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L'Enseignement Mathématique, t. 47 (2001), p. 287-314

A PROPOS D'UN THÉORÈME DE VERSHIK ET KARPUSHEV

par Nicolas Louvet*)

RÉSUMÉ. On présente et généralise un résultat de Yershik et Karpushev qui
établit un lien entre la 1-cohomologie des représentations unitaires d'un groupe G et
la topologie de Fell au voisinage de la représentation triviale du groupe.

1. Introduction

Considérons un groupe localement compact G et une représentation
continue tt de G par des opérateurs unitaires sur l'espace de Hilbert TL, c'est-
à-dire un morphisme tt de G dans le groupe U(TL) des opérateurs unitaires
de l'espace de Hilbert TL tel que l'application G x TL —» TL: (g,Q >—> ?r(g)£
soit continue. On note Z[(G,tt) l'espace vectoriel des cocycles continus de

G à coefficients dans ir, c'est-à-dire des applications continues b: G —> TL

telles que

b(xy) b(x) + tt(x) b(y) pour tous x, y G G.

On désigne par B^G, tt) l'ensemble des cobords qui sont les cocycles de la
forme

b(x) tt(x) £ — £ pour tout x G G

où £ est un vecteur de TL. Le premier groupe de cohomologie de G à

coefficients dans tt est le quotient

H1(G,7r) Z1(G,7r)/B1(G,7r).

Ce groupe est associé aux actions par isométries affines de G sur TL admettant
tt comme partie linéaire (voir ci-dessous §3.5).

*) Financé par la requête 20-56816.99 du Fonds National Suisse pour la Recherche
Scientifique.
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A défaut de pouvoir décrire explicitement H1 (G, tt) pour toutes les
représentations d'un groupe donné, ou même de déterminer pour quelles
représentations 7T de G ce groupe est trivial, plusieurs auteurs se sont attachés
à donner des interprétations qualitatives de son annulation comme de sa non-
annulation. Si l'annulation de H1 (G, tt) peut être vue comme un phénomène
de rigidité pour la représentation n (voir [Weil], [Sto], [Rag], [LuZi]), la
non-annulation de H1 (G, tt) possède également une interprétation topologique
que nous allons présenter.

L'ensemble G des classes d'équivalence de représentations unitaires
irréductibles du groupe G dans un espace de Hilbert est muni de la topologie
de Fell qui peut être décrite en termes de contenance faible (voir ci-dessous
§3.4). Le support d'une représentation 7r est l'ensemble supp7r des représentations

irréductibles de G qui sont faiblement contenues dans 7r. En général,
la topologie de Fell sur G n'est pas séparée. Le cortex du groupe G est le
sous-ensemble cor G de G formé des représentations 7r qui sont non-séparées
de la représentation triviale 1 G, c'est-à-dire telles que, pour tout voisinage V
de 1G et pour tout voisinage U de 7r, l'intersection V HU est non-vide.

Soit 7T une représentation de G. Rappelons que 7r est dite irréductible si
les seuls sous-espaces fermés de H qui sont 7r(G)-invariants sont {0} et TL.
On note Af% l'algèbre de von Neumann engendrée par les opérateurs tt(g),
g e G, c'est-à-dire le bicommutant de 7r(G). La représentation 7r est dite
factorielle si l'algèbre de von Neumann Afn est un facteur, c'est à dire si le
centre de Afn est réduit aux opérateurs scalaires. Toute représentation unitaire
irréductible est factorielle (voir §3.1).

Le but de ce travail est de donner une preuve du théorème suivant (§4).

THÉORÈME. Soit TT une représentation unitaire factorielle d'un groupe
localement compact séparable G.

Si H1 (G, tt) jé 0 alors supp7r C cor G.

Ce résultat avait été conjecturé par Guichardet dans [Gui] et partiellement
obtenu par Delorme dans [Del]. Vershik et Karpushev l'ont montré pour des

représentations irréductibles [VeKa]. Notre preuve reprend l'essentiel des idées
de Vershik et Karpushev en précisant certains points, concernant les topologies
notamment, et montre que les arguments s'étendent aux cas des représentations
unitaires factorielles.

Pour une représentation non-factorielle l'énoncé n'est plus valable. En effet,
si tt 1 est une représentation factorielle dont la cohomologie est non nulle et
7r2 est une représentation n'appartenant pas au cortex, alors la représentation
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TT m © 7T2 a un premier groupe de cohomologie non nul mais son support

contient et n'est donc pas contenu dans le cortex.

Le cortex est un sous-ensemble fermé de G. Nous avons préféré ici
la définition du cortex présentée dans [BeKa] à celle donnée dans [VeKa].

Avec la définition choisie, 1g appartient toujours au cortex. Nous donnons

au §2 des exemples de groupes pour lesquels nous décrivons brièvement la

1-cohomologie des représentations irréductibles ainsi que le cortex. Pour des

études détaillées du cortex de certains groupes, on pourra également consulter

[BeKa] et [BLM].

Remerciements. Je tiens à remercier Bachir Bekka qui a relevé une

lacune dans la preuve originale de Vershik et Karpushev et m'a communiqué
des notes manuscrites sur le sujet. Je remercie Pierre de la Harpe avec qui

j'ai eu de nombreuses discussions fructueuses sur le sujet. Je les remercie

tous deux, ainsi qu'Alain Valette, pour les conseils et suggestions qu'ils m'ont
donnés lors de la rédaction de cet article.

Pour les exemples 2 et 3, on trouvera une description de la topologie du
dual unitaire dans [War2, §7.1] ou [Fel2].

Exemple 1 : groupe abélien

Si G est un groupe abélien, alors la topologie de Fell sur G est séparée.
Le cortex de G est réduit à {1g}- Si x est un caractère non-trivial de G,
alors H1 (G, x) 0- Pour la représentation triviale, H1 (G, 1G) coïncide avec
le groupe des morphismes additifs

le groupe des transformations affines de la droite réelle préservant l'orientation.
On a une identification canonique G R+ k R et on note respectivement A
et B les sous-groupes {(a, 0) | a G R+ } et {(!,*) |*gR}.

2. Exemples

Hom(G,C) {/: G —> C | f(xy)=f(x)+f(y) Vx,y e G}.

Exemple 2: le groupe " "

Soit
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Les représentations irréductibles de G sont d'une part les caractères de A
étendus trivialement à G :

X,: G—>C: (a, b) »— é^log*

pour sgR. D'autre part, pour r ^ 0, on a les représentations irr Ind# ar
induites des caractères

ar :B—» C: (0,fc)i—> eirb

En fait, irr est équivalente à tt_|_ := k+2>k ou 7r_ := iï-2>k suivant le signe
de r. Les représentations it± agissent sur H± L2(R^_), où R?j_ est muni
de la restriction de la mesure de Lebesgue de R, et sont données par

(7T±(a,b)Ç) (x) a~^e±2wi('^

pour £ G L2(R+), pour tout x G R+ et (a,b) G G.

La topologie sur G RU {tt+ } U {tt_} peut être décrite comme la
topologie quotient sur R2/7Z où R2 est muni de la topologie naturelle et 1Z

est la relation d'équivalence donnée par

0, r) 1Z (s', r') (r et r' > 0) ou (r et r7 < 0) ou (r r' 0 et s s').

En particulier, les représentations 7r+ et 7r_ sont des points ouverts de G et
contiennent faiblement tous les caractères Xs-

Le cortex de G coïncide avec l'ensemble de toutes les représentations
irréductibles de G. Par ailleurs, les seules représentations irréductibles qui
possèdent une 1-cohomologie non-triviale sont 1G, 7r+ et 7r_ (voir [Gui2], §9).

Exemple 3 : le groupe de Heisenberg

Soit G Hn le groupe de Heisenberg de dimension 2n + 1. Il s'agit de
G R" x R" x R avec la multiplication donnée par

(x,)>,z)(x',y',z'):=(x + x',y+/,z ++ 5«*,/) - <J,x')))

pour x,xf, y, y' G Rn et z,zf G R où désigne le produit scalaire usuel
de Rn.

Les représentations irréductibles de G sont d'une part les caractères de
R2n étendus à G :

a(aM: G—s- C: (x,y,z) —»

pour a, b G Rn. D'autre part, on a les représentations de Schrödinger ph,

pour h G R*. Si TV désigne le sous-groupe {(0,j,z);j G Rn,z G R} de G,
les représentations ph sont les représentations induites Indjj Xh des caractères



UN THÉORÈME DE VERSHIK ET KARPUSHEV Zyi

Xh:N^C: (0 ,y

Pour hGR*, les représentations pu agissent sur l'espace de Hilbert L (R

et sont données par

(«(*,«>{) «> «'"e+IW,+5<"»»«< + *>

pour £ G L2(R"), pour tout tG R".

La topologie sur GR2" U R* peut être décrite comme la topologie

quotient de R2"+l /TZ où TZest la relation d'équivalence sur R2"+l donnée

par

(a, b,h) TZ ab',h') <(=4> (h h'^0)ou (h h' 0 et (a, b) (a', b')).

Donc, pour h tendant vers zero, les représentations ph approchent

simultanément tous les caractères.

Le cortex de G est constitué des caractères avec G R". Par

ailleurs, la seule représentation irréductible qui possède une 1-cohomologie

non-triviale est 1 g ([Gui2], §8, corollaire 5).

Exemple 4: groupe des déplacements

Soit G SO(ri) k R" agissant sur l'espace R" par

(A,v)x Ax + v

où A G SO(n) et v,xGR".
Si n2, les représentations irréductibles de G sont, d'une part, les

représentations ttz, zGZ, de dimension un du groupe SO(2) S4 étendues

trivialement à G :

irz:G—>C: (A(9),v)^eue

où A(6) I

C0S^ S^n^, 1, 0 < 9<2netvGR2. D'autre part, on a les
y sin 6 cos 9 J

représentations pu Ind^2 Xu, u G R2 \ {0}, induites des caractères

Xu- R2 —* C: v i—»

du sous-groupe normal R2. Si u et u' sont sur un même cercle de R2 (en

fait, sur une même orbite de SO(2)) alors pu et /v sont équivalentes (voir
[Mac], §3.9). Si r > 0 est le rayon du cercle correspondant, on note pr leur
classe d'équivalence.
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Si r tend vers zéro, alors pr tend vers la représentation quasi-régulière de G
sur L2(G/R2) L2(SO(2)). Cette dernière contient toutes les représentations
irréductibles de S0(2). Le cortex de G est ainsi constitué de tous les caractères
nz G §0(2).

On a deux représentations de dimension un de cohomologie non triviale

7T±: S0(2) — C: A(9) \—> e±i9

pour lesquelles un cocycle non trivial est donné par

b± (A(<9), (v\, v2)) v\±i v2

pour (vuv2) e R2 (voir [Gui2], §9, exemple 2).
Si n > 3, on considère l'action naturelle de SO(?z) sur le dual de

Rn et on désigne par Ku le stabilisateur d'un caractère Xu de R". Si
u t^O, Ku est un sous-groupe de SO(n) conjugué à SO (n - 1). On obtient
toutes les représentations irréductibles de G en considérant, d'une part,
les représentations de dimension finie du groupe compact SO(n) étendues
trivialement à G, et, d'autre part, les représentations

Per,M In^MKR2(CT (g) Xu)

induites du sous-groupe SO (n — 1) tx Rn où cr G ltu (voir [Mac]).
On a

cor G {ttSSO (n)\n C Ind^D lso(„-i)}.
En particulier, le cortex de G coïncide avec §0(3) pour 3 mais est un
sous-ensemble strict de SOI«) pour pour > (voir [BeKa], exemple 2.10).

La seule représentation irréductible de cohomologie non triviale est de
dimension n, donnée par la complexifiée de l'action naturelle de SO(n) sur
R". Cela est dû au fait que l'espace R" n'admet pas de structure complexe
invariante pour l'action naturelle de SO(n). (Voir [Gui2], §9, .exemple 2.) Un
1-cocycle non-trivial est donné par b(A,v)v pour (A, v) e G.

Exemple 5 : groupes d'isométries hyperboliques
Soit G SO0 (n,1) la composante connexe du groupe des matrices

(n+1) x (n+1) réelles qui préservent la forme quadratique sur R"+1 donnée

par

•vï+"- + vL4H •

Soit G SU(n, 1) le groupe des matrices (n +1) x (n + 1) complexes qui
préservent la forme hermitienne sur C"+1 donnée par
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\x\ |2 + • • • + \xn\ — |xn_j_i|

Delorme a montré que si G SOo(ft, 1), n^>3, alors il existe exactement

une représentation dont la cohomologie est non triviale; et si G SU(n, 1),

n > 1 ou G SO0(2,l) ~ PSL(2,R) alors il existe exactement deux

représentations, conjuguées l'une de l'autre, dont la cohomologie est non

triviale (pour tout ceci, voir [Del]).

Bekka et Kaniuth ont montré que le cortex des groupes de Lie semi-

simples à centres finis est toujours fini [BeKa]. De plus, on sait que le cortex

de SL(2, R) est constitué de la représentation triviale et des deux représentations

dont la 1-cohomologie est non nulle [Mil].

Exemple 6 : groupes de Kazhdan

Un groupe localement compact G possède la propriété (T) de Kazhdan

si la représentation \q est un point isolé dans G pour la topologie de Fell.

Les groupes qui possèdent la propriété (T) sont aussi appellés groupes de

Kazhdan.

Il résulte des définitions que si G possède la propriété (T) alors le cortex

de G est réduit à {1g}- En appliquant le théorème de Vershik et Karpushev,

on voit que si G est un groupe de Kazhdan alors la 1-cohomologie des

représentations factorielles non triviales (en particulier les irréductibles) de G

est toujours nulle.

En fait, un résultat dû à Guichardet et Delorme donne une caractérisation de

la propriété (T) en terme de 1-cohomologie : le groupe G possède la propriété
(T) si et seulement si H'(G,7t) 0 pour toute représentation unitaire tt de G

(voir [HaVa], chapitre 4).

Donc, si le groupe G n'a pas la propriété (T), il existe une représentation

unitaire pour laquelle H1 (G, tt) / 0. En 1982, Vershik et Karpushev se

demandaient si l'on peut toujours trouver une telle représentation parmi les

irréductibles. Sous l'hypothèse que le groupe G est engendré par une partie

compacte, Y. Shalom a répondu positivement à cette question en montrant que
les trois conditions suivantes sont équivalentes [Sha2] :

(i) G possède la propriété (T);

(ii) H1 (G, 7r) 0 pour toute représentation unitaire irréductible ir ;

(iii) H1 (G, 7r) 0 pour toute représentation unitaire ir où H1 désigne la
cohomologie réduite, quotient de l'ensemble des cocycles par l'adhérence
des cobords pour la topologie de la convergence compacte.
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Remarquons que l'hypothèse de génération compacte est nécessaire. En
effet, si G est le groupe additif d'un espace vectoriel de dimension infinie
sur le corps à deux éléments, alors G n'a pas la propriété (T) car il est
abélien non compact, alors que H1 (G, 7r) 0 pour toute représentation unitaire
irréductible n.

Des exemples de groupes de Kazhdan sont:

• SL(«, R), pour n>3 ;

• plus généralement, les groupes de Lie réels simples qui ne sont pas
localement isomorphes à ceux de l'exemple 5;

• les réseaux (sous-groupes discrets de covolume fini) dans de tels groupes,
par exemple SL(n,Z), pour n>3.Pour des compléments concernant la propriété (T), on pourra se référer à

[HaVa],

Exemple 7 : groupes libres
Si F2 désigne le groupe libre sur 2 générateurs, alors F2 admet une

représentation irréductible qui est un point dense dans F^ (voir [Yosh] ou
[Dav], théorème VII.6.5).

Le cortex de F2 est donc le dual F2 tout entier. De plus, toute représentation
de F2 admet un premier groupe de cohomologie non-trivial (voir paragraphe 9,
exemple 1 de [Gui2]). Ces résultats s'étendent au cas du groupe libre F„ sur
n générateurs.

Exemple 8 : les groupes SL(2, R) k R2 et SL(2, Z) k Z2

Soit G le produit semi-direct SL(2,R) k R2 pour l'action naturelle de
SL(2,R) sur le plan R2. Montrons que le cortex de G s'identifie à celui de
SL(2, R).

Soit 7 t G Gune représentation du cortex de G. Il existe une suite
dans G qui converge à la fois vers 7r et 1G. Comme la paire (G, R2) possède
la propriété (T) relative, la restriction de tt„ à R2 admet pour assez grand
des vecteurs invariants non-nuls (voir [HaVa], proposition 2.2). Comme la
représentation 7r„ est irréductible et R2 est normal dans G, on voit de plus
que la restriction 7r„|R2 est la représentation identique, de sorte qu'on peut
voir 7T„ comme une représentation de SL(2,R). Il en résulte que 7r est triviale
sur R2, passe au quotient par R2 et définit une représentation de SL(2,R),
qui est dans le cortex.
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Réciproquement, une représentation du cortex de SL(2,R) définit par
relèvement une représentation du cortex de G.

Les mêmes arguments sont valables pour le groupe SL(2, Z) ix Z2 où

SL(2, Z) désigne le groupe des matrices 2 fois 2 de déterminant un à

coefficients entiers agissant naturellement sur le réseau Z2.

Exemple 9 : réseau dans un groupe de Lie simple

Soit T un réseau dans un groupe de Lie simple G non-compact et de

centre trivial qui ne possède pas la propriété (T). On note Àp la représentation

régulière gauche de F sur l'espace de Hilbert É2(T) des fonctions de carrés

sommables. Nous allons montrer que le cortex de T contient le support
de Àp.

En effet, le groupe G ne possède pas la propriété (T) et la représentation
triviale 1g est donc limite de représentations irréductibles non-triviales

7rn. On peut supposer que ces représentations 7rn ne sont pas faiblement
contenues dans la représentation régulière Àg de G car le groupe G

n'est pas moyennable. En particulier, les 7rn ne sont pas dans la série

discrète de G de sorte que les restrictions irn\r de 7rn à T sont encore
irréductibles (proposition 2.5 de [CoSt]). Par continuité de la restriction, la
représentation triviale lp est encore limite des 7rn|p. De plus, la représentation
régulière de F est faiblement contenue dans chacune de ces représentations
7Tn |p (théorème 1 de [BeHa]). Une représentation ir faiblement contenue
dans Àp est donc limite de représentations (parmi les 7rn|p) qui tendent

vers lp.

Exemple 10: réseau dans un produit de groupes

Soit T un réseau irréductible dans un produit G G\ x G2 de deux groupes
de Lie semi-simples sans facteur compact et de centres finis. L'irréductibilité
de F signifie que, pour chaque i 1,2, l'image de F par la projection
Pi : G —» Gi est dense dans G/.

Chaque représentation irréductible a de G2 définit une représentation
irréductible 1(g)a de G\ x G2 puis, par restriction, une représentation (l®cr)|p
de T qui est toujours irréductible car la projection de F sur G2 est dense.

On note G^lr le sous-ensemble de F des représentations de ce type et G2|r
son adhérence dans F.
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Supposons que G\ possède la propriété (T) et montrons que

cor F C G2|r •

Une représentation 7r du cortex de T est limite de représentations irréductibles
7Tn de T qui convergent également vers lr. Grâce au théorème 1 de [BeLo],
on peut supposer que les représentations 7rn sont de la forme (1 (g) <jn)\r où
crn G G2. On peut être plus précis: 7r G corT si et seulement si 7r est limite
de représentations (1 ® an)\r où liman lGl dans G^.

Concernant la cohomologie de la représentation triviale, le groupe H^r, lr)
coïncide avec le groupe des morphismes additifs de T dans C. Un tel
morphisme est toujours trivial sur le sous-groupe [r,T] des commutateurs
et définit donc un morphisme du groupe abélianisé Tab T/[r, T] qui est
fini dans notre cas (corollaire 2.7 de [LuZi]). Par suite, H1 (F, lr) 0. Plus
généralement, on a H^r, tt) 0 pour toute représentation 7r de dimension
finie de F (voir le théorème 3.1 de [LuZi] ou le théorème B de [BeLo] pour
une preuve élémentaire utilisant le résultat de Vershik et Karpushev présenté
dans cet article).

Supposons de plus que le quotient G/Y est compact et montrons qu'une
représentation irréductible et non-triviale de F avec un premier groupe de

cohomologie non-nul est forcément de la forme (1 (g) cr)|r où a est une
représentation irréductible de G2 telle que H1(G2,cr) ^ 0. En effet, si 7r est

une représentation irréductible non-triviale de F telle que H^tt) fi 0, alors,
soit 7T est de la forme désirée (c'est-à-dire 7r (l(g)cr)|r avec U\G2,a)^0),
soit 7r contient faiblement la représentation triviale lr (théorème 1 de [Lou]).
Le second cas ne peut pas se produire. En effet, si ir contenait faiblement lr,
la représentation induite Indp 7r contiendrait faiblement 1G et sa restriction
(Indp 7t)|Gi contiendrait faiblement lGl. La propriété (T) pour G\ implique
que la représentation (Indp tt)|Gi posséderait des vecteurs invariants de sorte

que 7T (p (g) l)|r pour une représentation irréductible p de G\ ([BeLo],
lemme 1). Par suite, la restriction (p(g) l)|r contiendrait faiblement lr, ce qui
n'est pas possible (voir la remarque 2 de [Lou]).

On trouvera d'autres informations sur la cohomologie de ce type de groupes
dans [Shal] et [Lou].
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3. Représentations, cohomologie
ET FONCTIONS (CONDITIONNELLEMENT) DE TYPE POSITIF

Les groupes sont supposés localement compacts séparables, les espaces de
Hilbert considérés sont séparables et non nuls.

3.1 Représentations irréductibles et factorielles
Pour un ensemble S C C(TL) d'opérateurs sur l'espace de Hilbert TL, on

note S' {T G C(TL) \ TS ST \/S G S} le commutant de S.
Soit 7r une représentation unitaire irréductible du groupe G sur l'espace

TL. Grâce au lemme de Schur, l'irréductibilité de tt signifie que le commutant
7r(Gy de l'ensemble ir(G) {tt(g) | g G G} est réduit aux opérateurs scalaires.
Comme 7t(G) c Afn, on a Af^ C n(G)'. Ainsi, le centre Af^DAf^ de l'algèbre
de von Neumann Afn est lui-même réduit aux opérateurs scalaires sur TL.
Ceci montre qu'une représentation irréductible ir est factorielle.

3.2 Fonctions de type positif
On appelle fonction de type positif sur le groupe localement compact G

une fonction continue p sur G à valeurs complexes telle que, pour tous

Qii • • • •) Qn £ G, la matrice (iP(9fl9i))1<ij<n est hermitienne positive: pour
tous gi,..., gn G G et pour tous Xi>m,., \n G C, on a

n

^Mgpgù>o.
ij=l

A propos des fonctions de type positif, voir le paragraphe 32 de [HeRo]. Si

ip est une fonction de type positif alors, pour tout g G G, p(g~l) <p(g) et
1^(^)1 < y(e) où e désigne l'élément neutre du groupe G. On note E0(G)
l'ensemble des fonctions de type positif cp sur G telle que p(e) < 1. C'est un
sous-ensemble convexe et borné de l'espace L°°(G) des fonctions mesurables
et essentiellement bornées sur G.

Sur L°°(G), on considère les deux topologies suivantes: d'une part, la
topologie *-faible ou topologie crOL00^1) donnée par les semi-normes

Pf: L°°(G) * R+ : <p i » | /) |

où / G Ll(G) et {(p,f) / p{g)f{g)dg\ d'autre part, la topologie de
Jg

la convergence uniforme sur toute partie compacte (ou plus simplement
topologie de la convergence compacte) pour laquelle un système fondamental
de voisinages de la fonction p est donné par les ensembles
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W(v?; £, K) {ipeL°°(G): sup |^(p) - VO)| < e}

où £ est un nombre strictement positif et K une partie compacte du groupe G.

La topologie de la convergence compacte est plus forte que la topologie
*-faible. En général, ces deux topologies sont différentes. Pour le voir, on

considère les fonctions fn sur le groupe additif R qui sont linéaires par

morceaux, valent zéro sur ]—oo,0] et 1 sur [^,+oo[. Pour la topologie

faible, ces fonctions convergent vers la fonction caractéristique de ]0, +00 [

alors qu'elles ne convergent pas uniformément sur les parties compactes.

L'ensemble Eq(G) est fermé pour ces deux topologies, il est compact pour
la topologie *-faible mais en général pas pour la topologie de la convergence

compacte. Pour le voir, on considère le tore G S1 et pour tout ne Z, le

caractère

Xn : S1 —> C: z 1—> z~n

pour z e2nit e S1. Cette suite de fonctions de type positif converge vers la
fonction nulle pour la topologie *-faible: pour / G L1^1), (x«?/) coïncide

avec le coefficient de Fourier f(ri) de / au point n qui tend vers zéro pour n
tendant vers l'infini. A l'opposé, aucune sous-suite de (Xn) ne peut converger
uniformément vers zéro car supzG5i \Xn(z)\ 1.

On note E(G) l'ensemble des états de G : il s'agit des fonctions (p de

type positif sur G pour lesquelles ip(e) 1. Raikov a montré que, sur E{G),
les deux topologies décrites ci-dessus coïncident (voir [Rai] ou le théorème
13.5.2 de [Dix]). Pour un groupe non-discret, l'ensemble des états n'est en

général pas fermé pour la topologie *-faible. En effet, les caractères du tore
décrits ci-dessus sont des états du groupe S1 mais leur limite pour la topologie
*-faible vaut zéro au neutre.

Si exE0(G) désigne l'ensemble des points extrémaux du convexe E0(G),
on note P(G) (ex£0(G))\{0} et on observe que P(G) c E(G). Les éléments
de P(G) s'appellent les états purs. Comme E0(G) est convexe et compact pour
la topologie a(L00^1), le théorème de Krein-Milman nous dit que E0(G) est

l'enveloppe convexe des états purs et de 0. En particulier, P(G) est non vide.

3.3 Construction GNS

Si tt: G —>• U(H) est une représentation unitaire de G et £ G H, alors
la fonction p(g) m (7r(g)£ 10 est une fonction de type positif sur G telle
que ip(e) ||f || Une telle fonction est dite associée à la représentation n.
Réciproquement, pour toute fonction (p non-nulle de type positif, il existe un
triple où 7^: G^UÇHp) est une représentation unitaire de G
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et ^ Hp est un vecteur de norme \/p(e) tels que l'orbite de ^ sous
l'action de Tip{G) est totale dans Hp et, pour tout g G G, on a

<p(g) (nip(9)Ç<p | £<p)

Un tel triple est appelé triple GNS associé à <p. Il est unique à isomorphisme
près. Pour rappel, si V désigne l'espace vectoriel des fonctions /: G —> C de

support fini alors Hp est l'espace de Hilbert obtenu en séparant et complétant
V pour la forme sesquilinéaire

(/ I h)53 f(xipiy^x).
x,y£G

Cette construction possède les propriétés suivantes :

(1) si <p, i/j et x s°nt tr°is fonctions de type positif telles que ip cp + x
alors la représentation tip est une sous-représentation de trp ;

(2) la fonction de type positif (p est pure si et seulement si la représentation

7Tp est irréductible;

(3) si (p 1 alors Tip \q ;

(4) si (p est une fonction de type positif associée à une représentation tr alors
la représentation iip qu'on associe à <p par construction GNS est une
sous-représentation de 1r.

3.4 TOPOLOGIE SUR LE DUAL

Considérons la topologie de Fell (inner hull-kernel topology) sur l'ensemble

Rep(G) des (classes d'équivalence de) représentations unitaires du groupe
localement compact G. Cette topologie est définie comme ceci. Soient 7r

une représentation, s > 0, K un ensemble compact de G, et
des fonctions de type positif associées à n. On note W(7r; K, e, </?i,..., (pn)

l'ensemble des représentations p G S pour lesquelles il existe des fonctions

ißlf, „., ipn, chacune étant une somme de fonctions de type positif associées

à p, telles que

\(Pi(x) — vpi(x)\ < £ V/=1,...,7Z Viel.
Les sous-ensembles du type e, <pi,..., cpn) forment un système
fondamental de voisinages de la représentation ir dans Rep(G) (voir [Fel2],
Section 2).

Cette topologie peut aussi être décrite en termes de contenance faible:
la représentation ti est faiblement contenue dans un ensemble S de

représentations de G si toute fonction de type positif associée à ti est limite,
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pour la topologie de la convergence compacte, de sommes de fonctions de

type positif associées à des représentations de S. Avec ces définitions, une
suite (généralisée) 7rn de représentations unitaires de G converge vers 1r si

et seulement si, pour toute sous-suite infinie 7r„/ de 7rn, 7r est faiblement
contenue dans {7iy}.

Pour les représentations irréductibles, la topologie ainsi induite sur G n'est
autre que la topologie quotient définie par l'application surjective

P(G) —* G: ip i—> 7r^

qui associe à un état pur la classe de la représentation GNS correspondante,
P(G) étant muni d'une quelconque des topologies mentionnées au §3.2. De
plus, si 7r est une représentation irréductible et S est un sous-ensemble de

G, alors 7r est faiblement contenue dans S si et seulement si tt est dans
l'adhérence de S pour la topologie de Fell.

3.5 COHOMOLOGIE ET ACTIONS AFFINES

Une action par isométries affines du groupe G sur un espace de Hilbert
affine H est un morphisme a de G dans le groupe IsoiTt) des isométries
affines de H tel que l'application

GxH —> H:(g\—>a(g)Ç

soit continue. Par le choix d'une origine, on identifie un espace de Hilbert
affine H à l'espace de Hilbert de ses translations. Si a est une action par
isométries affines alors, pour tout g dans et tout élément £ de on peut
écrire

a(g)Ç 7r(p)£ + %)
où 7 r(g)est un opérateur linéaire unitaire et b(g) En imposant la
continuité et la condition de morphisme pour a, on trouve d'une part que 7r
est une représentation unitaire de G sur H, appelée partie linéaire de a, et
d autre part que b est une application continue de G dans 7ï qui satisfait la
condition de cocycle

b(xy)b(x) + 7r(x) b(y) pour tous x, y G G

Réciproquement, la donnée d'une représentation unitaire tt de G sur H et
d'une application continue bde Gdans H vérifiant la condition de cocycle
par rapport à tt définit une action par isométries affines « de G sur H, par
la formule a(p)£ tt(p)£+ b(g).
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Pour à, 7T et ß comme ci-dessus, les conditions suivantes sont équivalentes
(voir [HaVa], chapitre 4, lemme 3):

(i) a possède un point fixe;
(ii) a possède une orbite bornée;

(iii) toute orbite de a est bornée;

(iv) le cocycle b associé à a est borné;

(v) le cocycle b associé à a est un cobord.

3.6 Fonctions conditionnellement de type positif
Si b: G -* H est un cocycle continu pour la représentation 7r alors la

fonction ip définie par

-||&(#)||2 pour tout g G G

est conditionnellement de type positif : pour tous #i,..., gn G G, pour tous
Ai,..., Xn G R tels que Ai H h \n 0, on a

n

^2 xJxi tpigp>o.
ij= 1

La fonction ip est normalisée (i,b(e) 0) et symétrique ('P(g) ip(g~1)).
Réciproquement, à une telle fonction continue ij), on associe le triple GNS

où 7T,/, est une représentation orthogonale de G dans l'espace
de Hilbert réel Hg, et b,P est un cocycle à coefficients dans TL,;, tel que,
d'une part, le sous-espace engendré par b^(G) est dense dans H,p, et d'autre
part, pour tout g e G,ona

Wg) -\\\b^g)f.
Pour rappel, si V désigne l'espace vectoriel des fonctions f:-G —» R de
support fini et telles que 0 alors H,P est l'espace de Hilbert réel
obtenu en séparant et complétant V pour la forme bilinéaire

(f\h)=
x,y£G

et bg, applique g G sur la classe dans U,,} de la différence des fonctions
caractéristique de get e.Lareprésentation n,P est déduite de l'action par
multiplication à gauche de G sur V.

Soit 7T une représentation, b un 1-cocycle à coefficients dans tt et
-</; -1) h H la fonction conditionnellement de type positif correspondante. On
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note 7f la représentation conjuguée de 7r dans l'espace de Hilbert conjugué

TL et b le 1-cocycle à coefficients dans tT correspondant à b. On peut alors

réaliser (TL^.n^.b^) de la façon suivante: le cocycle b^ est donné par

b^(g) b{g) + b(g), l'espace TL^ est le sous-espace réel fermé de TL © TL

engendré par b^(G), et iest la sous-représentation de 7r 0 7f obtenue en

restreignant l'action de 7r0 7f au sous-espace réel invariant TL# (voir [Del],

remarque V.3). De plus, pour tous x,g G G, on a l'égalité

(3.1) (ir$(x)b^(g)\ b^(g)) ip{g~lxg- ip(g~lx) - ip(xg) + ip(x).

4. Preuve du théorème

Soient tt une représentation factorielle du groupe G telle que

et b un 1-cocycle continu à coefficients dans ir qui n'est pas un cobord. Il
s'agit de montrer que le support de 7r est contenu dans le cortex de G.

4.1 Stratégie

On considère la fonction conditionnellement de type positif %j) : G —> R
définie par

VVO ~l|Kr)||2

et le triple GNS 7r^, b^) correspondant.
Pour tout g G G on a une fonction

ip9: G — C: x i—> {\b^(g))

qui est de type positif et qu'on va décomposer en une somme

(4.1) i/;9 (p9+x9

de deux fonctions de type positif (proposition 4.7).
Soit V un voisinage de 1G dans G. En utilisant l'hypothèse que b n'est

pas un cobord, nous montrons qu'il existe g G G tel que la fonction g)9

est non nulle (proposition 4.8) et limite pour la topologie de la convergence
compacte de combinaisons linéaires de fonctions de type positif associées à
des représentations de V (proposition 4.10).

La fin de la preuve est alors standard, et se déroule comme suit. Soit
(/C, p, 0 le triple GNS défini par tp9. Il résulte de l'assertion ci-dessus que
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le support de p est contenu dans l'adhérence de V pour la topologie de
Fell. La décomposition (4.1) montre que p est une sous-représentation de la
représentation GNS associée à ip9, qui est elle-même une sous-représentation
de 7T0 ; et est une sous-représentation de 7r ©7f. Quitte à échanger les
rôles de tt et W (ce qui peut se faire sans perte de généralité car H1 (G, tt) ^ 0
si et seulement si H1 (G, tt) ^ 0 et supp7r c cor G si et seulement si
supp7r c cor G), on peut supposer que p possède une sous-représentation
a qui est équivalente à une sous-représentation de ir.

Le support de a est dans l'adhérence de V, puisqu'il est contenu dans le
support de p. Comme 7r est une représentation factorielle, a et 7r sont quasi-
équivalentes (proposition 5.3.5 de [Dix]), d'où il résulte que leurs supports
coïncident. Par suite

Ceci étant vrai pour tout choix de V, le support de ir est contenu dans le
cortex de G.

4.2 Théorème de Schoenberg

Soit ip une fonction conditionnellement de type positif sur un groupe G.
Pour tout nombre réel t > 0, la fonction (pt définie par

avec des limites au sens de la topologie de la convergence compacte (voir par
exemple le théorème 5.16 de [HaVa]).

4.3 Décomposition de Choquet

On dit qu'une mesure p, sur un espace Q est supportée par une partie
mesurable A c Q si p(Q\A) 0.

Soit F un espace vectoriel topologique localement convexe séparé et
métrisable et K une partie convexe et compacte de F. On note ex F l'ensemble
des points extrémaux de K. Une mesure de probabilité p supportée par ex F
détermine un unique élément x G K donné par la formule

SUpp 7T supp a c V.

<P,(9) e'^9)

est de type positif. De plus,

(4.2)

yd/j,(y),
Jk

entendue au sens *-faible, c'est-à-dire au sens où



UN THÉORÈME DE VERSHIK ET KARPUSHEV 305

/M [ f(y)dp(y)
Jk

pour toute forme linéaire continue / sur F ([Cho], proposition 26.3).

Réciproquement, tout élément x de K peut être représenté de cette manière.

En effet, pour tout x G K il existe une mesure de probabilité p sur K,
supportée par qxK, telle que

x / ydfiiy)
Jk

au sens *-faible. Une telle décomposition est appelée décomposition de Choquet
du point x (voir [Cho], Theorem 27.6). Dans le cas où x est lui-même un

point extrémal, la mesure p qui donne une décomposition de Choquet du

point x est unique et donnée par la mesure de Dirac Sx au point x ([Cho],
proposition 26.3). En particulier, pour l'ensemble Eo(G) défini au numéro

3.2, il existe pour tout t > 0 une mesure de probabilité pt supportée par
P(G) U {0} telle que

(pt= Vdptip)
Je0(G)

au sens faible c^L00^1), c'est-à-dire au sens où

CFtJ) [ (v,f) dpt(rj)
Je0(G)

pour tout / G L^G) (voir [Dix], proposition 13.6.8).

4.4 Localisation

On note V le voisinage de la fonction 1 dans P(G) qui est l'image inverse
de V par l'application

P(G) —¥ G : ip i—» Wtp

On va décomposer les fonctions de type positif cpt de la façon suivante. Soit
W un voisinage de la fonction constante 1 dans E0(G) tel que V WflP(G).
Puisque 1, on peut supposer grâce au lemme ci-dessous que

Ah(W) 7^ 0. On définit

St
1 f

{ 0 sinon.
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On a

(pt= f]dpt(rj)A- / pdpt(p)
Jw JE0(G)\W

— pt(W)p]v + (i — Ht(yv))v]

En posant À, pt(W), on obtient

(4 3) (ft — I
__

Xt pY^ + (1 — Xt) p — 1

t t

_ tpW-î 1 — Xt
+ f~w w\

~PtJ
4.5. PROPOSITION. On conserve les notations précédentes.

(i) lim Xt 1 ;
?—>o

(ii) lim p^ 1 uniformément sur tout compact;

(iii) pour tout t >0, p^ est limite uniforme sur tout compact de
combinaisons convexes d'éléments de V.

De plus, pour une sous-suite de pt que l'on indexe encore par t,
(iv) il existe une fonction po G Eq(G), po ^ 1 telle que lim p^ — p0 pour

la topologie *-faible;

(v) il existe un nombre réel positif X tel que lim — J À
M0V t J

Afin de démontrer cette proposition, nous aurons besoin du lemme suivant.

LEMME. Soit K un compact convexe dans un espace métrisable. Soient

p G ex K un point extrémal de K et pt une suite d'éléments de K telle que

J Pt P- Pour chaque t, on se donne une décomposition de Choquet

Pt= p dpt(rj)
JK

où pt est une mesure de probabilité supportée par qxK. Alors, pour tout
voisinage W de p dans K, on a

limpt (W DexK) 1.
t—>-0

Preuve. L'ensemble M(K) des mesures de probabilité sur K est compact
pour la topologie faible. Il existe donc une sous-suite ß,k de p, qui converge
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faiblement sur K vers une mesure p. La suite pt converge vers tp qui est

un point extrémal, donc

<p= vdßiv)
Jex K

et la mesure ß coïncide avec la mesure de Dirac S^ au point tp (Proposition
26.3 de [Cho]). De plus, toute sous-suite convergente de (ßt) admet 8^
comme limite. Autrement dit, 8^ est l'unique point adhérent de la suite (ßt)
et lim ßt(W) 1 pour tout voisinage W contenant p. La mesure ßt est

supportée par exK, donc

lim ßt(W n exK) 1
f—»•o

comme annoncé.

Preuve de (i). C'est une conséquence du lemme ci-dessus. En effet,

lim ßt(W) lim pt(W D exE0(G)) 1.
i—>o *—>•o

Preuve de (ii). Les fonctions 'p]v et la fonction constante 1 appartiennent
à 1 ensemble E(G) sur lequel les topologies *-faible et de la convergence
compacte coïncident. Il suffit donc de montrer que lim <.pp 1 pour la

topologie ^(L00^1). Pour / e L'ïGj, on a

{ft J)/ (??,/) + I
Jw Je0(G)\W

et

}i(ft,f)=(!,/)•
Le lemme implique que

lim ptÇW) 1 et Jim W) 0,

donc

lim<WV> (1./)

Preuve de (iii). Pour une partie A de Eq(G), on désigne par A l'adhérence
de A dans Eq(G) pour la topologie *-faible et coA son enveloppe convexe.
Posons

Kw := co(W H P(G))

et considérons la mesure /ifw, supportée par W flP(G), donnée par
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w / an w)^ mwT
Ceci détermine une mesure de probabilité sur le compact convexe Kyy telle

que

p=[
J Kw)'Kyv

La proposition 26.3 de [Cho] implique que p^ G Kyy. Autrement dit,
la fonction p^ s'écrit comme limite pour la topologie olI/^L1) de

combinaisons convexes d'éléments de WnP(G). Or p^ appartient à E(G) et

co(WnP(G)) C E(G) sur lequel les topologies de la convergence compacte et
crÇL00,h1) coïncident, donc la fonction p^ s'écrit aussi comme limite pour la
topologie de la convergence compacte de combinaisons convexes d'éléments
de W D P(G).

Preuve de (iv). Comme la suite (p^) est contenue dans E0(G) qui est

compact pour la topologie ^(L00^1), il existe une sous-suite, encore indexée

par t, et un élément p0 G Eo(G) tel que

r ~WIl= p0

pour la topologie faible aÇL00,!}).
Supposons que po 1. En particulier, on peut supposer que les fonctions

(p^ qui apparaissent dans la sous-suite considérée sont toutes non nulles.
Considérons la mesure définie par

pt(A H (E0(G)\W))
(A)

1 - ,_ll(W)
P°Ur A C Eo(G)

Cette mesure est supportée par (£,0(G)\>V) H P(G), et donne pour tout t une

décomposition de Choquet de p^.
Puisque po 1 est un point extrémal, la mesure de probabilité po qui

donne une décomposition de Choquet de po est la mesure de Dirac en 1 et

vérifie

Par conséquent,

ce qui est absurde.

ßo }M/

1 ßo(W) limjiPm 0,
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Preuve de (v). Montrons d'abord qu'il existe un réel to > 0 tel que
soit borné pour 0 < t < to.

Supposons que ce n'est pas le cas. Alors, quitte à extraire une sous-suite

que l'on indexe encore par t, on peut supposer que

lim +°° •

Choisissons un go G G tel que (po(go) 7^ 1 et un voisinage ouvert relativement

compact U de go dans G tel que

Revote) - 1) 0 pour tout g ÇïlA

et une fonction / G L*(G), non nulle, positive et telle que supp/ C U.
L'équation (4.3) donne

(M^T1)./) (r=(^)./> + (^)(R^r - vï"),f)
Grâce au choix de /, on a

Iim(Re(^ - (Re(<A) - l),/> < 0

(Re(ä£zi),/) <o.

Puisque limf-^1) +00, grâce à (4.2) on a

(R ûm(Re(2fi),/) -00.

Comme ip est continue et / est à support relativement compact, ceci mène à

une contradiction. On peut donc supposer, quitte à passer à une sous-suite, que

avec A > 0 car \t/xt(W) < 1.

Ceci termine la preuve de la proposition 4.5.

4.6 Constructions GNS

Fixons gG G. En utilisant (3.1) et (4.2), on a

b,jj(g) I b^(g)j lim ~{<Pt(g— — <pt(xg) + (p,(x)\

uniformément pour jc parcourant les ensembles compacts de G.
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On utilise alors l'égalité (4.3) pour trouver

(tt^C x)b^(g)|b^(g))

}i^{ 7 (9^xg) - y0?_1X) - V3tw(x$) + (x))

+ (P- $5(g~lx) - + ^(x))
~ (-1 ,v) (vrw(s_1*p) - ^tw(iT1*) - (xg) + M)

uniformément pour x parcourant les parties compactes de G. Pour tout t > 0,
soit (Wf, 7Tf,£f) (resp. ÇHt,7rt,t)) le triple GNS associé à la fonction de type
positif p^ (resp. p^). En posant

Vt it- it), a? ïït(g)i,- et ßf irt(g)

on trouve

(4.4) (tr^(.)b^(g) \ b^(g)) limj(7 .)7?f |

+ (^T^) j a?)

- -f)}
pour la topologie de la convergence compacte et donc aussi pour la topologie
aÇL°°}Ll).

4.7. Proposition. On pose a9 m 7r0(g)Ç0 - £o où (Ho^o^o) est le

triple GNS associé à la fonction de type positif po apparaissant dans la
proposition 4.5 (iv). Pour le reste, on conserve les notations précédentes.

(i) lim(7r>(.)af | a9) — ^7To(.)^o I ao) Pour topologie jj(L°°,Ll);

(ii) lim 717 ß9 | ßjj) — 0 pour la topologie a(L°° ;

(iii) il existe une sous-suite de pt, toujours indexée par t, et une fonction
de type positif p9 telle que, pour la topologie c^L00^1), on ait

lim(7i>(. |

Preuve. L'assertion (i) est une conséquence du fait que

tpQ lim py lim<7rf(. I fft—>0 t—>0 ' '
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pour la topologie cr(L°°, L1), et que (po (ttq( £o I Co) • Grâce à 4.5 (ii) on a

lim<7r;(.)6 | 6) =lim^ 1

t—>0 t—* 0

pour la topologie cr(L°°,Ll), et donc

lim(7 h(.-)ß?|0
>0

pour la topologie c^L^L1). Enfin, en utilisant la compacité de Eq(G)

pour la topologie c^L^L1), on peut extraire une sous-suite telle que

lim (tïy( rft | rj9) existe. On note cette limite p9.

En passant à la limite dans (4.4), on écrit

(4.5) (^(OM#) I M#)) VsA (fo( • «o I

Pour chaque g G G, ceci fournit un candidat pour une décomposition du type
(4.1) avec x9 A (tto( a$ \ a90). Il reste à vérifier qu'il existe un élément

g E G tel que la fonction (p9 possède les bonnes propriétés.

4.8. PROPOSITION. Si le cocycle b n'est pas un cobord, alors il existe

un élément g G G tel que cp9 ^ 0.

Preuve. Si (p9 0 pour tout g G G, alors d'une part

||(tT^(.)b^(£) I b^(g))\\ sup | (77,^)^(5) I

xGG

(77,.(c)/;,..(5) I b^ig))

-2^(g) 2 \\b(g)||2

et d'autre part

\\X^{-)bg,(g)IMff)>L A (770(e) ag | a$)

A (770(5) Co- £0 I 77o(5) Co - Co)

2A (l - Re <£0(5))

pour tout g G G. La fonction de type positif </?0 est bornée; l'égalité
ll^(p)||2 A(1 -Recpo(g)) implique que b est un cocycle borné sur G,
donc un cobord.
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Pour la suite, on fixe un élément g e G tel que p9 ^ 0.

4.9. Proposition. Les fonctions de type positif (7Tt(. )rft | rft) sont
uniformément bornées pour t > 0, autrement dit

sup sup |(t Tt(x)Tjf|?/;'}, < x:.
?>o xeG

Preuve. On a

sup |(7rr(x)T7f | rf)| (7rf(e)?ft \ \\r)? ||2
x£G

On va montrer que (rjf | rjf est borné pour t > 0. Pour cela, écrivons l'égalité
(4.4) au point x e,

||MS)||2 | V?)+ (a? | a?) - (i=^) {ßf \ /??)}

On a

<a? | af)-</?? | -f)
{2 - 2 Re^foK, j |;>} - {2 - 2 Re(7T((5)6 | 6)}
2 Re(^fw (3) - PP(

et les suites

(^rO » WV(9)Iet (p)|

sont bornées en Donc la suite (rjf | rft) est également bornée.

4.10. PROPOSITION. La fonction p9 est limite pour la topologie de la
convergence compacte de combinaisons convexes de fonctions de type positif
associées à des représentations de V.

Preuve. Grâce aux propositions 4.7 (iii) et 4.9, la fonction de type
positif p9 est limite pour la topologie *-faible de fonctions de type positif
uniformément bornées associées aux représentations 7rt. Ceci implique ([Fell],
Lemma 1.5) qu'il existe une suite 9t de fonctions de type positif associées

aux représentations 7rt telle que

p9 lim 9t
o

uniformément sur les compacts de G.
De plus, 7Tt est la représentation GNS associée à la fonction de type positif

pY^ qui, d'après 4.5 (iii), est limite uniforme sur les compacts de combinaisons
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convexes d'éléments de WfiP(G). Donc les fonctions de type positif associées

à 7rr sont limites uniformes sur les compacts de combinaisons convexes

d'éléments de WDP(G). Finalement, ip9 est elle-même limite uniforme

sur les compacts de combinaisons convexes d'éléments de V W flP(G).
Comme les fonctions de type positif appartenant à V sont associées aux

représentations de V, ceci termine la preuve de la proposition.

On a donc établi une décomposition de la fonction (7| b^(g))
comme annoncé en 4.1. Ceci termine la preuve du Théorème.
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