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298 : . N. LOUVET

3. REPRESENTATIONS, COHOMOLOGIE
ET FONCTIONS (CONDITIONNELLEMENT) DE TYPE POSITIF

Les groupes sont supposés localement compacts séparables, les espaces de
Hilbert considérés sont séparables et non nuls.

3.1 REPRESENTATIONS IRREDUCTIBLES ET FACTORIELLES

Pour un ensemble S C L£(H) d’opérateurs sur I’espace de Hilbert 7, on
note 8’ ={T € L(H) |TS=ST VS € S} le commutant de S.

Soit 7w une représentation unitaire irréductible du groupe G sur I’espace
H. Grace au lemme de Schur, I’irréductibilité de 7 signifie que le commutant
m(G)" de I’ensemble 7(G) = {n(g) | g € G} est réduit aux opérateurs scalaires.
Comme 7(G) C Ny, ona N C n(G) . Ainsi, le centre N, NN/ de 1’algebre
de von Neumann N est lui-méme réduit aux opérateurs scalaires sur H.
Ceci montre qu’une représentation irréductible 7 est factorielle.

3.2 FONCTIONS DE TYPE POSITIF

On appelle fonction de type positif sur le groupe localement compact G

une fonction continue ¢ sur G a valeurs complexes telle que, pour tous
s -1 ” i

Jgi,---,9, € G, la matrice (go(gj gi))1 <ij<n est hermitienne positive: pour

tous gi,...,g9, € G et pour tous Ay,...,\, € C, on a

> Ade(g ' g) > 0.

ij=1
A propos des fonctions de type positif, voir le paragraphe 32 de [HeRo]. Si
¢ est une fonction de type positif alors, pour tout g € G, ¢(g~") = ©(g) et
l0(9)] < @(e) ou e désigne I’élément neutre du groupe G. On note Eo(G)
I’ensemble des fonctions de type positif ¢ sur G telle que p(e) < 1. C’est un
sous-ensemble convexe et borné de I’espace L°°(G) des fonctions mesurables
et essentiellement bornées sur G.

Sur L°°(G), on considere les deux topologies suivantes: d’une part, la

topologie *-faible ou topologie o(L°°,L!) donnée par les semi-normes

pr: L(G) — Ry o — |(p, )]

ou f € LYG) et (o, f) = /cp(g)f(g)dg; d’autre part, la topologie de
G

la convergence uniforme sur toute partie compacte (ou plus simplement
topologie de la convergence compacte) pour laquelle un systtme fondamental
de voisinages de la fonction ¢ est donné par les ensembles
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W(p;e,K) = {¢p € L(G) : sup [p(9) — P(g)| < e}
ge

oll € est un nombre strictement positif et K une partie compacte du groupe G.
La topologie de la convergence compacte est plus forte que la topologie
«-faible. En général, ces deux topologies sont différentes. Pour le voir, on
considere les fonctions f, sur le groupe additif R qui sont linéaires par
morceaux, valent zéro sur ]—oo,0] et 1 sur [%,—Foo[. Pour la topologie
faible, ces fonctions convergent vers la fonction caractéristique de ]0,+oo[
alors qu’elles ne convergent pas uniformément sur les parties compactes.

L’ensemble Ey(G) est fermé pour ces deux topologies, il est compact pour
B la topologie x-faible mais en général pas pour la topologie de la convergence
compacte. Pour le voir, on considere le tore G = St et pour tout n € Z, le
caractere

n: St — C:z— 7"
pour z = e?™! c S!. Cette suite de fonctions de type positif converge vers la
| fonction nulle pour la topologie *-faible: pour f € LY(S'), (x,,f) coincide
avec le coefficient de Fourier f(n) de f au point n qui tend vers z€ro pour n
tendant vers I'infini. A I’opposé, aucune sous-suite de (x,) ne peut converger
uniformément vers zéro car sup,cq |Xn(2)| = 1.

On note E(G) I’ensemble des érats de G : il s’agit des fonctions ¢ de
type positif sur G pour lesquelles (e) = 1. Raikov a montré que, sur E(G),
les deux topologies décrites ci-dessus coincident (voir [Rai] ou le théoréme
| 13.5.2 de [Dix]). Pour un groupe non-discret, I’ensemble des états n’est en
général pas fermé pour la topologie *-faible. En effet, les caractéres du tore
décrits ci-dessus sont des états du groupe S' mais leur limite pour la topologie

*-faible vaut zéro au neutre.
Si ex Eo(G) désigne ’ensemble des points extrémaux du convexe Ey(G),
| on note P(G) = (ex Eo(G))\ {0} et on observe que P(G) C E(G). Les éléments
§ de P(G) s’appellent les éfats purs. Comme Ey(G) est convexe et compact pour
| la topologie o(LL°°,L!), le théoréme de Krein-Milman nous dit que Eo(G) est
| I’enveloppe convexe des états purs et de 0. En particulier, P(G) est non vide.

‘_ 3.3 CONSTRUCTION GNS

| Si m: G — U(H) est une représentation unitaire de G et & € H, alors
| la fonction ¢(g) = (m(g)¢ | €) est une fonction de type positif sur G telle
| que p(e) = ||€ |>. Une telle fonction est dite associée i la représentation 7.
§ Reciproquement, pour toute fonction ¢ non-nulle de type positif, il existe un |
triple (Hy, 7y, 8&,) oU 7,1 G — U(H,) est une représentation unitaire de G |




	3.2 Fonctions de type positif

