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REMARQUE. On construit facilement des exemples de courbes C a trois
composantes de degré 5 dont le complémentaire n’est pas hyperbolique a
cause d’une droite ne coupant C qu’en 2 points. En voici deux, présentés
en coordonnées affines, ot 1’obstruction I' est une conique ou une cubique
rationnelle ne rencontrant C qu’en 2 points. .

a) C est I’'union des deux paraboles d’équation (£2x = y> —2) et de I’axe
des x. Le cercle T' d’équation (x> +y* = 1) a des contacts d’ordre 4 avec
les paraboles en leurs sommets situés sur I’axe des x.

b) C est 'union de la cubique d’équation (y* = x* + x), de I’axe des x
et de la droite a l'infini. La cubique rationnelle I" d’équation (x = y®) a son
point de rebroussement 2 'infini au point de rencontre des deux droites et
un contact d’ordre 9 avec la cubique de C en l’origine, également sur 1’axe
des x.

5. APPENDICE. COURBES DE BRODY DANS (C*)*

Le théoréme du paragraphe 3 est aussi conséquence de la description des
courbes de Brody dans (C*)*.

DEFINITION. Une courbe entiére f: C — P¥(C) est dite de Brody si

|/l < 1, la dérivée étant mesurée dans les métriques usuelles de C et
PX(C).

Toute courbe entiere possede une limite de Brody, précisément par le
lemme de Brody (cf. §1). Celles contenues dans (C*)* sont trés simples :

THEOREME. Les seules courbes de Brody f: C — PKC) évitant les
hyperplans de coordonnées sont de la forme

f(z) = [ce™] :=[c1e™* : ... cpp1€M'7], ¢, ap dans C.

Démonstration. Ecrivons f = ¢ dans une carte de P%(C), par exemple
(Zk+1 = 1).

La premiere €tape, classique (voir [5]), montre que les composantes de
¢ sont quadratiques. L’argument remonte aux origines de la théorie de
Nevanlinna. La propriété d’étre de Brody pour f se traduit directement
par la surharmonicité de Log(l + |fi]* + ...+ | fil) = z|°. Les moyennes
de Log(l + [A]° + ...+ |/i|®) sur les cercles de centre 0 et de rayon r
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croissent ainsi au plus quadratiquement en r. Il en est de méme pour celles
de Log(1 +’|j}|2), donc de Log(|f| + |]§-|‘1) puisque Log|f;| = Re(¢;) est
harmonique. Or le développement en série enticre de ¢; donne:

2
" ¢ (0) = n! / Re ¢;(re®)e™" do,
0
d’ou

2w 2m
" [ ¢ (0)] < n!/ [Log | £i(re®)|| d6 < n!
0 0

Log(|fi|+ £~ N(re®) do.

En faisant croitre indéfiniment r, on en déduit que qu(-”) (0) =0 pour n > 3.
Les composantes de ¢ sont bien quadratiques.

La deuxieme étape consiste a voir que les composantes de ¢ sont en fait
affines. Pour cela, revenons aux coordonnées homogenes :

f=1[e? :...:eP*] avec deg(¢;) <2 .

Il s’agit de montrer que ¢; — ¢; est affine pour toute paire d’indices. Convenons
g q j p p

que i équivaut a j si c’est le cas pour la paire {i,j}. La remarque cruciale

est la suivante:

Soit Yy = {z | |z| = |zj| > |zl pour tout 1} (cf. §3). Si f~'(¥y) n’est
pas compact, alors i équivaut a j.

En effet, on peut alors trouver a, tendant vers l’infini avec f(a,) tendant
vers b dans Y;. Quitte a extraire, on peut supposer la suite (f(z + a,))
localement uniformément convergente par le théoreme d’Ascoli puisque la
dérivée de f est uniformément bornée. Il en est de méme pour la suite des
dérivées en O de la i-ieme composante de (f(z+ a,)) dans la carte (z; = 1),
donc

(fi/f) (@n) = (¢i(an) — ¢J/'(Cln))((ﬁ/]§')(an))
converge. .
Or (fi/f)(a,) tend vers b;/b; # 0. Ainsi ¢i(a) — ¢;(a,) doit converger

N

alors que ¢; — ¢} est affine et que a, tend vers l'infini. Ceci force ¢; —¢; a
étre constant et i équivaut a j.

Cette remarque permet de conclure: en effet, elle entraine que le maximum
des modules des composantes de f est réalisé par des composantes d’indices
équivalents (par exemple a 1) hors d’un compact de C. On aura ainsi, pour
tout i:

Re(¢:)(z) < Re(¢1)(z) + O(|z).

Donc ¢; — ¢ est affine pour tout i. [
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