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W(p;e,K) = {¢p € L(G) : sup [p(9) — P(g)| < e}
ge

oll € est un nombre strictement positif et K une partie compacte du groupe G.
La topologie de la convergence compacte est plus forte que la topologie
«-faible. En général, ces deux topologies sont différentes. Pour le voir, on
considere les fonctions f, sur le groupe additif R qui sont linéaires par
morceaux, valent zéro sur ]—oo,0] et 1 sur [%,—Foo[. Pour la topologie
faible, ces fonctions convergent vers la fonction caractéristique de ]0,+oo[
alors qu’elles ne convergent pas uniformément sur les parties compactes.

L’ensemble Ey(G) est fermé pour ces deux topologies, il est compact pour
B la topologie x-faible mais en général pas pour la topologie de la convergence
compacte. Pour le voir, on considere le tore G = St et pour tout n € Z, le
caractere

n: St — C:z— 7"
pour z = e?™! c S!. Cette suite de fonctions de type positif converge vers la
| fonction nulle pour la topologie *-faible: pour f € LY(S'), (x,,f) coincide
avec le coefficient de Fourier f(n) de f au point n qui tend vers z€ro pour n
tendant vers I'infini. A I’opposé, aucune sous-suite de (x,) ne peut converger
uniformément vers zéro car sup,cq |Xn(2)| = 1.

On note E(G) I’ensemble des érats de G : il s’agit des fonctions ¢ de
type positif sur G pour lesquelles (e) = 1. Raikov a montré que, sur E(G),
les deux topologies décrites ci-dessus coincident (voir [Rai] ou le théoréme
| 13.5.2 de [Dix]). Pour un groupe non-discret, I’ensemble des états n’est en
général pas fermé pour la topologie *-faible. En effet, les caractéres du tore
décrits ci-dessus sont des états du groupe S' mais leur limite pour la topologie

*-faible vaut zéro au neutre.
Si ex Eo(G) désigne ’ensemble des points extrémaux du convexe Ey(G),
| on note P(G) = (ex Eo(G))\ {0} et on observe que P(G) C E(G). Les éléments
§ de P(G) s’appellent les éfats purs. Comme Ey(G) est convexe et compact pour
| la topologie o(LL°°,L!), le théoréme de Krein-Milman nous dit que Eo(G) est
| I’enveloppe convexe des états purs et de 0. En particulier, P(G) est non vide.

‘_ 3.3 CONSTRUCTION GNS

| Si m: G — U(H) est une représentation unitaire de G et & € H, alors
| la fonction ¢(g) = (m(g)¢ | €) est une fonction de type positif sur G telle
| que p(e) = ||€ |>. Une telle fonction est dite associée i la représentation 7.
§ Reciproquement, pour toute fonction ¢ non-nulle de type positif, il existe un |
triple (Hy, 7y, 8&,) oU 7,1 G — U(H,) est une représentation unitaire de G |
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et &, € H, est un vecteur de norme +/p(e) tels que lorbite de &, sous
Paction de 7,(G) est totale dans H,, et, pour tout g € G, on a

©(g) = <7T<p(g) 5(,0 | §¢> .

Un tel triple est appelé triple GNS associé a . Il est unique & isomorphisme
pres. Pour rappel, si V désigne I’espace vectoriel des fonctions f: G — C de
support fini alors H,, est I’espace de Hilbert obtenu en séparant et complétant
V pour la forme sesquilinéaire

(fIR) =" FORY) O™

x,yeG
Cette construction posseéde les propriétés suivantes :

(1) si ¢, 9 et x sont trois fonctions de type positif telles que 1 = ¢ + x
alors la représentation 7, est une sous-représentation de T 5

(2) la fonction de type positif ¢ est pure si et seulement si la représentation
T, est irréductible;

(3) si ¢ =1 alors 7, = 1g;

(4) si ¢ est une fonction de type positif associée a une représentation 7 alors

la représentation 7, qu’on associe a ¢ par construction GNS est une
sous-représentation de 7.

3.4 TOPOLOGIE SUR LE DUAL

Considérons la topologie de Fell (inner hull-kernel topology) sur I’ensem-
ble Rep(G) des (classes d’équivalence de) représentations unitaires du groupe
localement compact G. Cette topologie est définie comme ceci. Soient 7
une représentation, € > 0, K un ensemble compact de G, et ¢1,...,p,
des fonctions de type positif associées a m. On note W(m; K, e, v1,...,©,)
I’ensemble des représentations p € S pour lesquelles il existe des fonctions
Y1, ..,%n, chacune étant une somme de fonctions de type positif associées
a p, telles que

lpi(x) — Yi(x)| < € Vi=1,...,n VxeKk.

Les sous-ensembles du type W(m; K, €, ¢1,...,¢,) forment un systéme
fondamental de voisinages de la représentation m dans Rep(G) (voir [Fel2],
Section 2).

Cette topologie peut aussi étre décrite en termes de contenance faible:
la représentation m est faiblement contenue dans un ensemble S de repré-
sentations de G si toute fonction de type positif associée a mw est limite,
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