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260 : , F. BERTELOOT ET J. DUVAL

Le cas général se discute de maniére analogue en groupant les composantes
de ¢ identiques en module. Ainsi on ne retiendra par exemple de Y que les

faces Yy pour |¢;| # |¢;|. [

REMARQUES.

1) On peut supposer de plus « réel dans la limite exponentielle g. Si
ce n’est pas le cas, voici comment construire une limite de ¢ (et donc
de f) satisfaisant cette propriété: considérons 1’enveloppe convexe des «;
significatifs (ceux correspondant a des coefficients ¢; # 0) dans 1’écriture
de g; quitte a reparamétrer g, on suppose cette enveloppe contenue dans le
demi-plan supérieur avec une aréte réelle: par exemple «; réel pour i < p et
Im(ay) > 0 pour i > p; de g(z+ in) = [/ ce®*] on extrait une sous-suite
convergeant vers h(z) = [c1e®*:...:c,e®*:0:...:0] qui convient.

2) Ce théoreme contient celui de Green: en effet, soit f(C) une courbe
entiere non constante dans P¥(C) omettant 2k + 1 hyperplans en position
générale, d’équations (; = 0). En considérant @ = [[; : ... : Iy4q]
le plongement correspondant dans P%*(C), la courbe entitre @ o f évite
maintenant les hyperplans de coordonnées. Elle possede une limite de la forme
suivante, quitte a permuter et prendre des multiples des formes linéaires /; :

g)=1[e*:...:e**:0:...:0] avec a; =0y ssi i<p.

Par position générale, chacune des formes linéaires /; est toujours combi-
naison de k4 1 autres; il en est donc de méme pour les composantes de D.
Ceci entraine que p < k: sinon toute composante de g serait proportionnelle
a e“'* et g serait constante. Mais, d’un autre cOté, la premiere composante

de g doit étre combinaison des k + 1 dernieres, soit:

€Mt = g et

i>k+1

Or on a dans cette égalité «; # a; puisque p < k. C’est impossible.

4. COMPLEMENTAIRE D’UNE COURBE A TROIS COMPOSANTES DANS P?(C)

Nous appliquons ce qui précéde a I’étude de I’hyperbolicité du complé-
mentaire de trois courbes dans P?(C) (comparer avec [5], [6]).

|



SUR L’HYPERBOLICITE DE CERTAINS COMPLEMENTAIRES 261

THEOREME. Le plan projectif privé d’une courbe C a 3 composantes,
générique, de degré au moins 5, est hyperbolique.

Ici la généricité signifie d’une part que les composantes C; de C sont lisses
et se coupent transversalement, d’autre part que I’on élimine les obstructions
évidentes a ’hyperbolicité du complémentaire de C, les cas ou une courbe
rationnelle ne rencontre C qu’en deux points. Plus précisément on exclut:

— une tangente & C passant par deux points doubles,

— une bitangente ou une tangente d’inflexion a C passant par un point
double,

— une conique ne rencontrant C qu’en deux points.

Le dernier cas n’arrive que si I'une des composantes de C, par exemple
Cs, est une droite. La conique coupe C3 en deux points qui sont aussi sur
C1 U C, et y posséde un contact d’ordre au moins 8 avec C; U C;.

On vérifie que toutes ces situations forment un diviseur dans 1’espace des
courbes a 3 composantes de degré fixé. C’est donc une généricité au sens de
Zariski.

Démonstration du théoréeme. Elle procede par contradiction et consiste en
deux étapes: construire, a partir d’une courbe entiere évitant C, une limite
qui dégénere algébriquement; puis discuter les courbes algébriques rencontrant
peu C pour tomber sur une situation non générique.

La premiere étape provient de I’utilisation du résultat du paragraphe
précédent aprés avoir projeté P?(C) \ C dans (C*)? grice aux trois com-
posantes. On en déduit une limite évitant C qui se projette comme feuille
d’un feuilletage linéaire de (C*)>. Ceci va forcer la rationalité des pentes de
ce feuilletage et donc 1’algébricité de la limite.

La deuxieme étape, classique, utilise systématiquement le théoreme de
Bézout et la formule du genre pour des courbes a singularités simples.

a) Le cadre. Soit (P; = 0) I’équation (de degré d;) de la courbe C;. Notons
F: P*(C) — P%(C) I’endomorphisme holomorphe de degré d = ppem(d;, dy, d3)
défini par

F(z) = [P1(2)™ : P2(2)™ : P3(2)™], avec m;d; =d. .

Par construction, F envoie le complémentaire de C dans (C*)?. Son lieu
critique consiste en les courbes C; avec multiplicité m; — 1 et une courbe D

de degré d; +d, +dsz — 3. Remarquons que D évite les points doubles de C
du fait de leur transversalité.
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Soit maintenant une courbe entiére non constante f: C — P?(C) évitant
C. Comme Fof omet les axes de coordonnées, elle posséde une limite
exponentielle non constante de la forme h(z) = [c1e™? : cpe® : c3¢™3¢] avec
a; réel (cf. §3).

Remarquons qu’une limite de Fof se releve toujours via F en une limite
de f. En effet, si Fofor, tend vers h, alors for, doit &re normale. Sinon
sa renormalisation donnerait une courbe entiére non constante dans une fibre
de F. Donc, quitte a extraire, f o r, converge vers g avec F o g=nh.

En particulier, #(C) n’est pas contenue dans 1’un des axes de coordonnées.
Sinon g(C) serait tracée sur une des composantes de C, par exemple C;
et éviterait les deux autres. Or, pour des raisons de degré, le cardinal de
C1 N (C2 UC3) est au moins 3. Ceci est impossible car une courbe algébrique
privée de 3 points est hyperbolique.

Ainsi, quitte a reparamétrer f et prendre des multiples des équations P;,
on aura h(z) = (¢%,¢%*) dans une carte de P%(C).

b) Absence de limites transcendantes. Montrons que les adhérences h(C)
et g(C) sont algébriques. Il suffit pour cela de voir que o est rationnel.
Supposons le contraire.

La courbe entiecre A(C) est alors l'une des feuilles complexes de
I’hypersurface réelle Levi-plate H d’équation (|y| = |x|®) dans (C*)?. Les
autres feuilles complexes sont clairement des limites de 4 et donc de Fof.
Ainsi I’adhérence de g(C) dans P?(C) \ C est feuilletée par des limites de
g, donc de f, relevant via F les feuilles complexes de H.

La contradiction va venir d’une discussion de la position de ¢g(C) par
rapport a D, le lieu critique de la restriction de F au complémentaire de C.

Du fait de notre latitude de choix de A(C) parmi l’infinité de feuilles
complexes de H, on peut supposer que A(C) ne coupe F(D) qu’en des
valeurs régulieres de F|p, de plus transversalement. En effet,, les valeurs
singulieres de F|p ainsi que les tangences de F(D) aux feuilles complexes
de H sont en nombre fini, puisque ces feuilles sont transcendantes et F(D)
algébrique.

Alors g(C) doit éviter D : sinon la différentielle D,(F) en un point
d’intersection de g(C) avec D aurait une image contenant les tangentes 2
F(D) et h(C) en F(p); elle serait de rang maximal.

Il en est de méme pour les limites non constantes de g : sinon 1’une d’entre
elles serait contenue dans D \ C qui est hyperbolique.

Ainsi ’adhérence g(C) omet D puisqu’elle est feuilletée dans P2(C) \ C
par des limites de g et que F~!(H) ne rencontre C qu’en ses points doubles,
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soit hors de D. Donc g(C) est contenu dans le complémentaire d’un voisinage
de D dans P*(C) qui est hyperbolique (cf. §1), d’ol la contradiction.

¢) Discussion des limites algébriques. Par ce qui précede, la courbe
enticre g(C) est contenue dans une composante irréductible T de degré ¢
d’une courbe algébrique d’équation (aprés permutation des composantes de C):

) (P =PP) avec pgced(ng,ny) =1
ou

ii) (PY'PY =P7) avec pged(ng,ny,n3) = 1.

Notons que I' ne rencontre C qu’en deux points exactement, toujours car
une courbe privée de 3 points est hyperbolique. Plus précisément, si I" est
singuliére en un de ces points, cette singularité doit étre irréductible, comme
on le constate en passant & la normalisation.

Montrons qu’aucune de ces possibilités n’est générique :

CAs i) Notons I'NC = {p, ¢} avec p dans CiNG;, et g dans G5\ (C1UC,).
D’apres 1’équation i), T a en p une multiplicité d’intersection n; avec C, et
ny avec C;. Comme p est I’unique intersection de T" avec Ci et Cy, On en
déduit par le théoreme de Bézout que 0 divise n; et ny. Ainsi 6 =1 et T
est une droite. Comme cette droite coupe C; avec multiplicité¢ d; (en p pour
i=1,2, en g pour i = 3) avec d, +d, +d; > 5, elle doit étre une bitangente
ou une tangente d’inflexion a C passant par le point double p.

CAS ii) Notons cette fois I'N C = {p1, P2} avec p; dans C;NGCs.

— Supposons d’abord T non singuliere. Elle doit étre rationnelle car
I'\ {p1,p2} n’est pas hyperbolique. C’est donc une droite ou une conique.

Dans le premier cas, I" est une tangente a C passant par les deux points
doubles p; et p,. Sinon elle serait transverse a C en p; et p, et le théoréme
de Bézout imposerait d; = d, = 1, dz = 2 contredisant I’hypothése sur le
degré de C.

Dans le second cas, la conique I" posséde un contact d’ordre 2d; avec
Ci en p; pour i = 1,2 toujours par Bézout. Elle est donc transverse a Cs
en p; et p,. L'intersection totale de T" avec C3 vaut 2 et C; doit étre une

droite. Ainsi d; +d, > 4 et 1a conique I" a un contact d’ordre 8§ ag moins
avec C; U C,.
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— Analysons le cas singulier. Prés de p;, la courbe I' a une équation
locale de la forme (x'" = y%) avec pgcd(r;,s;) = 1 puisque la singularité y
est irréductible. Ici (x = 0) est une équation locale de C; et (y=0) de Cs.

Comme plus haut, le calcul des multiplicités d’intersection et le théoréme
de Bézout donnent:

(1) 0 =s1/di =s2/dy =11/d5 + 1y /d5,
qui implique
2) (0—=D0-2)=(r1/ds — 1)(s1/dy — 1) + (ry/d3 — 1)(s3/dr — 1).

Par ailleurs, la formule du genre pour une courbe irréductible de genre g,
de degré § et possédant un certain nombre de singularités irréductibles de la
forme (x'" = y*) s’écrit (cf. par exemple [10]):

20 <@ -1DE-2) =) (ni—Disi — D),

I'inégalité provenant de la présence éventuelle d’autres singularités. Dans notre
cas, on en déduit:

3) O=1D0—=2)2 1= D1 =D+ (2 — D(s2 — 1).

La comparaison de (2) et (3) impose 1’égalité terme a terme des seconds
membres; en particulier I' est non singuliere hors de p; et p,. On obtient:

(ri—D(@s1=1) = (r/ds=1)(s1/d1—1), (rn—1)(s—1) = (rz/d3—1)(82/d2—1)-

Comme I' est singulicre, I'une de ces égalités — par exemple la premiére —
est non nulle. Ceci entraine d; = ds =1 (C; et Cz sont des droites ) et donc
dy > 3. On en déduit que la deuxiéme égalité doit étre nulle, soit r, = 1.
D’apres (1), on obtient § = sy = r; + 1. Autrement dit, la seule singularité
de T est du type (x°~! =) avec 6 > 3 en p;.

Ceci va imposer la présence d’une tangente d’inflexion a2 C, en p,: en
effet, soit (L = 0) I’équation de la tangente & I" en p, et I'y la courbe
d’équation (Pf_lL = /\Pg). On choisit A de sorte que I" et I'y coincident. Il
suffit pour cela de fixer A pour avoir un contact d’ordre au moins 9> — 1 en
p1 entre T" et I'y. Comme, par construction, I" et I'y sont déja tangentes en
P2, elles doivent coincider par Bézout. Ainsi la tangente & T’ en p, est une
tangente d’inflexion car c’en est une pour I')y puisque § > 3. C’en est une
aussi pour Cp puisque I' et C, y ont un contact important (d’ordre dd,).

En conclusion, aucun de ces cas de figure n’est générique, ce qui achéve
la démonstration du théoreme. [J
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REMARQUE. On construit facilement des exemples de courbes C a trois
composantes de degré 5 dont le complémentaire n’est pas hyperbolique a
cause d’une droite ne coupant C qu’en 2 points. En voici deux, présentés
en coordonnées affines, ot 1’obstruction I' est une conique ou une cubique
rationnelle ne rencontrant C qu’en 2 points. .

a) C est I’'union des deux paraboles d’équation (£2x = y> —2) et de I’axe
des x. Le cercle T' d’équation (x> +y* = 1) a des contacts d’ordre 4 avec
les paraboles en leurs sommets situés sur I’axe des x.

b) C est 'union de la cubique d’équation (y* = x* + x), de I’axe des x
et de la droite a l'infini. La cubique rationnelle I" d’équation (x = y®) a son
point de rebroussement 2 'infini au point de rencontre des deux droites et
un contact d’ordre 9 avec la cubique de C en l’origine, également sur 1’axe
des x.

5. APPENDICE. COURBES DE BRODY DANS (C*)*

Le théoréme du paragraphe 3 est aussi conséquence de la description des
courbes de Brody dans (C*)*.

DEFINITION. Une courbe entiére f: C — P¥(C) est dite de Brody si

|/l < 1, la dérivée étant mesurée dans les métriques usuelles de C et
PX(C).

Toute courbe entiere possede une limite de Brody, précisément par le
lemme de Brody (cf. §1). Celles contenues dans (C*)* sont trés simples :

THEOREME. Les seules courbes de Brody f: C — PKC) évitant les
hyperplans de coordonnées sont de la forme

f(z) = [ce™] :=[c1e™* : ... cpp1€M'7], ¢, ap dans C.

Démonstration. Ecrivons f = ¢ dans une carte de P%(C), par exemple
(Zk+1 = 1).

La premiere €tape, classique (voir [5]), montre que les composantes de
¢ sont quadratiques. L’argument remonte aux origines de la théorie de
Nevanlinna. La propriété d’étre de Brody pour f se traduit directement
par la surharmonicité de Log(l + |fi]* + ...+ | fil) = z|°. Les moyennes
de Log(l + [A]° + ...+ |/i|®) sur les cercles de centre 0 et de rayon r
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