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where the dots indicate a linear combination of the remaining vectors. It
follows from (3.6) that

(3.8) Aneapi = (DT DAL 4 Muayinn = (DAl gy
It is time to use the strict convex1ty of P.Let H be a hyperplane in RP4
through d — 1 vertices V,_ ditls - Vn+1, ..., V,u; which intersects P with

multiplicity d — 1, and let H be its lifting to Rd+1 Choose a linear function
¢ in R%! vanishing on H and such that ¢(V,,;) > 0. We claim that

(3.9) (=) p(Vyeyr)) >0 and (=1 lp(V,) > 0.

Indeed, by Lemma 3.3, the intersection multlphcltles of H with the polygonal
lines (Vn debis - s ,,,+1) and (Vn+1, . Vn+l+1) are at least d —1i and i—1,
respectively. Since H intersects P with multiplicity d — 1, the above two
multiplicities are indeed equal to d —i and i — 1. The inequalities (3.9) now
readily follow from Lemma 3.5.

Finally, we evaluate ¢ on (3.7):

(V1) = ao(Vo_ayri) + b o(Variv) .

It follows from (3.9) and the inequality go(VnH) > 0 that at least one of the

numbers (—1)"~'b and (—1)?"‘a is positive. In view of (3.8), Lemma 3.12
follows. [

Thus Theorem 3.11 is also proved.  []

REMARK 3.13. Strict convexity is necessary for the existence of d + 1
flattenings. One can easily construct a closed polygon without any flattenings
and even C’-approximate an arbitrary closed smooth curve by such polygons.
In the smooth case such an approximation is well known: given a curve 7y,
the approximating one, -y, spirals around in a tubular neighbourhood of ~.
In the polygonal case we take a sufficiently fine straightening of ~.

4. APPLICATIONS OF THE MAIN THEOREM

4.1 PROOF OF THEOREMS 2.2, 2.6 AND 2.10

Now we prove the results announced in Section 2. The idea is the same in
all three cases and is precisely that of Barner’s proof of the smooth versions
of these theorems — see [3] and also [15]. We will consider Theorem 2.6 in
detail, indicating the necessary changes in the other two cases.
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Iet P be as in Theorem 2.6. We consider the Veronese mapping
V: RP? — RP° of degree 2:

4.1) V:(x:y:z)r——>(x2:y2:zzzxjy:yz:zx).

The image V(P) is a piecewise smooth curve. Every edge is homotopic to
a straight segment, with the endpoints V(V;), V(Vi;1) fixed, and we obtain a
polygon Q in RP°. Assume first that Q is in general position.

LEMMA 4.1. A quintuple V(V)),...,V(Vita) is a flattening of Q if and
only if (Vi,...,Viya) is an extremal quintuple of vertices of P.

Proof. The Veronese map establishes a one-to-one correspondence between
conics in RP? and hyperplanes in RP? : the image of a conic is the intersection
of a hyperplane with the quadric surface V(RP?). Since V is an embedding,
the points V;_; and Vs lie on one side of the conic through (V, ..., Vita) if
and only if the points V(V;—;) and V(V;;s) lie on one side of the corresponding
hyperplane. [

Next we show that the polygon Q is strictly convex. Given 4 indices
i1,i2,13,14, we consider two lines in RP?: (V;,,V;,) and (V;,V;,); the union
of these lines is a conic that does not meet P any more. The corresponding
hyperplane in RP5 contains the vertices V(V;,), V(V.,), V(Vy,), V(V;) and
intersects Q with multiplicity 4.

Theorem 2.6 now follows from Theorem 3.11 for d = 5, provided Q is
in general position. Otherwise, we replace P by a convex polygon P’, close
to P, such that the corresponding polygon Q' is in general position. Then,
as above, P’ has at least 6 extremal quintuples of vertices, and therefore so
does P. This completes the proof.

To prove Theorems 2.2 and 2.10, one replaces the map (4.1) by the
Veronese map V : RP? — RP°

Vi@x:y:g)— (F+y 25 1y 2x)
and by the Segre map S: RP! x RP! — RP’
S (1 1 y1), (%2 1 ¥2)) = (X1xp © X1y2 D Y1X2 D YiY2),

respectively. The proofs of strict convexity for the corresponding polygons Q
reproduce ‘those in the smooth case (see [15]).
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4.2 CONCLUDING REMARKS

It would be interesting to provide discrete analogues of other “4-vertex
type” theorems known in the smooth case, and to find their specifically discrete
proofs. We give two examples.

The following statement is a discrete version of the celebrated Mobius
theorem (in dimension 2, “flattening” means “inflection”) — see [9]:

An embedded non-contractible closed polygon in RP? has at least 3
flattenings.

The notion of flattening for a polygonal line extends, in an obvious way,
from RP? to the sphere S?. One has the following statement:

An embedded closed polygon in S? bisecting the area has at least 4
flattenings.

In the smooth case this was proved by B. Segre [14] and by V. Arnold
(see [1, 2)]).

We are confident that these statements hold true and can be proved in a
similar way as in the smooth case. However, a detailed discussion would go
beyond the limits of this article.

In conclusion, let us formulate a conjecture. For k > d 4+ 2 the following
statement is stronger than Theorem 3.11.

CONJECTURE 4.2. A strictly convex polygon in RP? that intersects a
hyperplane with multiplicity k has at least k flattenings.

In the smooth case this is precisely Barner’s result in full generality [3].
Conjecture 4.2 would imply strengthenings of Theorems 2.2, 2.6 and 2.10 —
see [15] for the smooth case. For instance, the following result would hold.

Let X and Y be two n-tuples of points in RP! (see Section 2.3 ). If the
closed broken line ((xl,yl), (x2,¥2), . .. ,(xn,yn)) in RP! x RP! intersects the
graph of a projective transformation with multiplicity k, then there exist at
least k extremal triples of indices.
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