G) (voir [Fel2],
Section 2).

Cette topologie peut aussi être décrite en termes de contenance faible:
la représentation ti est faiblement contenue dans un ensemble S de

représentations de G si toute fonction de type positif associée à ti est limite,
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