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260 F. BERTELOOT ET J. DUVAL

Le cas général se discute de manière analogue en groupant les composantes
de (f) identiques en module. Ainsi on ne retiendra par exemple de Y que les
faces Yij pour | & | ^ | <pj |.

Remarques.
1) On peut supposer de plus a réel dans la limite exponentielle g. Si

ce n'est pas le cas, voici comment construire une limite de g (et donc
de /) satisfaisant cette propriété: considérons l'enveloppe convexe des D;

significatifs (ceux correspondant à des coefficients c; ^ 0) dans l'écriture
de g ; quitte à reparamétrer g, on suppose cette enveloppe contenue dans le

demi-plan supérieur avec une arête réelle : par exemple a* réel pour i < p et

Im(ai) > 0 pour i > p ; de g(z + in) [eianceaz] on extrait une sous-suite

convergeant vers h(z) [c1eaiZ : : cpeaPz : 0 : : 0] qui convient.

2) Ce théorème contient celui de Green: en effet, soit /(C) une courbe
entière non constante dans P^(C) omettant 2k + l hyperplans en position
générale, d'équations (/, 0). En considérant O [l\ : : hk+i\
le plongement correspondant dans P2k(C), la courbe entière <t> o / évite
maintenant les hyperplans de coordonnées. Elle possède une limite de la forme
suivante, quitte à permuter et prendre des multiples des formes linéaires k :

g(z) [eaiZ : : eagZ : 0 : : 0] avec ai a\ ssi i <p

Par position générale, chacune des formes linéaires /; est toujours combinaison

de k + 1 autres ; il en est donc de même pour les composantes de O.
Ceci entraine que p < k : sinon toute composante de g serait proportionnelle
à eaiZ et g serait constante. Mais, d'un autre côté, la première composante
de g doit être combinaison des k+ 1 dernières, soit :

Or on a dans cette égalité ai / ql\ puisque p < k. C'est impossible.

4. Complémentaire d'une courbe à trois composantes dans P2(C)

Nous appliquons ce qui précède à l'étude de l'hyperbolicité du
complémentaire de trois courbes dans P2(C) (comparer avec [5], [6]).

i>k-(-1
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THÉORÈME. Le plan projectif privé d'une courbe C à 3 composantes,

générique, de degré au moins 5, est hyperbolique.

Ici la généricité signifie d'une part que les composantes C; de C sont lisses

et se coupent transversalement, d'autre part que l'on élimine les obstructions

évidentes à l'hyperbolicité du complémentaire de C, les cas où une courbe

rationnelle ne rencontre C qu'en deux points. Plus précisément on exclut:

i - une tangente à C passant par deux points doubles,

1 - une bitangente ou une tangente d'inflexion à C passant par un point

j double,
;

{ - une conique ne rencontrant C qu'en deux points.

Le dernier cas n'arrive que si l'une des composantes de C, par exemple

C3, est une droite. La conique coupe C3 en deux points qui sont aussi sur
i Ci UC2 et y possède un contact d'ordre au moins 8 avec Ci U C2.

I On vérifie que toutes ces situations forment un diviseur dans l'espace des

courbes à 3 composantes de degré fixé. C'est donc une généricité au sens de

; Zariski.

Démonstration du théorème. Elle procède par contradiction et consiste en

deux étapes: construire, à partir d'une courbe entière évitant C, une limite
qui dégénère algébriquement ; puis discuter les courbes algébriques rencontrant

I peu C pour tomber sur une situation non générique.
j La première étape provient de l'utilisation du résultat du paragraphe

précédent après avoir projeté P2(C) \ C dans (C*)2 grâce aux trois
composantes. On en déduit une limite évitant C qui se projette comme feuille

j d'un feuilletage linéaire de (C*)2. Ceci va forcer la rationalité des pentes de

ce feuilletage et donc l'algébricité de la limite.
La deuxième étape, classique, utilise systématiquement le théorème de

j Bézout et la formule du genre pour des courbes à singularités simples.

j a) Le cadre. Soit (Pi 0) l'équation (de degré dt) de la courbe C/. Notons
j F : P2(C) —> P2(C) l'endomorphisme holomorphe de degré d ppcm(^i, d2, d$)
j défini par

F(z) [Px(zr : PiizT2 : W"3! avec mid^d.
H Par construction, F envoie le complémentaire de C dans (C*)2. Son lieu
;

| critique consiste en les courbes Q avec multiplicité mt - 1 et une courbe D
de degré d\ + d2 + d3 — 3. Remarquons que D évite les points doubles de C

j du fait de leur transversalité.
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Soit maintenant une courbe entière non constante /: C — P2(C) évitant
C. Comme F o f omet les axes de coordonnées, elle possède une limite
exponentielle non constante de la forme h(z) [c1eaiZ : c2eOLz : c3ea3Z] avec

at réel (cf. §3).

Remarquons qu'une limite de F of se relève toujours via F en une limite
de / En effet, si F of o rn tend vers h, alors f orn doit être normale. Sinon
sa renormalisation donnerait une courbe entière non constante dans une fibre
de F. Donc, quitte à extraire, f orn converge vers g avec F o g h.

En particulier, h(C) n'est pas contenue dans l'un des axes de coordonnées.
Sinon g(C) serait tracée sur une des composantes de C, par exemple C\
et éviterait les deux autres. Or, pour des raisons de degré, le cardinal de

Ci n (C2 U C3) est au moins 3. Ceci est impossible car une courbe algébrique
privée de 3 points est hyperbolique.

Ainsi, quitte à reparamétrer / et prendre des multiples des équations P\,
on aura h(z) (ez,eaz) dans une carte de P2(C).

b) Absence de limites transcendantes. Montrons que les adhérences h{C)
et g(C) sont algébriques. Il suffit pour cela de voir que a est rationnel.
Supposons le contraire.

La courbe entière h(C) est alors l'une des feuilles complexes de

l'hypersurface réelle Levi-plate H d'équation (|y| \x\a) dans (C*)2. Les
autres feuilles complexes sont clairement des limites de h et donc de F of.
Ainsi l'adhérence de g(C) dans P2(C) \ C est feuilletée par des limites de

g, donc de /, relevant via F les feuilles complexes de H.
La contradiction va venir d'une discussion de la position de g(C) par

rapport à D, le lieu critique de la restriction de F au complémentaire de C.
Du fait de notre latitude de choix de h(C) parmi l'infinité de feuilles

complexes de H, on peut supposer que h(C) ne coupe F(D) qu'en des

valeurs régulières de F\Di de plus transversalement. En effet,, les valeurs
singulières de F\D ainsi que les tangences de F(D) aux feuilles complexes
de H sont en nombre fini, puisque ces feuilles sont transcendantes et F(D)
algébrique.

Alors g(C) doit éviter D : sinon la différentielle Dp(F) en un point
d'intersection de #(C) avec D aurait une image contenant les tangentes à

F(D) et h(C) en F(p) ; elle serait de rang maximal.

Il en est de même pour les limites non constantes de g : sinon l'une d'entre
elles serait contenue dans D\C qui est hyperbolique.

Ainsi l'adhérence g(C) omet D puisqu'elle est feuilletée dans P2(C) \ C

par des limites de g et que F~l(H) ne rencontre C qu'en ses points doubles,
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soit hors de D.Doncg(C)est contenu dans le complémentaire d'un voisinage
de Ddans P2(C) qui est hyperbolique (cf. § 1), d'où la contradiction.

c) Discussion des limites algébriques. Par ce qui précède, la courbe
entière g(C)est contenue dans une composante irréductible F de degré 5
d'une courbe algébrique d'équation (après permutation des composantes de C) :

i) (P"' p'^) avec pgcd(«i, 1

ou

ii) (P"'P"2 P"3)avec pgcd(«,,«2,«3) 1

Notons que T ne rencontre C qu'en deux points exactement, toujours car
une courbe privée de 3 points est hyperbolique. Plus précisément, si F est
singulière en un de ces points, cette singularité doit être irréductible, comme
on le constate en passant à la normalisation.

Montrons qu'aucune de ces possibilités n'est générique :

5

Cas ^ Notons me {p,q} avec p dans CjnC2 et q dans C3\(CjUC2).
D'après l'équation i), T a en pune multiplicité d'intersection «, avec C2 et

n2avec Ci. Comme p est l'unique intersection de T avec Ci et C2, on en
déduit par le théorème de Bézout que 8 divise n{ et n2. Ainsi <5=1 et F
est une droite. Comme cette droite coupe C, avec multiplicité d, (en p pouri— 1,2, en qpour i3 avec d2 + d2 + d2 > 5, elle doit être une bitangente
ou une tangente d inflexion à C passant par le point double p.

Cas ii) Notons cette fois rn C {pi,p2} avec p-, dans C,- n C3.
Supposons d'abord F non singulière. Elle doit être rationnelle carT\ {pi,Pi} n est pas hyperbolique. C'est donc une droite ou une conique.

Dans le premier cas, Fest une tangente à C passant par les deux points
doubles p, et p2.Sinonelle serait transverse à C en p, et p2 et le théorème
de Bézout imposerait dx « d21, d32 contredisant l'hypothèse sur le
degré de C.

Dans le second cas, la conique T possède un contact d'ordre 2d, avec
Q en Pi pour f 1,2 toujours par Bézout. Elle est donc transverse à C3
en Pl et p2.L'intersection totale de F avec C3 vaut 2 et C3 doit être unedroite. Ainsi dx+ d2>4 et la conique F a un contact d'ordre 8 au moins
avec Cj U C;..
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- Analysons le cas singulier. Près de pt, la courbe F a une équation
locale de la forme (xn ySi) avec pgcd(rz-, sf) 1 puisque la singularité y
est irréductible. Ici (x 0) est une équation locale de Q et (y 0) de C3.

Comme plus haut, le calcul des multiplicités d'intersection et le théorème
de Bézout donnent:

(1) 5 si/di s2/d2 ri/d3 + r2/d3

qui implique

(2) (ö — 1)(£ — 2) {r\/d2 — l){s\/di — 1) + (r2/d3 — l){s2/d2 — 1).

Par ailleurs, la formule du genre pour une courbe irréductible de genre g,
de degré ö et possédant un certain nombre de singularités irréductibles de la
forme (xn /') s'écrit (cf. par exemple [10]):

2g <(S- 1)0 - 2) - ]T(r; - 1)0 - 1),

l'inégalité provenant de la présence éventuelle d'autres singularités. Dans notre
cas, on en déduit:

(3) 0 - 1)((S - 2) > (n - l)(Sl - 1) + (r2 - l)fe - 1).

La comparaison de (2) et (3) impose l'égalité terme à terme des seconds
membres; en particulier T est non singulière hors de p\ et p2. On obtient:

(ri — l)(^i — 1) (hM-l)feM —1), (r2—\)(s2-l) (r2/d3-l)(s2/d2—l).

Comme F est singulière, l'une de ces égalités - par exemple la première -
est non nulle. Ceci entraîne dx d3 1 (Ci et C3 sont des droites et donc
d2 > 3. On en déduit que la deuxième égalité doit être nulle, soit r2 1.

D'après (1), on obtient S s\ n + 1. Autrement dit, la seule singularité
de T est du type (x5-1 yô) avec S > 3 en pi.

Ceci va imposer la présence d'une tangente d'inflexion à C2 en p2 : en
effet, soit (L 0) l'équation de la tangente à F en p2 et T\ la courbe
d'équation (P\~lL ÀPf). On choisit A de sorte que T et T\ coïncident. Il
suffit pour cela de fixer À pour avoir un contact d'ordre au moins ö2 - 1 en

pi entre F et F\ Comme, par construction, F et F\ sont déjà tangentes en

P2, elles doivent coïncider par Bézout. Ainsi la tangente à F en p2 est une
tangente d'inflexion car c'en est une pour F\ puisque ö > 3. C'en est une
aussi pour C2 puisque F et C2 y ont un contact important (d'ordre ôd2).

En conclusion, aucun de ces cas de figure n'est générique, ce qui achève
la démonstration du théorème.
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Remarque. On construit facilement des exemples de courbes C à trois

composantes de degré 5 dont le complémentaire n'est pas hyperbolique à

cause d'une droite ne coupant C qu'en 2 points. En voici deux, présentés

en coordonnées affines, où l'obstruction T est une conique ou une cubique

rationnelle ne rencontrant C qu'en 2 points.

a) C est l'union des deux paraboles d'équation (=L2x y2 — 2) et de l'axe

des x. Le cercle F d'équation (x2 + y2 1) a des contacts d'ordre 4 avec

les paraboles en leurs sommets situés sur l'axe des x.
b) C est l'union de la cubique d'équation (y3 x3 +x), de l'axe des x

et de la droite à l'infini. La cubique rationnelle T d'équation (x y3) a son

point de rebroussement à l'infini au point de rencontre des deux droites et

un contact d'ordre 9 avec la cubique de C en l'origine, également sur l'axe
des x.

5. Appendice. Courbes de Brody dans (C*)*

Le théorème du paragraphe 3 est aussi conséquence de la description des

courbes de Brody dans (C*)*.

DÉFINITION. Une courbe entière /: C —> P*(C) est dite de Brody si

\\ff II < 1, la dérivée étant mesurée dans les métriques usuelles de C et

P*(C).

Toute courbe entière possède une limite de Brody, précisément par le
lemme de Brody (cf. §1). Celles contenues dans (C*)* sont très simples:

THÉORÈME. Les seules courbes de Brody f: C —» P*(C) évitant les

hyperplans de coordonnées sont de la forme

f(z) [ceaz] := [aeaiz : : ck+leak+lZ], ci: at dans C

Démonstration. Ecrivons f — e^ dans une carte de P*(C), par exemple
(Zk+l 1).

La première étape, classique (voir [5]), montre que les composantes de

0 sont quadratiques. L'argument remonte aux origines de la théorie de
Nevanlinna. La propriété d'être de Brody pour / se traduit directement

par la surharmonicité de Log(l + \J\f +... + \fk\2) - |z|2. Les moyennes
de Log(l + |/i|2 + + \fk\2) sur les cercles de centre 0 et de rayon r
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