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Remarque. On construit facilement des exemples de courbes C à trois

composantes de degré 5 dont le complémentaire n'est pas hyperbolique à

cause d'une droite ne coupant C qu'en 2 points. En voici deux, présentés

en coordonnées affines, où l'obstruction T est une conique ou une cubique

rationnelle ne rencontrant C qu'en 2 points.

a) C est l'union des deux paraboles d'équation (=L2x y2 — 2) et de l'axe

des x. Le cercle F d'équation (x2 + y2 1) a des contacts d'ordre 4 avec

les paraboles en leurs sommets situés sur l'axe des x.
b) C est l'union de la cubique d'équation (y3 x3 +x), de l'axe des x

et de la droite à l'infini. La cubique rationnelle T d'équation (x y3) a son

point de rebroussement à l'infini au point de rencontre des deux droites et

un contact d'ordre 9 avec la cubique de C en l'origine, également sur l'axe
des x.

5. Appendice. Courbes de Brody dans (C*)*

Le théorème du paragraphe 3 est aussi conséquence de la description des

courbes de Brody dans (C*)*.

DÉFINITION. Une courbe entière /: C —> P*(C) est dite de Brody si

\\ff II < 1, la dérivée étant mesurée dans les métriques usuelles de C et

P*(C).

Toute courbe entière possède une limite de Brody, précisément par le
lemme de Brody (cf. §1). Celles contenues dans (C*)* sont très simples:

THÉORÈME. Les seules courbes de Brody f: C —» P*(C) évitant les

hyperplans de coordonnées sont de la forme

f(z) [ceaz] := [aeaiz : : ck+leak+lZ], ci: at dans C

Démonstration. Ecrivons f — e^ dans une carte de P*(C), par exemple
(Zk+l 1).

La première étape, classique (voir [5]), montre que les composantes de

0 sont quadratiques. L'argument remonte aux origines de la théorie de
Nevanlinna. La propriété d'être de Brody pour / se traduit directement

par la surharmonicité de Log(l + \J\f +... + \fk\2) - |z|2. Les moyennes
de Log(l + |/i|2 + + \fk\2) sur les cercles de centre 0 et de rayon r
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croissent ainsi au plus quadratiquement en r. Il en est de même pour celles
de Log(l + \fj\2), donc de Log(|^| + puisque Log|jÇ[ Re(<^) est

harmonique. Or le développement en série entière de <ßj donne:
p2tt

tt/1 <pjn\0) ni Re <pj(rel0)e~in6 dO
Jo

d'où
p2ir p2ir

ttr" |</f(0)| < n! / |Log \fj(rew)\\ dO(Log(|jÇ-| +1
J0 J 0

En faisant croître indéfiniment r, on en déduit que <j)jn\0) — 0 pour n > 3.

Les composantes de <fi sont bien quadratiques.
La deuxième étape consiste à voir que les composantes de <ß sont en fait

affines. Pour cela, revenons aux coordonnées homogènes :

/ [e^ : : e^+1] avec deg(</>;) < 2

Il s'agit de montrer que ßi — ßj est affine pour toute paire d'indices. Convenons

que i équivaut à j si c'est le cas pour la paire {ij}. La remarque cruciale

est la suivante:

Soit Yij {z | \zi\ \zj\ > \zi\ pour tout 1} (cf. §3). Si f~l(Yij) n'est

pas compact, alors i équivaut à j.
En effet, on peut alors trouver an tendant vers l'infini avec f(an) tendant

vers b dans Ytj. Quitte à extraire, on peut supposer la suite (f(z + an))

localement uniformément convergente par le théorème d'Ascoli puisque la
dérivée de / est uniformément bornée. Il en est de même pour la suite des

dérivées en 0 de la z'-ième composante de (f(z + an)) dans la carte (zj 1),
donc

(fi/fj)\an) (</>&„) - <ß'j(an))Ulfj)(an))

converge.
Or (fi/fj)(an) tend vers b[/bj 0. Ainsi f'faf) — (f)j(an) doit converger

alors que </>• — </>j est affine et que an tend vers l'infini. Ceci force 0- — <fij à

être constant et i équivaut à j.

Cette remarque permet de conclure : en effet, elle entraîne que le maximum
des modules des composantes de / est réalisé par des composantes d'indices

équivalents (par exemple à 1) hors d'un compact de C. On aura ainsi, pour
tout i :

Re(^)(z) < Re(^)(z) +
Donc cj)i— 4>iest affine pour tout i.
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