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298 N. LOUVET

3. Représentations, cohomologie
ET FONCTIONS (CONDITIONNELLEMENT) DE TYPE POSITIF

Les groupes sont supposés localement compacts séparables, les espaces de
Hilbert considérés sont séparables et non nuls.

3.1 Représentations irréductibles et factorielles
Pour un ensemble S C C(TL) d'opérateurs sur l'espace de Hilbert TL, on

note S' {T G C(TL) \ TS ST \/S G S} le commutant de S.
Soit 7r une représentation unitaire irréductible du groupe G sur l'espace

TL. Grâce au lemme de Schur, l'irréductibilité de tt signifie que le commutant
7r(Gy de l'ensemble ir(G) {tt(g) | g G G} est réduit aux opérateurs scalaires.
Comme 7t(G) c Afn, on a Af^ C n(G)'. Ainsi, le centre Af^DAf^ de l'algèbre
de von Neumann Afn est lui-même réduit aux opérateurs scalaires sur TL.
Ceci montre qu'une représentation irréductible ir est factorielle.

3.2 Fonctions de type positif
On appelle fonction de type positif sur le groupe localement compact G

une fonction continue p sur G à valeurs complexes telle que, pour tous

Qii • • • •) Qn £ G, la matrice (iP(9fl9i))1<ij<n est hermitienne positive: pour
tous gi,..., gn G G et pour tous Xi>m,., \n G C, on a

n

^Mgpgù>o.
ij=l

A propos des fonctions de type positif, voir le paragraphe 32 de [HeRo]. Si

ip est une fonction de type positif alors, pour tout g G G, p(g~l) <p(g) et
1^(^)1 < y(e) où e désigne l'élément neutre du groupe G. On note E0(G)
l'ensemble des fonctions de type positif cp sur G telle que p(e) < 1. C'est un
sous-ensemble convexe et borné de l'espace L°°(G) des fonctions mesurables
et essentiellement bornées sur G.

Sur L°°(G), on considère les deux topologies suivantes: d'une part, la
topologie *-faible ou topologie crOL00^1) donnée par les semi-normes

Pf: L°°(G) * R+ : <p i » | /) |

où / G Ll(G) et {(p,f) / p{g)f{g)dg\ d'autre part, la topologie de
Jg

la convergence uniforme sur toute partie compacte (ou plus simplement
topologie de la convergence compacte) pour laquelle un système fondamental
de voisinages de la fonction p est donné par les ensembles
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W(v?; £, K) {ipeL°°(G): sup |^(p) - VO)| < e}

où £ est un nombre strictement positif et K une partie compacte du groupe G.

La topologie de la convergence compacte est plus forte que la topologie
*-faible. En général, ces deux topologies sont différentes. Pour le voir, on

considère les fonctions fn sur le groupe additif R qui sont linéaires par

morceaux, valent zéro sur ]—oo,0] et 1 sur [^,+oo[. Pour la topologie

faible, ces fonctions convergent vers la fonction caractéristique de ]0, +00 [

alors qu'elles ne convergent pas uniformément sur les parties compactes.

L'ensemble Eq(G) est fermé pour ces deux topologies, il est compact pour
la topologie *-faible mais en général pas pour la topologie de la convergence

compacte. Pour le voir, on considère le tore G S1 et pour tout ne Z, le

caractère

Xn : S1 —> C: z 1—> z~n

pour z e2nit e S1. Cette suite de fonctions de type positif converge vers la
fonction nulle pour la topologie *-faible: pour / G L1^1), (x«?/) coïncide

avec le coefficient de Fourier f(ri) de / au point n qui tend vers zéro pour n
tendant vers l'infini. A l'opposé, aucune sous-suite de (Xn) ne peut converger
uniformément vers zéro car supzG5i \Xn(z)\ 1.

On note E(G) l'ensemble des états de G : il s'agit des fonctions (p de

type positif sur G pour lesquelles ip(e) 1. Raikov a montré que, sur E{G),
les deux topologies décrites ci-dessus coïncident (voir [Rai] ou le théorème
13.5.2 de [Dix]). Pour un groupe non-discret, l'ensemble des états n'est en

général pas fermé pour la topologie *-faible. En effet, les caractères du tore
décrits ci-dessus sont des états du groupe S1 mais leur limite pour la topologie
*-faible vaut zéro au neutre.

Si exE0(G) désigne l'ensemble des points extrémaux du convexe E0(G),
on note P(G) (ex£0(G))\{0} et on observe que P(G) c E(G). Les éléments
de P(G) s'appellent les états purs. Comme E0(G) est convexe et compact pour
la topologie a(L00^1), le théorème de Krein-Milman nous dit que E0(G) est

l'enveloppe convexe des états purs et de 0. En particulier, P(G) est non vide.

3.3 Construction GNS

Si tt: G —>• U(H) est une représentation unitaire de G et £ G H, alors
la fonction p(g) m (7r(g)£ 10 est une fonction de type positif sur G telle
que ip(e) ||f || Une telle fonction est dite associée à la représentation n.
Réciproquement, pour toute fonction (p non-nulle de type positif, il existe un
triple où 7^: G^UÇHp) est une représentation unitaire de G
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