Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 47 (2001)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: VITALI'S CONVERGENCE THEOREM ON TERM BY TERM
INTEGRATION

Autor: Choksi, J. R.

DOl: https://doi.org/10.5169/seals-65438

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-65438
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 47 (2001), p. 269-285

VITALI’S CONVERGENCE THEOREM
ON TERM BY TERM INTEGRATION

by J.R. CHOKSI

1. INTRODUCTION

In this article we discuss a convergence theorem of Vitali [29] which
appeared in 1907, before Lebesgue proved the dominated convergence theorem.

" This theorem is in some ways stronger than the standard convergence theorems,
~and deserves to be better known than it is. Vitali proves that if a sequence of

~ integrable functions f, converges a.e. to an integrable function f (on a space

- of finite measure), then the integrals of f, on any measurable subset converge
to those of f, if and only if the integrals are uniformly absolutely continuous.

The hard part is to show that convergence of the integrals on any measurable

- subset implies uniform absolute continuity. Subsequently (in 1915) de la Vallée
Poussin [27] simplified Vitali’s proof (this is also not well-known), and in
1922 Hahn [10] was led to prove the much better known Vitali-Hahn-Saks
- Theorem. If Vitali’s paper is quoted today, it is usually either as (1) a forerunner
_to the Vitali-Hahn-Saks Theorem, or (ii) as the much weaker result that L'
convergence is equivalent to uniform absolute continuity. Note that Vitali’s
~ result shows that when £, converges a.e. to f, weak convergence implies strong
convergence. We give here, in modern language and notation, Vitali’s original

B O S DAL D SUSUE NSNS NP

proof, de la Vallée Poussin’s simplification, and finally, Hahn’s original proof
of the Vitali-Hahn-Saks Theorem. This last is also not well-known, having
been superseded by the Baire category proof of Saks [25] (and Banach [1]).
This article is not directed to experts in the history of the subject, but to
the vast majority of real analysts, who though they teach the subject, are not
aware of the history or existence of these proofs. Numbers in square brackets

4 refer to the reference list at the end of the article.
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The three standard convergence theorems are:

1. THE MONOTONE CONVERGENCE THEOREM (MCT). If {f,} is a sequence
of non negative measurable functions on a measurable set E with f, < fy11

for all n € N, then / limf, zlim/fn.
E

E

2. FATOU’S LEMMA (Fatou). If {f,} is a sequence of non negative

measurable functions on a measurable set E, then | liminff, < liminf / I
E E

[The non-negativity in Fatou and the inequalities in MCT may hold a.e.]

3. THE DOMINATED CONVERGENCE THEOREM (DCT). If {f,} is a sequence
of measurable functions on a measurable set E such that f, — f a.e. on E
and if there exists a function g, integrable on E with |f,| < g a.e. on E,

then /Eleim/Ef,,.

A special case is

THE BOUNDED CONVERGENCE THEOREM (BCT): If E is a set of finite
measure, {f,} measurable on E such that f, — f a.e. on E, and if there

exists a real number M > 0 with |f,| <M a.e. on E, then /f = lim/fn.
E E

They are most usually proved in this order; sometimes BCT is proved
first. Other convergence results involving mean convergence come somewhat
later. DCT i1s the result most often used in practice (though MCT has perhaps
a deeper theoretical significance: see below). .

Historically, things were very different. Lebesgue’s thesis [14] (referred to
as ‘these’ in what follows) appeared in 1902 as a paper in Annali di Matematica
entitled «Intégrale, longueur, aire». Lebesgue’s main interests were in various
ways of constructing the integral, or primitive, in differentiation and the
fundamental theorem of the calculus, and in completing the study of measure,
initiated and carried quite far by E. Borel. Convergence theorems were not
his main interest, and the thesis contains only BCT on p.259.

‘Sketch of his proof. Let ¢ > 0 and let F, = szn{m —f] > e}.
Then m(F,) — 0, since f, — f a.e. (m(F,) denotes the measure of F,).
If E, = E\F,, then
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[Efn—[Ef S/Elfn—fl=/En|fn—f|+/Fn|fn—f|

< em(E) + 2Mm(F)

< em(E) + 2eM for sufficiently large n.

Lebesgue lectured on his new work at the College de France in 1902-03,

| and these lectures were published as a book entitled « Lecons sur l'intégration
' et la recherche des fonctions primitives» (1% edition 1904 [15], referred

to as Lecons I). Again, the only convergence theorem proved is BCT, on
p.114. But in the last chapter (Chapter VII) of Lecons I (Chapter VII
also in the revised 2" edition of 1928 [19], referred to as Legons II),
Lebesgue states the «Probléme de I’intégration», six properties which an
integral on a suitable class of bounded functions should possess. Property
(6) is the convergence property: for f,, f > 0 and bounded, if f, < f,q1

for all n, and f, T f then [ f, — / f. Of course this restricted version

of MCT for bounded functions follows at once from BCT. [The best
historical account of the theory of integration up to 1910 is in Hawkins

[12].]

In 1906 (four years after Lebesgue’s thesis was published) Beppo Levi
[20] proved MCT and independently Fatou [7] proved his lemma. Levi’s paper
is short and crystal clear, even if your Italian is rudimentary !

Sketch of his proof. Let 0 < f, < fyu1 and f = limf, on E.
Assume m(E) < oo. Let f* = min(f,k), f* = min(f,,k), k € N, and let

ap = /fk, Qnk = /f,,ic Then a,; 1s increasing in n for fixed k, and
E E
increasing in k for fixed », so lim lilgn Ak = li]£n lima, ; regardless of whether
n n
the limits are finite or infinite. Since f¥, f* are bounded by k (and of course

> 0), BCT gives li;n Ank = Qg = / fk for each k. If f and so f, are integrable,

E
then lima; = /f, lima, ; = /fn, and so /f: /limfn :lim/fn, by
k E k E E E E

the equality of the repeated limits. This happens if either repeated limit is
finite, in particular if lim / fn 1s finite. If not, both repeated limits are infinite
" JE

and lim/fn = +00.
" JE
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Fatou’s proof of his lemma is very similar. It should be noted that Fatou’s
long paper is one of the most important of the century. For the first time the
new theory of integration is applied to complex function theory; there are
also fundamental applications to trigonometric series. |

It is not until 1908, that DCT first appears in Lebesgue (1908) p.9- 10
[16] with a sketch of the proof; the same thing happens in Lebesgue (1909)5
[17] at the top of p.50. In these papers Lebesgue seeks to apply his new
results and finds BCT insufficient. In Lebesgue (1910) [18], in §15 on page -
375, the proof of DCT is given in more detail, still on a set of finite measure.

Sketch of his proof. Let € > 0; since g is integrable on E, there

exists a number M > 0, such that g < €, where F = {g > M}; then
F

/ |fn — f| <2, and on E\F, the result follows by BCT.
F

Note that all the theorems so far have been stated and proved for sets E
of finite measure. There does not seem at that time to have been much interest |
on anyone’s part in extending the results and proofs for the case m(E) = +co. :
However, (excluding of course BCT) this is easily done.

2.  VITALI’'S CONVERGENCE THEOREM

In 1907, before Lebesgue announced DCT, there appeared a remarkable |
paper by G. Vitali [29], which, I feel, has not received its due, even from
Hawkins. In it Vitali proves the following result:

Let E be a set of finite measure (finiteness is essential here). Let {f,}
be a sequence of integrable functions such that f, — f ace. with f finite

a.e. Then f is integrable and / Jn — / f, for every measurable subset F

of E, if and only if the integrals | f, are uniformly absolutely continuous
A ‘
(uniformly in n): given € > 0, there exists § > 0, such that if m(A) < 6,

then ’/fn’<sf0ra_ll n.
A

This implies that / | fn] < 2e. Vitali calls this equi-absolutely continuous. f

A
Note that this result generalizes at once to any finite measure space.
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Vitali first proves that uniform absolute continuity is sufficient for

/ Jn — / f for all measurable subsets F of E.
F F

Sketch of his proof. For h € N, let G, = {|f,| > 2" for some n}.
If T, = E\Gy, then the sequence {f,} is uniformly bounded on I’ for
every h € N. Thus on all measurable subsets of I';, convergence of integrals
follows by BCT. On the other hand, G, is a decreasing sequence of sets
and m((), Gy) =0, so m(Gy) | 0. So for all sufficiently large %, the uniform
absolute continuity condition implies that the contribution of the integrals over
Gy, 1s small.

Vitali next proves necessity of the uniform absolute continuity condition
when the functions f,, are all non-negative.

Sketch of his proof. 1f [ f, are not uniformly absolutely continuous,
then for some & > 0, there exists for each 4 > 0, a measurable set F
with m(F) < 0 and n € N with /fn > g. Let §; > 0 with 2§, < oo.
For each ¢;, there exists a measuralfle set G; C E and n; € N such that
m(G;) < 6; and / fu >¢€.Let I, =J;2 G;. Then T, decrease with r and

m(Fr)<Z5 — 0 as r — oo. For all i > r, /fn > . Since f,, — f a.e.

as i — 0o, /f,l /f by hypothesis, and so for each r, /f >e>0.
T,

Put I = ﬂr:l I',. Then m(I") = 0, but / f > e > 0. Contradiction.
r

Finally Vitali proves necessity in the general case. If f, — f ae. on E

and f, are completely integrable on E,ie. | f, — [ f for every measurable
F

subset ' of E, then [ f, are uniformly absolutely continuous, i.e. given

e > 0 there exists 6 > 0, such that if m(A) < §, then / fu| < e for all

n € N. (This is the deepest and hardest part of Vitali’s paper, and is in a
sense ‘new’ even after 93 years!)

Proof (Vitali). All the sets that occur in this proof will be measurable,
even when this is not explicitly stated.
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STEP I. If f, > 0 for all » € N, we have already seen above that the
result is true.

STEP II. Suppose now that f > 0 a.e. on E; we can assume that f > 0
on all of E. Note first that if f, — f boundedly then BCT implies that

/Ifn —f| — 0 as n — oo, and so given £ > 0, there exists N € N such

L5 [

Let G, ={0 < f; <2" Vj>n}. G, C Gnyq for all n and E = Uz,G
So E\G, | & and m(E\Gy) | 0.

Now given o > 0, there exists m(n,o) such that if T, C G, then

Jo= )

a strictly increasing sequence of positive integers n; < np < --- < nm; < ---
such that for every subset I',, of G, ,

/f, /f~<5l for j > n;y .

For every positive integer n > ny, there exists a unique i € N such that
niy1 < n < nipy. For such n, put

fix)  ifxeG,
gn(x) = :
0  ifxeE\G,.

Let I' be a subset of E and I',, = G,, NT". For fixed i,

i - [ 5[ 1

If nit1 <n<njy, then / p = /gn, and so, using (7),

lim gn = lim / / f= / lim g, .
n—00 i— 00

Thus g, are completely integrable on E and since g, > 0 for all =, it

that for all F C E and n > N, we have < E.

< o for all j > m(n,o0). Let ¢, >0, &, | 0. We can find

()

follows by Step I that [ g, are uniformly absolutely continuous on E. Put
®n =Jn — gn- The ¢, are completely integrable on E. To complete the proof

of Step II we must show that [ ¢, are uniformly absolutely continuous.
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Observe that if ni1 < n < Riga, then @n(x) = 0 for all x € G,,. So for all
x € E, lim¢,(x) =0, and for any measurable subset Q C E, / ¢n — 0.
Q

Suppose that [ ¢, are not uniformly absolutely continuous. Then there

exists o > 0, such that for all u >0 and N € N, there exist ' C E with

/Fasn

such that Xn; < %. Let T'; be a subset of E for which there exists t; € N

m() < p and n > N such that > o. Let m1,m2,... be >0, and

with qStl‘ > ¢. Since lim Oy = ¢y, , we can find i; €N such
I 100 J Gy NI Iy

that / ¢, | > o. Now there exists p; > 0 such that if m(I') < p1,
G,; NI

'l[l

then / ¢, | < mi. By our assumption, there exists I', such that m(I%) <
r

> o. By the same reasoning, there exists

| .

I

and t, > n; 4+ such that

i, (necessarily > i;) such that / o, | > 0.

Gn' ﬂFZ
B
Now there exists o > 0 such that if m(I") < pa, then

/qbtj\ <772a J: 172
T

There exist a subset I's with m(I3) < w2 and #3 2> nj41, such that

¢t3
I

Now there exists 3 > 0 such that if m(I’) < p3, then

> C.

> o. Again we can find i3 € N such that / Grs
G,.. NI3

n,3

/¢tj)<7737j:17273'
r

Continue in this way to obtain an increasing sequence ij, u; > 0, and

ti > n;_,+1 and sets I'; such that m(I}) < w1 and / Or| < Mj-1>
Y

/ (btj
Gy, (T

Q ={xe Gn, NT; such that ¢y (x) # 0}

k=1,2,...,j—1, but > 0. Let

e s——
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We claim the sets €; are disjoint. Since #; > n;_,+1 we have ¢, =0 on Gn,-j »
and so ¢, =0 on Gn,-j- So Qg ﬂGn,-j = @. Since G, increase with n, i.e.
Gy C Gy for all n, it follows that Q.1 NQ =@ if k=1,2,...,j, and so
(); are all disjoint. Put Q = Ufil €3;. Then since ¢, =0 on Qq,...,Q; 1,

/chtj-:/gj%+g/%¢zj.

o> e | > f

j
| (btj‘ > % for all j. But since ¢, are completely integrable and ¢,(x) — O
Q

]

o)
But > o and < 5 Hence

< Mj+h—1, SO

¢tj
+h

for all x € E it follows that / ¢y, — 0 as j — oo. This is a contradiction,
Q

completing the proof of Step II.

STEP III. In the general case, put g, = f, —f + 1. Then g, — 1 a.e.
on E, and g, is completely integrable. Hence as seen in Step II, the result

is true for the g,, i.e., [ g, are uniformly absolutely continuous. Hence the

same holds for / fn, completing the proof.

COMMENTS

The concept of complete integrability of a sequence is weaker than weak
sequential convergence in L'. Vitali was of course, in 1907, unaware of L!
convergence (strong or weak) and its significance. Using Vitali’s proof that
complete integrability implies uniform absolute continuity, we see that it also
implies convergence in L'. But a direct proof that complete integrability
implies L' convergence (without using Vitali’s result) seems hard.

A feature of this remarkable paper is that all the results are stated and
proved in terms of series of functions rather than sequences; thus one has to
realize that a “series all of whose partial sums are non-negative” corresponds
to a sequence of non-negative terms, and is not to be confused with “a series of
non-negative terms”, which corresponds, of course, to an increasing sequence
of non-negative terms ! Vitali’s theorem is obviously a generalization of BCT.
He remarks that Beppo Levi’s MCT follows from it. Of course, so also does
DCT, but Vitali did not know about DCT at the time.

The history and use of this result between 1907 and 1939 is something
I would like to know more about! Hawkins [12] mentions the paper, but
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quotes only what I consider to be a much less important result at the end of
the paper. In a footnote on p. 50\61“ his 1909 paper [17], Lebesgue says that
DCT and MCT are special cases of Vitali’s convergence theorem. He also
states that DCT can be extended to sets of infinite measure. On p.365 of the
1910 paper [18] he again refers to Vitali’s Theorem, saying that it gives a
necessary and sufficient condition for term by term integration. In Legons II
[19] (p.131) Lebesgue merely refers to the paper: « M. Vitali a écrit sur ce
sujet un tres important Mémoire, que je ne puis ici que signaler»; this is just
before he gives DCT. In 1913, Camp, in a rather messy paper [2], gives a
generalization of Vitali’s theorem to several variables.

In 1915, de la Vallée Poussin, wrote a long paper [27] entitled «Sur
Iintégrale de Lebesgue »; this article is complementary to his book « Intégrales
de Lebesgue, fonctions d’ensembles, classes de Baire» [28] written at about
the same time. In the paper, in the section on convergence theorems, de la
Vallée Poussin discusses Vitali’s work, and in the proof of Theorem 4 on
p.448-450 he simplifies considerably the hard part of Vitali’s proof; we give
a sketch of his argument.

It is clearly sufficient to prove that if f, — 0 on E, and / Jn are not
uniformly absolutely continuous on E, then there exists F C E such that
/ Jn = 0. (We know this is true if £, >0 on E .) Let A, be a sequence (to

F
be chosen later) such that 0 < A4,, < Apyr for all m € N, and A,, — +o0,

and let E, = {x € E : | fy(x)| > A,, for some n € N}. Note that the measure
of E,, tends to zero.

Let ¢ = limsup / \ful; € > 0, else / | 2| are uniformly absolutely
E

continuous. Let w > 0 with w < /6. It is fairly easy to choose A,, so that

for each m € N, there exists n € N such that the following three inequalities
are satisfied :

) L\Em|ﬁ|<w, /Emlfn:>s—w, [ inl<w.

m--1
This is done inductively: for each m, we can find n so that the first two
inequalities are satisfied and then choose Am+1(> Ay,) depending on # so that
the third is satisfied. Further we can choose 7 increasing and — oo with m.

(1) implies that / | fu] > €—2w, and so there exists Fn C E,\E,11

Enz\Em+l
I
F,

m

SO that

1 o0
> 5(5 —2w). Put F = U F,, (disjoint union). Note that
m=1
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\ 1
F;CE\E, for i=1,....m—1 and F, CE, for h=m+1,m+2,....

Hence for each m, and the corresponding =,
-3 |
F

m—1
/an > /me” _IZ:; ~/F,'fn h=mt 1

[l -] "

€ — 2w €
—w—w= = —3w,

2 2

VvV

which is positive since w < €/6. Hence / fu = 0, completing the proof.
F

The argument is very similar to Step 1 in Hahn’s proof of the Vitali-
Hahn-Saks Theorem [10] given in §3, and it is at least conceivable that Hahn
got the initial impetus for his proof from de la Vallée Poussin’s paper. In
[27], Theorem 5 on p.450, de la Vallée Poussin shows that uniform absolute

continuity of / f» on a space of finite non-atomic measure is equivalent to:

Given € > 0, there exists K > 0, such that for all n € N, / | fn] < €.
{If2|>K}

This was rediscovered by Docb [3] 24 years later, the new criterion was
called uniform integrability, and used extensively by Doob in his study of
martingales. In 1918, H. Hahn [9, p. 1774] showed, using Vitali’s result, that
complete integrability implies strong L! convergence: this shows that Hahn
was aware of Vitali’s paper. However de la Vallée Poussin’s paper seems to be
virtually unknown ! I learnt about it from the excellent set of bibliographical
references on p.223 of Hahn and Rosenthal [11]. Nagumo [21] discusses the
theorem with reference to Vitali, uses it, and gives a necessary dnd sufficient
condition for uniform absolute continuity. Vitali himself does not seem to have
worked further on this subject. See the biographical article by A. Tonolo [26].

Among well-known books on real analysis written before World War II
only Hobson [13] refers to Vitali’s paper on p.296-299. Hobson also has
what is probably the first attempt to generalize Vitali’s result to sets of infinite
measure ; these are all, in my opinion, somewhat artificial. Since the fifties some
books on analysis and/or probability have included the concept of uniform
absolute continuity or uniform integrability, but often without any mention
of Vitali. Also, where there is a reference to Vitali, the result attributed to
him is often the equivalence of uniform absolute continuity and strong L!
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convergence, which follows from the easy part of Vitali’s work, whereas
complete integrability is not mentioned. Rudin, Real and Complex Analysis
[24], is an exception — in all three editions; however, in the first edition the
Vitali convergence theorem is given, by the third edition this has changed
to the Vitali-Hahn-Saks theorem. Dunford-Schwartz [6] has a comprehensive
account in Chapters III and IV. Unfortunately there is a slip in the statement
of Vitali’s convergence theorem on p.234.

3. THE VITALI-HAHN-SAKS THEOREM

Vitali’s convergence theorem is regarded as the origin of this theorem.
It was first stated and proved by H. Hahn [10] in 1922. Hahn’s statement
and proof follow. (Both this result and Corollary 2 are referred to as “The
Vitali-Hahn-Saks Theorem”. The result is obviously stronger than Vitali’s
convergence theorem.)

THEOREM (H. Hahn [10] Thm. XXI, pages 45-50). If m(E) < oo,

| f. integrable on E, and for each measurable F C E, lim [ f, exists and is

§ finite, then / fu are uniformly absolutely continuous.

Proof. Again, all the sets that occur in this proof will be measurable.
Suppose the integrals are not uniformly absolutely continuous. Then there
exists € > 0 with the property that for each N € N and o > 0 there is

a measurable set Z with m(Z) < o and ny > N with / | /| > €. By
. . Z
considering the sets where f,, > 0 and f,, < 0, we obtain for each N € N,

a set M with m(M) < o and ng > N with |/fn0 > %
M

STEP 1. We show that there exists a sequence of pairwise disjoint sets
M, and an increasing sequence of positive integers n, such that

|/Mf

We start by choosing a proper subset Z; of E and n; € N such that

g
Zlfnl 5

ngorallueN.

> —. We observe that there exists ¢ > 0 sufficiently small so that




280 . J.R. CHOKSI

if Z' C Z; with m(Z') < o, then we still have > —;— Now by our

/ fo
Z\Z/

assumption we obtain n, > ny and a set Z, with m(Z,) < o but I,

Z;
[ f
Zy \Zl NZ, 7

In the same way we obtain n3 > n, and a set Z; of sufficiently small

measure so that
E
fm by 5 ; f ny f n3
ZI\ZIN(ZLUZ3) Zo\(ZaNZ3) Z3

We continue in this way to obtain a strictly increasing sequence n, and sets

Z,, so that
Zy,

>€
5

Since m(Z; N 7Z,;) < o, we have > % and > %

>6'
2,

>8
5

Ja Jrz

>€'
2’

>6. .
2,..-,‘

€
/ / 2
ZI\ZiN(Z,U---UZ,) H\ZyN(Z3U---UZy) 2

Set

oo
M=z \zin|Jz
=

M=\ 2N}z
j=3

M,=7Z,\7Z,n | ] z.
j=v+1

/M T

STEP 2. We know that for each measurable set M, lim / f. exists and
M

n—oo

The M, are pairwise disjoint and = g for all v, completing the

proof of Step 1.

is finite; we shall show using Step 1, that lim [ f, does not exist for some

n—o0

M
M — this will complete the proof of the Theorem. Let M; and n; be as in
Step 1, we put G; = M; and v; = 1 so that ny, = ny. By absolute continuity

/me :

< —.
12
Since lim fn exists (and is finite), there exists N; > n; such that

n—0o0 Gl

of / Jn, » there exists p; > 0 such that if m(Z) < p;, then

|
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fom | ful<—= ifn>N, 02N
Gy Gy 12
€
Now there exists o1, 0 < o1 < p1, such that if m(Z) < oy, then ’ / le| < Tk
Z.

Since the sets M, are disjoint measurable subsets of E, and m(E) < oo, there
0

exists v, such that n,, > N; and Z mM,) < oy. Put Go =M, UM,,.
vV=1n
Now there exists py, 0 < py < o1, such that if m(Z) < p, then

[

< —. Since lim fn exists, there exists N, > n,, so that
n—oo G2

fn— fn’ <£‘ ifl’lZNz,n,ZNz.
Gy G» 12

Again there exists o, 0 < o0y < p such that if m(Z) < o0y, then

; and there exists v3, with n,, > N, and Z m(M,) < o,. Put

v=uis

M, UM,,2 UM,, . Proceeding in this way, we get:

Two sequences of positive integers n,, and N; with

(D n,,l<N1<n,,2<N2<---<n,,l.<N,-<---

Two sequences of positive numbers p; and o; with

(II) P1L>01>pP2>00> > p;i >0 > - .

These (together with the M, and f,) have the properties:

oo

(11D > mM,) < oi < pi,

V=Vt

where M, are as in Step 1;

Iv) /Z fu| < 16—2 if m(Z) < pi,
V) / ful < 1% if m(Z) < ;.
Z

Further, if G; = | JM,,, then

/Gifn—/Gifn/ & —

(VI) lfi’lZNl, I’l,ZNl

AR i A0S
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Recall from Step 1 that

(Vi) l /M S

Now put M = UMW (recall these sets are disjoint) and R; = M\G;. Now
i=1

om | [ i~ [ 5,
M M
/ fNi—l -/ fnu,- +/ fNi—l _/ fnu,- _/j;’lui
Gi—1 Gi—1 Ri—, My, R;
\/J\;anw - /Gi—lfNi—l —/Gi_lfnui - - /Rifnui .

By v, | [ fu. — / £
Gi_i Gi—

/ v, | < 1%; and since m(R;) < p;, by (IV) < / S, | <
Ri—l Ri
assertions together with (VII) show that (VIII) implies that

‘/fN, . fn,,,

Hence / Jn cannot have a finite limit as n — oo, contradicting our hypothesis

> for all v; .

oM™

v

Ni—y

< 15—2 Since m(Ri_1) < 0,1, by (V)

1 > These

______ _:Z for all i € N.

M
and completing the proof of (Step 2 and) the theorem.
REMARK. It is easy to prove also that / Jn are uniformly bounded.
E

COROLLARY 1. Under the same hypothesis as in the theorem the set
function v(F) = lim / fn is absolutely continuous with respect to m and so
n—0o0

is countably additive and is the integral of an integrable function f.

COROLLARY 2 (Vitali-Hahn-Saks Theorem). If v, is a sequence of finite
countably additive set functions on a o-algebra M of subsets of E and
lim v,(F) exists and is finite for all F € M, then this limit is countably

additive on (E,M).
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1 |w|(F
Proof. Put m(F) = Z on :—%,

n=1
v,. Then m is a finite measure on E and each v, is absolutely continuous

where |v,| is the total variation of

with respect to m. By the Lebesgue-Radon-Nikodym Theorem v, = / fndm
for some integrable f,. Apply the theorem and Corollary 1.

NOTE. As remarked earlier, the above is the first proof of the Vitali-Hahn-

Saks Theorem. Note that no use is made in the proof of the Baire Category
| Theorem. The proof is somewhat similar to Vitali’s proof of his convergence
theorem, and even more so to de la Vallée Poussin’s proof, although no
reference is made to Vitali or de la Vallée Poussin. Hahn does refer however
| to the paper of B.H. Camp [2], which generalizes Vitali’s result to several
variables; Camp does mention Vitali. Corollary 2 was first stated and proved
| by Nikodym [22], [23], ten years after Hahn. The proof is direct, but Nikodym
remarks that it is analogous to Hahn’s theorem for integrals; he also says that
4, his results are «en solidarité étroite avec des théorémes de M. H. Hahn». He
' does not remark that his result is an immediate corollary of Hahn’s. This is
} somewhat surprising, since he only needs to use a famous result that he had
just proved: the Lebesgue-Radon-Nikodym Theorem.
‘ Hahn’s proof precedes by ten years the Baire category proof of Saks
[25], who also gives Corollary 2. This proof was apparently also discovered
independently by Banach, and is included in the Polish edition of his book
on linear operators, Teorja Operacyj [1], but not in the much better known
French edition. Saks mentions Hahn’s result, but not Vitali’s. This proof is
given in many books. A very detailed account (including generalizations to
vector-valued measures) of the theorems of Vitali and Vitali-Hahn-Saks 1s given
in Chapters III and IV of Dunford-Schwartz [6], specifically on pages 122,
150 and 234 of Chapter III and pages 292-295, 306 and 389 of Chapter IV.
Page 389 also gives references to some interesting generalizations especially
of Corollary 2 by Dubrovsky and Cafiero. A proof of Corollary 2 above was
given in 1945 by Y. Dubrovsky [5]; it is somewhat similar to the proofs
of Hahn and Nikodym. This proof was simplified by Y.N. Dowker [4]. Her
argument 1s given on pages 32-35 of N. Friedman’s little book on Ergodic
Theory [8]. No one mentions Hahn, though Dowker mentions Saks.
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