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L’Enseignement Mathématique, t. 47 (2001), p. 287-314

A PROPOS D’UN THEOREME DE VERSHIK ET KARPUSHEV

par Nicolas LOUVET")

RESUME. On présente et généralise un résultat de Vershik et Karpushev qui
établit un lien entre la 1-cohomologie des représentations unitaires d’un groupe G et
la topologie de Fell au voisinage de la représentation triviale du groupe.

1. INTRODUCTION

Considérons un groupe localement compact G et une représentation
continue m de G par des opérateurs unitaires sur I’espace de Hilbert H, c’est-
a-dire un morphisme 7m de G dans le groupe U(H) des opérateurs unitaires
de I’espace de Hilbert H tel que I’application G x H — H: (g,&) — w(g) &
soit continue. On note Z!(G, ) I’espace vectoriel des cocycles continus de
G a coefficients dans 7, c’est-a-dire des applications continues b: G — H
telles que

b(xy) = b(x) + m(x) b(y) pour tous x,ye G.

On désigne par B!(G, ) I’ensemble des cobords qui sont les cocycles de la
forme

b(x) =mx)€ — & pour tout x € G,

ou & est un vecteur de H. Le premier groupe de cohomologie de G 2
coefficients dans 7 est le quotient

H'(G, ) = Z'(G,7)/BY(G, ).

Ce groupe est associé aux actions par isométries affines de G sur H admettant
7w comme partie linéaire (voir ci-dessous §3.5).

- ") Financé par la requéte 20-56816.99 du Fonds National Suisse pour la Recherche Scien-
tifique.
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A défaut de pouvoir décrire explicitement H!(G,7) pour toutes les
représentations d’un groupe donné, ou méme de déterminer pour quelles re-
présentations m de G ce groupe est trivial, plusieurs auteurs se sont attachés
a donner des interprétations qualitatives de son annulation comme de sa non-
annulation. Si I’annulation de HY(G, ) peut étre vue comme un phénomene
de rigidité pour la représentation 7 (voir [Weil], [Sto], [Rag], [LuZi]), la
non-annulation de H'(G, ) posséde également une interprétation topologique
que nous allons présenter.

L’ensemble G des classes d’équivalence de représentations unitaires
irréductibles du groupe G dans un espace de Hilbert est muni de la topologie
de Fell qui peut étre décrite en termes de contenance faible (voir ci-dessous
§3.4). Le support d’une représentation 7 est ’ensemble supp 7 des représen-
tations irréductibles de G qui sont faiblement contenues dans 7. En général,
la topologie de Fell sur G nest pas séparée. Le cortex du groupe G est le
sous-ensemble cor G de G formé des représentations 7 qui sont non-séparées
de la représentation triviale 15, c’est-a-dire telles que, pour tout voisinage V
de 15 et pour tout voisinage U de 7, l'intersection ¥V NU est non-vide.

Soit 7 une représentation de G. Rappelons que 7 est dite irréductible si
les seuls sous-espaces fermés de 7 qui sont 7(G)-invariants sont {0} et 7.
On note N P’algébre de von Neumann engendrée par les opérateurs m(g),
g € G, c’est-a-dire le bicommutant de 7(G). La représentation 7 est dite
factorielle si I’algébre de von Neumann N est un facteur, c’est a dire si le
centre de N est réduit aux opérateurs scalaires. Toute représentation unitaire
irréductible est factorielle (voir §3.1).

Le but de ce travail est de donner une preuve du théoréme suivant (§4).

THEOREME. Soit m une représentation unitaire factorielle d’un groupe
localement compact séparable G.
Si HY(G,m) # 0 alors suppw C corG.

Ce résultat avait €t€ conjecturé par Guichardet dans [Gui] et partiellement
obtenu par Delorme dans [Del]. Vershik et Karpushev I’ont montré pour des
représentations irréductibles [VeKa]. Notre preuve reprend I’essentiel des idées
de Vershik et Karpushev en précisant certains points, concernant les topologies
notamment, et montre que les arguments s’étendent aux cas des représentations
unitaires factorielles.
~ Pour une représentation non-factorielle I’énoncé n’est plus valable. En effet,
si m est une représentation factorielle dont la cohomologie est non nulle et
7y est une représentation n’appartenant pas au cortex, alors la représentation
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7 =7 @ m a un premier groupe de cohomologie non nul mais son support
contient 7, et n’est donc pas contenu dans le cortex.

Le cortex est un sous-ensemble fermé de G. Nous avons préféré ici
la définition du cortex présentée dans [BeKa] a celle donnée dans [VeKa].
Avec la définition choisie, 15 appartient toujours au cortex. Nous donnons
au §2 des exemples de groupes pour lesquels nous décrivons bricvement la
1-cohomologie des représentations irréductibles ainsi que le cortex. Pour des
études détaillées du cortex de certains groupes, on pourra également consulter
[BeKa] et [BLM].

REMERCIEMENTS. Je tiens a remercier Bachir Bekka qui a relevé une
lacune dans la preuve originale de Vershik et Karpushev et m’a communiqué
des notes manuscrites sur le sujet. Je remercie Pierre de la Harpe avec qui
j’ai eu de nombreuses discussions fructueuses sur le sujet. Je les remercie
tous deux, ainsi qu’Alain Valette, pour les conseils et suggestions qu’ils m’ont
donnés lors de la rédaction de cet article.

2. EXEMPLES

Pour les exemples 2 et 3, on trouvera une description de la topologie du
dual unitaire dans [War2, §7.1] ou [Fel2].

EXEMPLE 1: GROUPE ABELIEN

Si G est un groupe abélien, alors la topologie de Fell sur G est séparée.
Le cortex de G est réduit a {lg}. Si x est un caractere non-trivial de G,
alors H'(G,x) = 0. Pour la représentation triviale, H' (G, 1) coincide avec
le groupe des morphismes additifs

Hom(G,C) = {f: G — C| f(xy) =f(x) + f(y) Vx,y € G}.

EXEMPLE 2: LE GROUPE “ax + b”

a b
o= {(2 %) avem a0l

le groupe des transformations affines de la droite réelle préservant I’ orientation.
On a une identification canonique G = R% x R et on note respectivement A
et B les sous-groupes {(a,O) la € R*+} et {(1,b) |beR}.

Soit

|
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Les représentations irréductibles de G sont d’une part les caractéres de A
étendus trivialement a G :

Xs: G — C: (a,b) — 'S8

pour s € R. D’autre part, pour r # 0, on a les représentations 7, = Ind$ o,
induites des caracteres

g, B— C: (0,b) —> e'"?.

En fait, m, est équivalente & 7y := w1y, Ou 7_ := w_p, Suivant le signe
de r. Les représentations 74 agissent sur Hy = LZ(R*+), ou RI est muni
de la restriction de la mesure de Lebesgue de R, et sont données par

(rs(a,)€) () = a~de*2m D () |

pour & € L*(R%), pour tout x € R% et (a,b) € G.

La topologie sur G = RU {my.} U {r_} peut étre décrite comme la
topologie quotient sur R?>/R ol R? est muni de la topologie naturelle et R
est la relation d’équivalence donnée par

(s, ) R(s,Fy<=@retr >0ou(retr <0 ou@=r=0ects=ys).

En particulier, les représentations 7 et m_ sont des points ouverts de G et
contiennent faiblement tous les caractéres ;.

Le cortex de G coincide avec ’ensemble de toutes les représentations
irréductibles de G. Par ailleurs, les seules représentations irréductibles qui
possedent une 1-cohomologie non-triviale sont 15, w1 et w_ (voir [Gui2], §9).

EXEMPLE 3: LE GROUPE DE HEISENBERG

Soit G = H, le groupe de Heisenberg de dimension 2n + 1. Il s’agit de
G =R" x R" x R avec la multiplication donnée par

Y, 200y, ) =@+, y+Y,z2+7 + 2({(x,y) — (y,X)))
2

pour x,x",y,y € R" et z,zZ/ € R ou (,) désigne le produit scalaire usuel
de R”.

Les représentations irréductibles de G sont d’une part les caractéres de
R?" étendus a G :

O(a,b) - G— C: ()C,y, Z) — ei(<a7x>+<b,)’>)

pour a,b € R". D’autre part, on a les représentations de Schrodinger py,,
pour 2 € R*. Si N désigne le sous-groupe {(0,y,2);y € R*,z € R} de G,
les représentations p, sont les représentations induites Indﬁ Xn des caracteres
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yn: N — C: (0,y,2) — ™.

Pour 4 € R*, les représentations p; agissent sur 1’espace de Hilbert L*(R™)
et sont données par

) 1
(on(x, y, 2E) () = e M OIT2Me(t 4 x)

pour & € L2(R™), pour tout ¢ € R".

La topologie sur G = R?>" U R* peut étre décrite comme la topologie
quotient de R¥"*!/R ol R est la relation d’équivalence sur R>*! donnée
par

(a,b,h) R (d' b ,h) <= (h=Hh #0)ou (h= W =0 et (a,b)=(d,b)).

Donc, pour h tendant vers zero, les représentations pp approchent simul-
tanément tous les caracteres.

Le cortex de G est constitué des caractéres o(,p), avec d,b € R". Par
ailleurs, la seule représentation irréductible qui possede une 1-cohomologie
non-triviale est 15 ([Gui2], §8, corollaire 5).

EXEMPLE 4 : GROUPE DES DEPLACEMENTS

Soit G = SO(n) x R" agissant sur 1’espace R" par
A,v)x=Ax+v

ou A € SO(n) et v,x € R".
Si n = 2, les représentations irréductibles de G sont, d’une part, les

représentations ,, z € Z, de dimension un du groupe SO(2) = S' étendues
trivialement a G :

. G— C: (A(0),v) — e'?0

. _ [cos® —sinf
ou A(6) = ( sinf  cos@

représentations p, = Ind$, x,, u € R?*\ {0}, induites des caractéres

,0<0 <27 et veR? Dautre part, on a les

yu: R* — Civr—s el (W)

du sous-groupe normal R%. Si u et u’ sont sur un méme cercle de R? (en
fait, sur une méme orbite de SO(2)) alors p, et p, sont équivalentes (voir

[Mac], §3.9). Si r > 0 est le rayon du cercle correspondant, on note p, leur
classe d’équivalence.
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Si r tend vers zéro, alors p, tend vers la représentation quasi-réguliere de G
sur L*(G/R?) = 1.2(SO(2)). Cette derniere contient toutes les représentations
irréductibles de SO(2). Le cortex de G est ainsi constitué de tous les caracteres
T, € §6(\2\)

On a deux représentations de dimension un de cohomologie non triviale

m1: SOQR) — C: A(0) — e i
pour lesquelles un cocycle non trivial est donné par
b+ (A(0), (v1,12)) = v; £ ivy

pour (vi,v2) € R?* (voir [Gui2], §9, exemple 2).

Si n > 3, on considére I’action naturelle de SO(n) sur le dual de
R" et on désigne par K, le stabilisateur d’un caractére x. de R". Si
u# 0, K, est un sous-groupe de SO(n) conjugué a SO(m — 1). On obtient
toutes les représentations irréductibles de G en considérant, d’une part,
les représentations de dimension finie du groupe compact SO(n) étendues
trivialement a G, et, d’autre part, les représentations

Pou = Ind[%KRz(O‘ X Xu)

induites du sous-groupe SO(n — 1) x R” o0 o € I?; (voir [Mac]).
On a
corG = {m € SO(n) | m C Indgoe 1y Lsop—1y} -

En particulier, le cortex de G coincide avec SO(3) pour n = 3 mais est un
sous-ensemble strict de SO(n) pour pour n > 4 (voir [BeKa], exemple 2.10).

La seule représentation irréductible de cohomologie non triviale est de
dimension n, donnée par la complexifiée de ’action naturelle de SO(n) sur
R”*. Cela est di au fait que 1’espace R” n’admet pas de structure complexe
invariante pour I’action naturelle de SO(n). (Voir [Gui2], §9, exemple 2.) Un
1-cocycle non-trivial est donné par b(A,v) = v pour A,v) € G.

EXEMPLE 5: GROUPES D’ISOMETRIES HYPERBOLIQUES

Soit G = SOg(n,1) la composante connexe du groupe des matrices
(n+1) x (n+1) réelles qui préservent la forme quadratique sur R"*! donnée
par

2 ‘ 2 2
xl_'_”'—’_xn—xn—}—]‘

Soit G = SU(n, 1) le groupe des matrices (n+ 1) X (n+ 1) complexes qui
préservent la forme hermitienne sur C**! donnée par
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§ §

‘-xl |2 o BE = 1-xn - lxn—l—l

Delorme a montré que si G = SOq(n, 1), n > 3, alors il existe exactement
une représentation dont la cohomologie est non triviale; et si G = SU(n, 1),
n>1ou G = SOy2,1) ~ PSL(2,R) alors il existe exactement deux
représentations, conjuguées 'une de l’autre, dont la cohomologie est non
triviale (pour tout ceci, voir [Del]).

Bekka et Kaniuth ont montré que le cortex des groupes de Lie semi-
simples 2 centres finis est toujours fini [BeKa]. De plus, on sait que le cortex
de SL(2,R) est constitué de la représentation triviale et des deux représenta-
tions dont la 1-cohomologie est non nulle [Mil].

EXEMPLE 6: GROUPES DE KAZHDAN

Un groupe localement compact G posseéde la propriété (T) de Kazhdan
si la représentation 1 est un point isol€ dans G pour la topologie de Fell.
Les groupes qui possédent la propriété (T) sont aussi appellés groupes de
Kazhdan.

Il résulte des définitions que si G possede la propriété (T) alors le cortex
de G est réduit 2 {1g}. En appliquant le théoréme de Vershik et Karpushev,
on voit que si G est un groupe de Kazhdan alors la 1-cohomologie des
représentations factorielles non triviales (en particulier les irréductibles) de G
est toujours nulle.

En fait, un résultat dii & Guichardet et Delorme donne une caractérisation de
la propriété (T) en terme de 1-cohomologie: le groupe G possede la propriété
(T) si et seulement si H'(G, ) = 0 pour toute représentation unitaire 7 de G
(voir [HaVa], chapitre 4).

Donc, si le groupe G n’a pas la propriété (T), il existe une représenta-
tion unitaire pour laquelle H'(G, ) # 0. En 1982, Vershik et Karpushev se
demandaient si ’on peut toujours trouver une telle représentation parmi les
irréductibles. Sous I’hypothese que le groupe G est engendré par une partie
compacte, Y. Shalom a répondu positivement a cette question en montrant que
les trois conditions suivantes sont équivalentes [Sha2]:

(1) G possede la propriété (T);
(i) HYG,w) =0 pour toute représentation unitaire irréductible 7 ;

(iii) HY(G,7) = 0 pour toute représentation unitaire 7 ot H! désigne la
cohomologie réduite, quotient de 1’ensemble des cocycles par 1’adhérence
des cobords pour la topologie de la convergence compacte.
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Remafquons que I’hypothése de génération compacte est nécessaire. En
effet, si G est le groupe additif d’un espace vectoriel de dimension infinie
sur le corps a deux éléments, alors G n’a pas la propriété (T) car il est
abélien non compact, alors que H'(G, 7) = 0 pour toute représentation unitaire
irréductible 7.

Des exemples de groupes de Kazhdan sont:
e SL(n,R), pour n>3;

e plus généralement, les groupes de Lie réels simples qui ne sont pas
localement isomorphes & ceux de I’exemple 5;

* les réseaux (sous-groupes discrets de covolume fini) dans de tels groupes,
par exemple SL(n,Z), pour n > 3.

Pour des compléments concernant la propriété (T), on pourra se référer a
[HaVa].

EXEMPLE 7 : GROUPES LIBRES

Si F, désigne le groupe libre sur 2 générateurs, alors F, admet une
représentation irréductible qui est un point dense dans F2 (voir [Yosh] ou
[Dav], théoreme VIL6.5).

Le cortex de F, est donc le dual i‘; tout entier. De plus, toute représentation
de F, admet un premier groupe de cohomologie non-trivial (voir paragraphe 9,
exemple 1 de [Gui2]). Ces résultats s’étendent au cas du groupe libre F, sur
n générateurs.

EXEMPLE 8: LES GROUPES SL(2,R) x R? ET SL(2,Z) x Z2

Soit G le produit semi-direct SL(2,R) x R? pour ’action naturelle de
SL(2,R) sur le plan R?. Montrons que le cortex de G s’identific & celui de
SL(2, R).

Smt 7 € G une représentation du cortex de G. Il existe une suite ()
dans G qui converge a la fois vers 7 et 1. Comme la paire (G, R?) possede
la propriété (T) relative, la restriction de 7, & R? admet pour n assez grand
des vecteurs invariants non-nuls (voir [HaVa], proposition 2.2). Comme la
représentation 7, est irréductible et R? est normal dans G, on voit de plus
que la restriction m,|g> est la représentation identique, de sorte qu’on peut
voir 7, comme une représentation de SL(2, R). Il en résulte que 7 est triviale
sur R?, passe au quotient par R? et définit une représentation de SL(2,R),
qui est dans le cortex.
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Réciproquement, une représentation du cortex de SL(2,R) définit par
relevement une représentation du cortex de G.

Les mémes arguments sont valables pour le groupe SL(2,Z) x Z? ol
SL(2,Z) désigne le groupe des matrices 2 fois 2 de déterminant un a
coefficients entiers agissant naturellement sur le réseau 7.

EXEMPLE 9: RESEAU DANS UN GROUPE DE LIE SIMPLE

Soit I' un réseau dans un groupe de Lie simple G non-compact et de
centre trivial qui ne posséde pas la propriété (T). On note Ar la représentation
réguliere gauche de I' sur I’espace de Hilbert £*(I') des fonctions de carrés
§ sommables. Nous allons montrer que le cortex de I' contient le support
de /\r.
| En effet, le groupe G ne possede pas la propriété (T) et la représentation
, triviale 1s est donc limite de représentations irréductibles non-triviales
| 7,. On peut supposer que ces représentations m, ne sont pas faiblement
‘ contenues dans la représentation réguliecre A de G car le groupe G
n’est pas moyennable. En particulier, les 7, ne sont pas dans la série
| discrete de G de sorte que les restrictions m,|r de 7, a I'" sont encore
| irréductibles (proposition 2.5 de [CoSt]). Par continuité de la restriction, la
| représentation triviale 1p est encore limite des 7,|r. De plus, la représentation
réguliere de I' est faiblement contenue dans chacune de ces représentations
To|r (théoréeme 1 de [BeHa]). Une représentation 7 faiblement contenue
dans Ar est donc limite de représentations (parmi les m,|r) qui tendent
b vers 1r.

§ EXEMPLE 10: RESEAU DANS UN PRODUIT DE GROUPES

Soit I' un réseau irréductible dans un produit G = Gy X G, de deux groupes
de Lie semi-simples sans facteur compact et de centres finis. L irréductibilité
§ de I' signifie que, pour chaque i = 1,2, I'image de T par la projection
B p.: G — G; est dense dans G;.

Chaque représentation irréductible o de G, définit une représentation
irréductible 1®o de G; x G, puis, par restriction, une représentation (1®0)|r
| de T" qui est toujours irréductible car la projection de T sur G, est dense.

On note Gy|r le sous-ensemble de I' des représentations de ce type et é;]r‘
| son adhérence dans T'.
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Suppoéons que G possede la propriété (T) et montrons que

corl" C @lr

Une représentation 7 du cortex de T est limite de représentations irréductibles
m, de I' qui convergent également vers 1. Grice au théoréeme 1 de [BeLo],
on peut supposer que les représentations m, sont de la forme (1 ® o,)|r ou
o, € (/}; On peut étre plus précis: 7w € corI" si et seulement si 7 est limite
de représentations (1 ® o,)|r ol limo, = lg, dans é\z

Concernant la cohomologie de la représentation triviale, le groupe H' (T, 1)
coincide avec le groupe des morphismes additifs de T" dans C. Un tel
morphisme est toujours trivial sur le sous-groupe [I',I"] des commutateurs
et définit donc un morphisme du groupe abélianisé T = I'/[I",T] qui est
fini dans notre cas (corollaire 2.7 de [LuZi]). Par suite, H\(T", 1t) = 0. Plus
généralement, on a H'(I',7) = 0 pour toute représentation 7 de dimension
finie de I" (voir le théoreme 3.1 de [LuZi] ou le théoreme B de [BeLo] pour
une preuve €lémentaire utilisant le résultat de Vershik et Karpushev présenté
dans cet article).

Supposons de plus que le quotient G/I" est compact et montrons qu’une
représentation irréductible et non-triviale de I' avec un premier groupe de
cohomologie non-nul est forcément de la forme (1 ® o)lr ol o est une
représentation irréductible de G, telle que H'(G,,0) # 0. En effet, si 7 est
une représentation irréductible non-triviale de T telle que HY(T, ) = 0, alors,
soit 7 est de la forme désirée (c’est-a-dire m = (1®0)|r avec HY(G,, o) # 0),
soit 7 contient faiblement la représentation triviale 1r (théoréme 1 de [Lou]).
Le second cas ne peut pas se produire. En effet, si = contenait faiblement 1r,
la représentation induite Indf 7 contiendrait faiblement 1g et sa restriction
(Indlg m)|c, contiendrait faiblement 1g,. La propriété (T) pour G; implique
que la représentation (Ind¥ 7)|g, posséderait des vecteurs invariants de sorte
que ™ = (p ® 1)|r pour une représentation irréductible p de G; ([BeLo],
lemme 1). Par suite, la restriction (p® 1)|r contiendrait faiblement 1r, ce qui
n’est pas possible (voir la remarque 2 de [Lou]).

On trouvera d’autres informations sur la cohomologie de ce type de groupes
dans [Shal] et [Lou].




(1) 29Ae In

07 (0%D)H 23t (0@ 1) p_m = 1509 ‘2 x 1o suep neasgr | OF
| J305 D Iy ddns (1) sues O suep ne3IsAI [ | 6
(4 ‘2)1S 100 A XA TIS 8
‘d ‘d a L
& {91} (L) 99a8 D 9
{x} o {x %01} 1< u “(I‘wns 8l
{x} LA{xP1} ¢ <u “(1‘u)00S €<
{* %} {xxO1} A DIS g
()OS op oeueurepuoy der | (€)0S 5 D109 (Too ‘ol x(1 — WOS) N (M)OS A X (WOS <y
(£)OS op orejuaurepuoy ‘doi (€)os (Too ‘0l (2)08) N ()OS A % (€)OS %
2L Z JoofolNZ A % (D)0S %
o1 . | AN d “H 310quesioy ¢
2 D {ein{tz}ny q + xv ouyje z
0 # (D ‘D)woy enbsiof 27 {o1} oredos udI[Pqe I
0 # (H 99A® 5109 5 5

SO[qNONPIIl suonejuasIdoy

SHTdNAXH SHA AILVINLIdVOdd NVATIV],




298 : . N. LOUVET

3. REPRESENTATIONS, COHOMOLOGIE
ET FONCTIONS (CONDITIONNELLEMENT) DE TYPE POSITIF

Les groupes sont supposés localement compacts séparables, les espaces de
Hilbert considérés sont séparables et non nuls.

3.1 REPRESENTATIONS IRREDUCTIBLES ET FACTORIELLES

Pour un ensemble S C L£(H) d’opérateurs sur I’espace de Hilbert 7, on
note 8’ ={T € L(H) |TS=ST VS € S} le commutant de S.

Soit 7w une représentation unitaire irréductible du groupe G sur I’espace
H. Grace au lemme de Schur, I’irréductibilité de 7 signifie que le commutant
m(G)" de I’ensemble 7(G) = {n(g) | g € G} est réduit aux opérateurs scalaires.
Comme 7(G) C Ny, ona N C n(G) . Ainsi, le centre N, NN/ de 1’algebre
de von Neumann N est lui-méme réduit aux opérateurs scalaires sur H.
Ceci montre qu’une représentation irréductible 7 est factorielle.

3.2 FONCTIONS DE TYPE POSITIF

On appelle fonction de type positif sur le groupe localement compact G

une fonction continue ¢ sur G a valeurs complexes telle que, pour tous
s -1 ” i

Jgi,---,9, € G, la matrice (go(gj gi))1 <ij<n est hermitienne positive: pour

tous gi,...,g9, € G et pour tous Ay,...,\, € C, on a

> Ade(g ' g) > 0.

ij=1
A propos des fonctions de type positif, voir le paragraphe 32 de [HeRo]. Si
¢ est une fonction de type positif alors, pour tout g € G, ¢(g~") = ©(g) et
l0(9)] < @(e) ou e désigne I’élément neutre du groupe G. On note Eo(G)
I’ensemble des fonctions de type positif ¢ sur G telle que p(e) < 1. C’est un
sous-ensemble convexe et borné de I’espace L°°(G) des fonctions mesurables
et essentiellement bornées sur G.

Sur L°°(G), on considere les deux topologies suivantes: d’une part, la

topologie *-faible ou topologie o(L°°,L!) donnée par les semi-normes

pr: L(G) — Ry o — |(p, )]

ou f € LYG) et (o, f) = /cp(g)f(g)dg; d’autre part, la topologie de
G

la convergence uniforme sur toute partie compacte (ou plus simplement
topologie de la convergence compacte) pour laquelle un systtme fondamental
de voisinages de la fonction ¢ est donné par les ensembles
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W(p;e,K) = {¢p € L(G) : sup [p(9) — P(g)| < e}
ge

oll € est un nombre strictement positif et K une partie compacte du groupe G.
La topologie de la convergence compacte est plus forte que la topologie
«-faible. En général, ces deux topologies sont différentes. Pour le voir, on
considere les fonctions f, sur le groupe additif R qui sont linéaires par
morceaux, valent zéro sur ]—oo,0] et 1 sur [%,—Foo[. Pour la topologie
faible, ces fonctions convergent vers la fonction caractéristique de ]0,+oo[
alors qu’elles ne convergent pas uniformément sur les parties compactes.

L’ensemble Ey(G) est fermé pour ces deux topologies, il est compact pour
B la topologie x-faible mais en général pas pour la topologie de la convergence
compacte. Pour le voir, on considere le tore G = St et pour tout n € Z, le
caractere

n: St — C:z— 7"
pour z = e?™! c S!. Cette suite de fonctions de type positif converge vers la
| fonction nulle pour la topologie *-faible: pour f € LY(S'), (x,,f) coincide
avec le coefficient de Fourier f(n) de f au point n qui tend vers z€ro pour n
tendant vers I'infini. A I’opposé, aucune sous-suite de (x,) ne peut converger
uniformément vers zéro car sup,cq |Xn(2)| = 1.

On note E(G) I’ensemble des érats de G : il s’agit des fonctions ¢ de
type positif sur G pour lesquelles (e) = 1. Raikov a montré que, sur E(G),
les deux topologies décrites ci-dessus coincident (voir [Rai] ou le théoréme
| 13.5.2 de [Dix]). Pour un groupe non-discret, I’ensemble des états n’est en
général pas fermé pour la topologie *-faible. En effet, les caractéres du tore
décrits ci-dessus sont des états du groupe S' mais leur limite pour la topologie

*-faible vaut zéro au neutre.
Si ex Eo(G) désigne ’ensemble des points extrémaux du convexe Ey(G),
| on note P(G) = (ex Eo(G))\ {0} et on observe que P(G) C E(G). Les éléments
§ de P(G) s’appellent les éfats purs. Comme Ey(G) est convexe et compact pour
| la topologie o(LL°°,L!), le théoréme de Krein-Milman nous dit que Eo(G) est
| I’enveloppe convexe des états purs et de 0. En particulier, P(G) est non vide.

‘_ 3.3 CONSTRUCTION GNS

| Si m: G — U(H) est une représentation unitaire de G et & € H, alors
| la fonction ¢(g) = (m(g)¢ | €) est une fonction de type positif sur G telle
| que p(e) = ||€ |>. Une telle fonction est dite associée i la représentation 7.
§ Reciproquement, pour toute fonction ¢ non-nulle de type positif, il existe un |
triple (Hy, 7y, 8&,) oU 7,1 G — U(H,) est une représentation unitaire de G |
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et &, € H, est un vecteur de norme +/p(e) tels que lorbite de &, sous
Paction de 7,(G) est totale dans H,, et, pour tout g € G, on a

©(g) = <7T<p(g) 5(,0 | §¢> .

Un tel triple est appelé triple GNS associé a . Il est unique & isomorphisme
pres. Pour rappel, si V désigne I’espace vectoriel des fonctions f: G — C de
support fini alors H,, est I’espace de Hilbert obtenu en séparant et complétant
V pour la forme sesquilinéaire

(fIR) =" FORY) O™

x,yeG
Cette construction posseéde les propriétés suivantes :

(1) si ¢, 9 et x sont trois fonctions de type positif telles que 1 = ¢ + x
alors la représentation 7, est une sous-représentation de T 5

(2) la fonction de type positif ¢ est pure si et seulement si la représentation
T, est irréductible;

(3) si ¢ =1 alors 7, = 1g;

(4) si ¢ est une fonction de type positif associée a une représentation 7 alors

la représentation 7, qu’on associe a ¢ par construction GNS est une
sous-représentation de 7.

3.4 TOPOLOGIE SUR LE DUAL

Considérons la topologie de Fell (inner hull-kernel topology) sur I’ensem-
ble Rep(G) des (classes d’équivalence de) représentations unitaires du groupe
localement compact G. Cette topologie est définie comme ceci. Soient 7
une représentation, € > 0, K un ensemble compact de G, et ¢1,...,p,
des fonctions de type positif associées a m. On note W(m; K, e, v1,...,©,)
I’ensemble des représentations p € S pour lesquelles il existe des fonctions
Y1, ..,%n, chacune étant une somme de fonctions de type positif associées
a p, telles que

lpi(x) — Yi(x)| < € Vi=1,...,n VxeKk.

Les sous-ensembles du type W(m; K, €, ¢1,...,¢,) forment un systéme
fondamental de voisinages de la représentation m dans Rep(G) (voir [Fel2],
Section 2).

Cette topologie peut aussi étre décrite en termes de contenance faible:
la représentation m est faiblement contenue dans un ensemble S de repré-
sentations de G si toute fonction de type positif associée a mw est limite,
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pour la topologie de la convergence compacte, de sommes de fonctions de
type positif associées a des représentations de S. Avec ces définitions, une
suite (généralisée) m, de représentations unitaires de G converge vers 7 Si
et seulement si, pour toute sous-suite infinie 7, de m,, 7 est faiblement
contenue dans {7, }. R

Pour les représentations irréductibles, la topologie ainsi induite sur G n’est
autre que la topologie quotient définie par I’application surjective

P(G) — G: @ — Ty

qui associe a un état pur la classe de la représentation GNS correspondante,
P(G) étant muni d’une quelconque des topologies mentionnées au §3.2. De
plus, si 7 est une représentation irréductible et S est un sous-ensemble de
G, alors 7 est faiblement contenue dans S si et seulement si 7 est dans
I’adhérence de S pour la topologie de Fell.

3.5 COHOMOLOGIE ET ACTIONS AFFINES

Une action par isométries affines du groupe G sur un espace de Hilbert
affine H est un morphisme o de G dans le groupe Zso(H) des isométries
affines de H tel que 1’application

GXH—"H:(9,§) — a(g)§

soit continue. Par le choix d’une origine, on identifie un espace de Hilbert
affine H a I’espace de Hilbert de ses translations. Si « est une action par
isométries affines alors, pour tout g dans G et tout élément ¢ de M, on peut
écrire

a(g)§ = m(g) € + b(g)

ou m(g) est un opérateur linéaire unitaire et b(g) € H. En imposant la
continuit€ et la condition de morphisme pour «, on trouve d’une part que 7
est une représentation unitaire de G sur M, appelée partie linéaire de «, et
d’autre part que b est une application continue de G dans H qui satisfait la
condition de cocycle

b(xy) = b(x) + 7(x) b(y) pour tous x, y € G .

Réciproquement, la donnée d’une représentation unitaire 7 de G sur H et
d’une application continue b de G dans H vérifiant la condition de cocycle
par rapport 2 7 définit une action par isométries affines o de G sur H, par
la formule a(g) € = 7(g) € + b(g).
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Pour a;, 7 et  comme ci-dessus, les conditions suivantes sont équivalentes
(voir [HaVa], chapitre 4, lemme 3):

(1) a possede un point fixe;
(ii) o posseéde une orbite bornée:
(iii) toute orbite de o est bornée;
(iv) le cocycle b associé a o est borné;

(v) le cocycle b associé a4 o est un cobord.

3.6 FONCTIONS CONDITIONNELLEMENT DE TYPE POSITIF

Si b: G — H est un cocycle continu pour la représentation 7 alors la
fonction 1) définie par

¥(g) = —|b@|*  pour tout g € G,

est conditionnellement de type positif : pour tous 9i,---,9, € G, pour tous
Ao~ A €ER tels que \j+---+ )\, =0, on a

D Nhidg g > 0.

ij=1
La fonction v est normalisée (1)(e) = 0) et symétrique ((g) = P(g1)).
Réciproquement, a une telle fonction continue 1), on associe le triple GNS
(Hy, Ty, by) OU Ty est une représentation orthogonale de G dans I’espace
de Hilbert réel H, et by est un cocycle a coefficients dans Hy tel que,
d’une part, le sous-espace engendré par by(G) est dense dans H,,, et d’autre
part, pour tout g € G, on a

1
¥(9) = —5 by (@)

Pour rappel, si V désigne I’espace vectoriel des fonctions fi*G — R de
support fini et telles que ) . f(x) =0 alors H, est ’espace de Hilbert réel
obtenu en séparant et complétant V pour la forme bilinéaire

(fIh) = f@hry) YO x)
x,y€G |
et by applique g € G sur la classe dans Hy de la différence des fonctions
caractéristique de g et e. La représentation Ty est déduite de 1’action par
multiplication a gauche de G sur V.
Soit m une représentation, b un 1-cocycle a coefficients dans 7 et
w = —||b||” 1a fonction conditionnellement de type positif correspondante. On
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note 7 la représentation conjuguée de w dans ’espace de Hilbert conjugué
H et b le 1-cocycle a coefficients dans 7 correspondant a b. On peut alors
réaliser (Hy,my,by) de la facon suivante: le cocycle by est donné par
by(g) = b(g) + b(g), 'espace H,, est le sous-espace réel fermé de H & H
engendré par by (G), et my est la sous-représentation de 7 @ 7 obtenue en
restreignant ’action de m @ 7 au sous-espace réel invariant H,, (voir [Del],
remarque V.3). De plus, pour tous x,g € G, on a I’égalité

B.D) {7y by(g) | by(9)) = Y(g™ xg) — (g™ ') — P(xg) + P(x) .

4. PREUVE DU THEOREME

Soient 7 une représentation factorielle du groupe G telle que
HY(G,7)#0

et b un 1-cocycle continu a coefficients dans 7 qui n’est pas un cobord. Il
s’agit de montrer que le support de 7 est contenu dans le cortex de G.

4.1 STRATEGIE

On considere la fonction conditionnellement de type positif ¢: G — R
définie par

P(x) = — || b

et le triple GNS (Hy, 7y, by) correspondant.
Pour tout g € G on a une fonction

Y. G— C:x+— <7r¢(x) by (9) ‘ b¢(g)>

qui est de type positif et qu’on va décomposer en une somme
4.1) P9 = @9 + x9

de deux fonctions de type positif (proposition 4.7).
Soit V un voisinage de 15 dans G. En utilisant I’hypothese que b n’est
| pas un cobord, nous montrons qu’il existe g € G tel que la fonction 9
est non nulle (proposition 4.8) et limite pour la topologie de la convergence
compacte de combinaisons linéaires de fonctions de type positif associées 2
| des représentations de V (proposition 4.10).
La fin de la preuve est alors standard, et se déroule comme suit. Soit
(K, p, &) le triple GNS défini par 9. Il résulte de ’assertion ci-dessus que
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le support de p est contenu dans 1’adhérence de YV pour la topologie de
Fell. La décomposition (4.1) montre que p est une sous-représentation de la
représentation GNS associée 2 9, qui est elle-méme une sous-représentation
de my; et my est une sous-représentation de T @ 7. Quitte a échanger les
roles de 7 et 7 (ce qui peut se faire sans perte de généralité car H (G, m) # 0
si et seulement si HY(G,7) # 0 et suppmt C corG si et seulement si
suppm C corG), on peut supposer que p posséde une sous-représentation
o qui est équivalente 2 une sous-représentation de .

Le support de o est dans 1’adhérence de V, puisqu’il est contenu dans le
support de p. Comme 7 est une représentation factorielle, o et 7 sont quasi-
équivalentes (proposition 5.3.5 de [Dix]), d’ou il résulte que leurs supports
coincident. Par suite .

supp T = suppo C V.

Ceci étant vrai pour tout choix de V, le support de 7 est contenu dans le
cortex de G.

4.2 THEOREME DE SCHOENBERG

Soit % une fonction conditionnellement de type positif sur un groupe G.
Pour tout nombre réel ¢t > 0, la fonction ¢, définie par

pi(g) = ™9

est de type positif. De plus,

. . . SOt_l_
4.2) limp =1 et limZ— =

avec des limites au sens de la topologie de la convergence compacte (voir par
exemple le théoreme 5.16 de [HaVa)).

-

4.3 DECOMPOSITION DE CHOQUET

On dit qu'une mesure y sur un espace Q est supportée par une partie
mesurable A C Q si u(Q\A)=0.

Soit F un espace vectoriel topologique localement convexe séparé et
métrisable et K une partie convexe et compacte de F. On note ex K 1’ensemble
des points extrémaux de K. Une mesure de probabilité p supportée par ex K
détermine un unique élément x € K donné par la formule

x=/ydu(y),
K

entendue au sens x-faible, ¢’est-a-dire au sens ou
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£ = /K £0) du)

pour toute forme linéaire continue f sur F ([Cho], proposition 26.3).
Réciproquement, tout élément x de K peut étre représenté de cette maniere.
En effet, pour tout x € K il existe une mesure de probabilit€ p sur K,
supportée par ex K, telle que

%= /ydu(y)
K

au sens x-faible. Une telle décomposition est appelée décomposition de Choquet
du point x (voir [Cho], Theorem 27.6). Dans le cas ou x est lui-méme un
B point extrémal, la mesure p qui donne une décomposition de Choquet du
point x est unique et donnée par la mesure de Dirac ¢, au point x ([Cho],
proposition 26.3). En particulier, pour 1’ensemble Ey(G) défini au numéro
| 3.2, il existe pour tout ¢ > 0 une mesure de probabilité p, supportée par

¥ P(G)U {0} telle que
Pr :/ n d (1)
Ey(G)

| au sens faible o(L*°,L!), c’est-a-dire au sens ou

Ey(G)
§ pour tout f € LYG) (voir [Dix], proposition 13.6.8).

§ 44 LOCALISATION

On note V' le voisinage de la fonction 1 dans P(G) qui est I'image inverse
§ de V par I’application

P(G) — G: O Ty, .

On va décomposer les fonctions de type positif ¢, de la facon suivante. Soit
VW un voisinage de la fonction constante 1 dans Ey(G) tel que ¥V = WNP(G).
Puisque }ir% ¢ = 1, on peut supposer grice au lemme ci-dessous que
¥ 1.0V) #0. On définit

w 1 /
r d t
® o) Wn (1)

et
' 1

et PREAZYVN du(n) si p,(W 1
3 =) 1= mow) EO(G)\WU pe(n wOV) #
0 sinon.
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On a

Qo = / ndu(n) + / 1 d (1)
W Eo(G)\W

= uMe” + (1 = OV .
En posant A\, = 1,(W), on obtient

o — 1 :)\twg/v‘f“(l“)\t)&yv‘_l
t t

W_1 1=\ /_
:‘Pft + Z’(sotw—sotw).

(4.3)

4.5. PROPOSITION. On conserve les notations précédentes.
(1) limA =1;
t—0
(i) }1_{% 0V =1 uniformément sur tout compact;
(iii) pour tout t > 0, !V est limite uniforme sur tout compact de

combinaisons convexes d’éléments de V.
De plus, pour une sous-suite de @, que I’on indexe encore par t,

(iv) il existe une fonction @, € Eo(G), @o Z 1 telle que lir% 62/\} = @y pour
—
la topologie x-faible;

t—0

1—A
(v) il existe un nombre réel positif \ tel que lim ( " t) = A

Afin de démontrer cette proposition, nous aurons besoin du lemme suivant.

LEMME. Soit K un compact convexe dans un espace métrisable. Soient
@ € exK un point extrémal de K et ¢; une suite d’éléments de K telle que
Iir% ¢ = . Pour chaque t, on se donne une décomposition de Choquet
t— .

0 = / n d (1)
K

ou [i; est une mesure de probabilité supportée par exK. Alors, pour tout
voisinage VYV de ¢ dans K, on a

lingut(WﬂexK) =1.
—

Preuve. L’ensemble M(K) des mesures de probabilité sur K est compact
pour la topologie faible. Il existe donc une sous-suite u, de u, qui converge
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faiblement sur K vers une mesure p. La suite ¢, converge vers ¢ qui est

un point extrémal, donc
Q= / ndu(n)
ex K

et la mesure p coincide avec la mesure de Dirac d,, au point ¢ (Proposition
26.3 de [Cho]). De plus, toute sous-suite convergente de (u,) admet 0
comme limite. Autrement dit, d, est ’unique point adhérent de la suite (u,)
et }516 (W) = 1 pour tout voisinage VW contenant . La mesure u, est

supportée par ex K, donc
liII(l) uWnexK) =1
—

comme annoncé. [

Preuve de (i). C’est une conséquence du lemme ci-dessus. En effet,

lir% w (W) = }ing (W Nex Eg(G)) = 1.
— —

Preuve de (ii). Les fonctions ¢!V et la fonction constante 1 appartiennent

a I'ensemble E(G) sur lequel les topologies *-faible et de la convergence

compacte coincident. Il suffit donc de montrer que lin(% 0 =1 pour la
[—>

topologie o(L*°,L!). Pour f € L}(G), on a

(i f) = /W (0, dp(n) + / (0, dpe(m)

Eo(G\W
et

lim (i1,f) = (1,).
Le lemme implique que

limpOV) =1 et limu(E(G)\W) =0,

donc

|

Eo(G)\W

(n,f) dm(n)) =(1,f).

Preuve de (iii). Pour une partic A de Ey(G), on désigne par A 1’adhérence

de A dans Ey(G) pour la topologie -faible et coA son enveloppe convexe.
Posons

Ky = co(W N P(G))

et considérons la mesure )Y, supportée par W N P(G), donnée par
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_ (AN W)
(V)

Ceci détermine une mesure de probabilité sur le compact convexe Ky telle
que

1V (A) pour A C Ey(G) .

soth/ ndw” ).
Kw

La proposition 26.3 de [Cho] implique que )Y € Kjy. Autrement dit,
la fonction ¢!Y s’écrit comme limite pour la topologie o(L>®°,L!) de
combinaisons convexes d’éléments de WNP(G). Or ¢!V appartient 3 E(G) et
coWWNP(G)) C E(G) sur lequel les topologies de la convergence compacte et
o(L*°, L") coincident, donc la fonction ¢!V s’écrit aussi comme limite pour la
topologie de la convergence compacte de combinaisons convexes d’éléments
de W N P(G).

Preuve de (iv). Comme la suite (&2/\}) est contenue dans Ey(G) qui est
compact pour la topologie o(L°°,L!), il existe une sous-suite, encore indexée
par ¢, et un élément g € Ey(G) tel que

lim ;" = o
t—0
pour la topologie faible o(L>°,L!).
Supposons que o = 1. En particulier, on peut supposer que les fonctions
(;2/\/ qui apparaissent dans la sous-suite considérée sont toutes non nulles.

Considérons la mesure ﬁtw définie par

(A N (Eo(G\W))

~W .
pe (A) = 1= OV

pour A C Ey(G) .

Cette mesure est supportée par (Eo(G)\W) N P(G), et donne pouf tout ¢ une
décomposition de Choquet de thW. :

Puisque 9 = 1 est un point extrémal, la mesure de probabilité o qui
donne une décomposition de Choquet de ¢y est la mesure de Dirac en 1 et
vérifie

S 7Y
po = lim i, ~ .

Par conséquent,
L= po(W) = lim " W) =0,

ce qui est absurde.
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3:1 aet £ 1—\
Preuve de (v). Montrons d’abord qu’il existe un réel 7o > 0 tel que —=
soit borné pour 0 < t < 19.
Supposons que ce n’est pas le cas. Alors, quitte a extraire une sous-suite
que I’on indexe encore par ¢, on peut supposer que

lim (1 _Af> = +00.
t—0 A

Choisissons un gg € G tel que o(go) # 1 et un voisinage ouvert relativement
compact U4 de go dans G tel que

Re (po(g) — 1) < 0O pour tout g € U

et une fonction f € LYG), non nulle, positive et telle que suppf C U.
L’équation (4.3) donne

(Re(271), 1) = (Re(£577), £) o+ (152) (Re(@” ~ 01*). 1)
Gréce au choix de f, on a
lim(Re(3;” — "), f) = (Re(po — 1), ) < 0
et

(R0, 1) <0

Puisque lin(l)(l—*tﬁ) = 400, grace a (4.2) on a
t—

(Rewp,f) = }E%<Re(%—;l),f> —

Comme 1) est continue et f est a support relativement compact, ceci méne 2
une contradiction. On peut donc supposer, quitte & passer A une sous-suite, que

nm(l_”\’) =\,
t—0 A

avec A >0 car \, = (W) < 1.

Ceci termine la preuve de la proposition 4.5. [

4.6 CONSTRUCTIONS GNS

Fixons g € G. En utilisant (3.1) et (4.2), on a

1
(@ by(9) | by(9)) = lim —{2i(g™"xg) — 0i(g™'%) — @ixg) + 0u(x)}

uniformément pour x parcourant les ensembles compacts de G.




310 N. LOUVET

On utilise alors 1’égalité (4.3) pour trouver
(T (x) by(g) ’ by(9))

= 1im {1 (o2¥(g7x0) — (g™ '0) — /¥ (xg) + ) ()

+ (552) (@Y (07 %) — V(g7 — 3V (g) + 3V )

= (122) (6 'x9) — 0V (gD — Vo) + 9 ) }

uniformément pour x parcourant les parties compactes de G. Pour tout ¢ > 0,
soit (H;, s, &) (resp. (H;, 71, €,)) le triple GNS associé a la fonction de type
positif ¢} (resp. &’). En posant

n = %@rt(g) §—&), of =T9E & et B =m@&—&,
on trouve
44 ()b | by(e)) = im{ (m()nf | 7¢)
+ (557) (R af | of)
— (52) (w0 87 | ) |

pour la topologie de la convergence compacte et donc aussi pour la topologie
o(L>, L.

4.7. PROPOSITION. On pose «of = mo(g)&o — &0 on (Ho,mo, &) est le
triple GNS associé a la fonction de type positif o apparaissant dans la
proposition 4.5 (iv). Pour le reste, on conserve les notations précédentes.

(i) 1irr(1)<7?t(.)oztg , of ) = (mo(.)af l o) pour la topologie o(L>°,1L1);
—

(ii) lif%<7rt(.)ﬁf | B7) =0 pour la topologie o(L>®,L');
—

(iii) il existe une sous-suite de ;, toujours indexée par t, et une fonction
de type positif @9 telle que, pour la topologie o(L>®,LY), on ait

im(m () ! | ) = 7.

Preuve. L’assertion (i) est une conséquence du fait que

o =1lim & = lim(7(.) &, | £,)
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pour la topologie o(1L>°, L), et que ¢ = (mo(.)&o | o). Grace a 4.5 (ii) on a
lim(m(.)& | &) =lime” =1
pour la topologie o(L>°,L!), et donc
lim(r,(.) 67 | B7) =0

pour la topologie o(L*°,LY). Enfin, en utilisant la compacité¢ de Eo(G)
pour la topologie o(L*°,L!), on peut extraire une sous-suite telle que
lir% (m(.)m? | n?) existe. On note cette limite 9.  []

f—

En passant a la limite dans (4.4), on écrit

(4.5) (1) by(@) | by(@) = ¢ + A{mo(.) of | of).

Pour chaque g € G, ceci fournit un candidat pour une décomposition du type
(4.1) avec x9 = A(mo(.)af | af). 1l reste a vérifier qu’il existe un élément
g € G tel que la fonction @9 possede les bonnes propriétés.

4.8. PROPOSITION. Si le cocycle b n’est pas un cobord, alors il existe
un élément g € G tel que p9 £ 0.
Preuve. Si @9 =0 pour tout g € G, alors d’une part
[{mu () by(9) | bu@) | o = sup[{my @) by(9) | bu(9))]
= (my(e) by(9) | by(g))
= —2¢(9) = 2||b(@)|I*,
et d’autre part
1o (Dby(9) | byp(@)]], = A(mote) of | of)

= X (mo(g) & — &o I m0(9) &0 — &o)
=2X (1 = Regpo(9))

pour tout g € G. La fonction de type positif ¢y est bornée; 1’égalité

Hb(g)||2 = A(1 — Reyp(g)) implique que b est un cocycle borné sur G,
donc un cobord. [
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Pour la suite, on fixe un élément g € G tel que 9 Z 0.

4.9. PROPOSITION. Les fonctions de type positif (m(.)n? |n?) sont
uniformément bornées pour t > 0, autrement dit

sup sup ‘<7T,()C) n? ] ntg>| < 00.
>0 xeG

Preuve. On a
sup | (myf | )| = (mte)nf | nf) = In? .

On va montrer que (1 | /) est borné pour ¢ > 0. Pour cela, écrivons 1’égalité
(4.4) au point x = e,

[o@I” = tim{ (0 | n) + (15%) (af | af) — (122) (67 | 1)}
On a
(of | of)—(B7 | B7)
- {2 — 2 Re(Fg) &, | 5})} — {2 — 2 Re(ml(g) & | §t>}
=2 Re("(9) - 7" (9)) ,
et les suites

(B2), @@ et |30

sont bornées en ¢. Donc la suite (ny | /) est également bornée.  []

4.10. PROPOSITION. La fonction @9 est limite pour la topologie de la
convergence compacte de combinaisons convexes de fonctions de type positif
associées a des représentations de V.

Preuve. Gréce aux propositions 4.7 (iii) et 4.9, la fonction de type
positif @Y est limite pour la topologie *-faible de fonctions de type positif
uniformément bornées associées aux représentations 7. Ceci implique ([Fell],
Lemma 1.5) qu’il existe une suite ¢, de fonctions de type positif associées
aux représentations m, telle que

w9 = lim 6,

t—0

uniformément sur les compacts de G.
De plus, 7, est la représentation GNS associée a la fonction de type positif
@/ qui, d’apres 4.5 (iii), est limite uniforme sur les compacts de combinaisons
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convexes d’éléments de YWNP(G). Donc les fonctions de type positif associ€es
a m, sont limites uniformes sur les compacts de combinaisons convexes
d’éléments de W N P(G). Finalement, @9 est elle-méme limite uniforme
sur les compacts de combinaisons convexes d’éléments de V = W N P(G).
Comme les fonctions de type positif appartenant a )/ sont associées aux re-
présentations de V, ceci termine la preuve de la proposition.  []

On a donc établi une décomposition de la fonction (my(.)by(9) | by(9))
comme annoncé en 4.1. Ceci termine la preuve du Théoréme. [
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